-
1
-
-
20544464593
-
Rigorous location of phase transitions in hard optimization problems
-
Jun
-
ACHLIOPTAS, D., NAOR, A., AND PERES, Y. 2005. Rigorous location of phase transitions in hard optimization problems. Nature 435 (Jun.), 759-764.
-
(2005)
Nature
, vol.435
, pp. 759-764
-
-
ACHLIOPTAS, D.1
NAOR, A.2
PERES, Y.3
-
3
-
-
85001609480
-
Kernel width selection for SVM classification: A meta learning approach
-
ALI, S. AND SMITH, K. A. 2005. Kernel width selection for SVM classification: A meta learning approach. Int. J. Data Warehousing Mining 1, 78-97.
-
(2005)
Int. J. Data Warehousing Mining
, vol.1
, pp. 78-97
-
-
ALI, S.1
SMITH, K.A.2
-
4
-
-
30344483921
-
On learning algorithm selection for classification
-
ALI, S. AND SMITH, K. 2006. On learning algorithm selection for classification. Appl. Soft Comput. 6, 2, 119-138.
-
(2006)
Appl. Soft Comput
, vol.6
, Issue.2
, pp. 119-138
-
-
ALI, S.1
SMITH, K.2
-
5
-
-
33750292535
-
A meta-learning approach to automatic kernel selection for support vector machines
-
ALI, S. AND SMITH-MILES, K. 2006. A meta-learning approach to automatic kernel selection for support vector machines. Neurocomput. 70, 1-3, 173-186.
-
(2006)
Neurocomput
, vol.70
, Issue.1-3
, pp. 173-186
-
-
ALI, S.1
SMITH-MILES, K.2
-
6
-
-
0036644699
-
On the hardness of the quadratic assignment problem with meta-heuristics
-
ANGEL, E. AND ZISSIMOPOULOS, V. 2002. On the hardness of the quadratic assignment problem with meta-heuristics. J. Heurist. 8, 399-414.
-
(2002)
J. Heurist
, vol.8
, pp. 399-414
-
-
ANGEL, E.1
ZISSIMOPOULOS, V.2
-
7
-
-
0042047333
-
Selecting appropriate forecasting models using rule induction
-
ARINZE, B. 1995. Selecting appropriate forecasting models using rule induction. Omega Int. J. Manage. Sci. 22, 6, 647-658.
-
(1995)
Omega Int. J. Manage. Sci
, vol.22
, Issue.6
, pp. 647-658
-
-
ARINZE, B.1
-
8
-
-
0031141263
-
Combining and selecting forecasting models using rule based induction
-
ARINZE, B., KIM, S. L., AND ANANDARAJAN, M. 1997. Combining and selecting forecasting models using rule based induction. Comput. Oper. Res. 24, 5, 423-433.
-
(1997)
Comput. Oper. Res
, vol.24
, Issue.5
, pp. 423-433
-
-
ARINZE, B.1
KIM, S.L.2
ANANDARAJAN, M.3
-
9
-
-
36949024215
-
Dynamic algorithm selection using reinforcement learning
-
ARMSTRONG, W., CHRISTEN, P., MCCREATH, E., AND RENDELL, A.P. 2006. Dynamic algorithm selection using reinforcement learning. In Proceedings of the International Workshop on Integrating AI and Data Mining, 18-24.
-
(2006)
Proceedings of the International Workshop on Integrating AI and Data Mining
, pp. 18-24
-
-
ARMSTRONG, W.1
CHRISTEN, P.2
MCCREATH, E.3
RENDELL, A.P.4
-
10
-
-
36948999941
-
-
CA: University of California, Department of Information and Computer Science
-
ASUNCION, A AND NEWMAN, D.J. 2007. UCI Machine Learning Repository (http://www.ics.uci.edu/∼ mlearn/MLRepository.html). Irvine, CA: University of California, Department of Information and Computer Science.
-
(2007)
UCI Machine Learning Repository
-
-
ASUNCION, A.1
NEWMAN, D.J.2
-
12
-
-
30344458543
-
A higher-order approach to meta-learning
-
BENSUSAN, H., GIRAUD-CARRIER, C., AND KENNEDY, C. 2000. A higher-order approach to meta-learning. In Proceedings of the European Conference on Machine Learning, Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination, 109-117.
-
(2000)
Proceedings of the European Conference on Machine Learning, Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination
, pp. 109-117
-
-
BENSUSAN, H.1
GIRAUD-CARRIER, C.2
KENNEDY, C.3
-
13
-
-
84948156093
-
Estimating the predictive accuracy of a classifier
-
BENSUSAN, H. AND KALOUSIS, A. 2001. Estimating the predictive accuracy of a classifier. Lecture Notes in Computer Science, vol. 2167, 25-31.
-
(2001)
Lecture Notes in Computer Science
, vol.2167
, pp. 25-31
-
-
BENSUSAN, H.1
KALOUSIS, A.2
-
14
-
-
17044440165
-
Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification
-
BERNSTEIN, A., PROVOST, F., AND HILL, S. 2005. Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification. IEEE Trans. Knowl. Data Eng. 17, 4, 503-518.
-
(2005)
IEEE Trans. Knowl. Data Eng
, vol.17
, Issue.4
, pp. 503-518
-
-
BERNSTEIN, A.1
PROVOST, F.2
HILL, S.3
-
15
-
-
0013107613
-
Evaluation of machine-learning algorithm ranking advisors
-
P. Brazdil and A. Jorge, eds
-
BERRER, H., PATERSON, I., AND KELLER, J. 2000. Evaluation of machine-learning algorithm ranking advisors. In Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP: Forum for Practical Problem Presentation and Prospective Solutions, P. Brazdil and A. Jorge, eds.
-
(2000)
Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP: Forum for Practical Problem Presentation and Prospective Solutions
-
-
BERRER, H.1
PATERSON, I.2
KELLER, J.3
-
16
-
-
34547264921
-
-
BORENSTEIN, Y., AND POLI, R. 2006. Kolmogorov complexity, optimization and hardness. IEEE Congress on Evol. Comput., 112-119.
-
BORENSTEIN, Y., AND POLI, R. 2006. Kolmogorov complexity, optimization and hardness. IEEE Congress on Evol. Comput., 112-119.
-
-
-
-
17
-
-
35048853552
-
Measures of instrinsic hardness for constraint satisfaction problem instances
-
BOUKEAS, G., HALATSIS, C., ZISSIMPOLOULOS, V., AND STAMATOPOULOS, P. 2004. Measures of instrinsic hardness for constraint satisfaction problem instances. Lecture Notes in Computer Science, vol. 2932, 184-195.
-
(2004)
Lecture Notes in Computer Science
, vol.2932
, pp. 184-195
-
-
BOUKEAS, G.1
HALATSIS, C.2
ZISSIMPOLOULOS, V.3
STAMATOPOULOS, P.4
-
18
-
-
0003343396
-
Analysis of results
-
D. Michie et al, eds. Ellis Horwood, New York. Chapter 10
-
BRAZDIL, P. AND HENERY, R. 1994. Analysis of results. In Machine Learning, Neural and Statistical Classification, D. Michie et al., eds. Ellis Horwood, New York. Chapter 10.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
BRAZDIL, P.1
HENERY, R.2
-
19
-
-
0037361994
-
Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
-
BRAZDIL, P., SOARES, C., AND COSTA, J. 2003. Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Mach. Learn. 50, 3, 251-277.
-
(2003)
Mach. Learn
, vol.50
, Issue.3
, pp. 251-277
-
-
BRAZDIL, P.1
SOARES, C.2
COSTA, J.3
-
21
-
-
3042708858
-
Hyper-Heuristics: An emerging direction in modern search technology
-
Glover and Kochen-berger, eds. Kluwer Academic, Dordrecht
-
BURKE, E., KENDALL, G., NEWALL, J., HART, E., ROSS, P., AND SCHULENBURG, S. 2003. Hyper-Heuristics: An emerging direction in modern search technology. In Handbook of Metaheuristics, Glover and Kochen-berger, eds. Kluwer Academic, Dordrecht, 457-474.
-
(2003)
Handbook of Metaheuristics
, pp. 457-474
-
-
BURKE, E.1
KENDALL, G.2
NEWALL, J.3
HART, E.4
ROSS, P.5
SCHULENBURG, S.6
-
22
-
-
26944466243
-
Meta-Data: Characterization of input features for meta-learning
-
CASTIELLO, C., CASTELLANO, G., AND FANELLI, A. M. 2005. Meta-Data: Characterization of input features for meta-learning. Lecture Notes in Artificial Intelligence, vol. 3558, 457-468.
-
(2005)
Lecture Notes in Artificial Intelligence
, vol.3558
, pp. 457-468
-
-
CASTIELLO, C.1
CASTELLANO, G.2
FANELLI, A.M.3
-
23
-
-
0030681095
-
On the accuracy of meta-learning for scalable data mining
-
CHAN, P. AND STOLFO, S. J. 1997. On the accuracy of meta-learning for scalable data mining. J. Intell. Inf. Syst. 8, 19, 5-28.
-
(1997)
J. Intell. Inf. Syst
, vol.8
, Issue.19
, pp. 5-28
-
-
CHAN, P.1
STOLFO, S.J.2
-
24
-
-
0028485121
-
A neural network system for forecasting method selection
-
CHU, C. H. AND WIDJAJA, D. 1994. A neural network system for forecasting method selection. Decis. Support Syst. 12, 13-24.
-
(1994)
Decis. Support Syst
, vol.12
, pp. 13-24
-
-
CHU, C.H.1
WIDJAJA, D.2
-
25
-
-
0010687813
-
Special issue on bias evaluation and selection
-
DESJARDINS, M AND GORDON, D. F. 1995. Special issue on bias evaluation and selection. Mach. Learn. 20, 1-2.
-
(1995)
Mach. Learn
, vol.20
, pp. 1-2
-
-
DESJARDINS, M.1
GORDON, D.F.2
-
27
-
-
0026974993
-
A survey of adaptive sorting algorithms
-
ESTIVILL-CASTRO, V. AND WOOD, D. 1992. A survey of adaptive sorting algorithms. ACM Comput. Surv. 24, 4, 441-476.
-
(1992)
ACM Comput. Surv
, vol.24
, Issue.4
, pp. 441-476
-
-
ESTIVILL-CASTRO, V.1
WOOD, D.2
-
28
-
-
0026120634
-
Letter recognition using holland-style adaptive classifiers
-
FREY, P. W. AND SLATE, D. J. 1991. Letter recognition using holland-style adaptive classifiers. Mach. Learn. 6, 161-182.
-
(1991)
Mach. Learn
, vol.6
, pp. 161-182
-
-
FREY, P.W.1
SLATE, D.J.2
-
29
-
-
0013105971
-
An evaluation of landmarking variants
-
C. Giraud-Carrier et al, eds
-
FURNKRANZ, J. AND PETRAK, J. 2001. An evaluation of landmarking variants. In Proceedings of the ECML/PKDD Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning (IDDM), C. Giraud-Carrier et al., eds., 57-68.
-
(2001)
Proceedings of the ECML/PKDD Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning (IDDM)
, pp. 57-68
-
-
FURNKRANZ, J.1
PETRAK, J.2
-
30
-
-
33847251055
-
-
GAGLIOLO, M. AND SCHMIDHUBER, J. 2006. Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47, 3-4 (Aug.), 295-328.
-
GAGLIOLO, M. AND SCHMIDHUBER, J. 2006. Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47, 3-4 (Aug.), 295-328.
-
-
-
-
31
-
-
0034541162
-
Cascade generalization
-
GAMA, J. AND BRAZDIL, P. 2000. Cascade generalization. Mach. Learn. 41, 3, 315-343.
-
(2000)
Mach. Learn
, vol.41
, Issue.3
, pp. 315-343
-
-
GAMA, J.1
BRAZDIL, P.2
-
37
-
-
0033170342
-
Towards a characterisation of the behaviour of stochastic local search algorithms for SAT
-
HOOS, H. H. AND STÜTZLE, T. 1999. Towards a characterisation of the behaviour of stochastic local search algorithms for SAT. Artif. Intell. 112, 1-2, 213-232.
-
(1999)
Artif. Intell
, vol.112
, Issue.1-2
, pp. 213-232
-
-
HOOS, H.H.1
STÜTZLE, T.2
-
38
-
-
0012302244
-
A Bayesian approach to tackling hard computational problems
-
HORVITZ, E., RUAN, Y., GOMES, C., KAUTZ, H., SELMAN, B., AND CHICKERING, M. 2001. A Bayesian approach to tackling hard computational problems. In Proc. 17th Conference on Uncertainty in Artificial Intelligence.
-
(2001)
Proc. 17th Conference on Uncertainty in Artificial Intelligence
-
-
HORVITZ, E.1
RUAN, Y.2
GOMES, C.3
KAUTZ, H.4
SELMAN, B.5
CHICKERING, M.6
-
39
-
-
0040321375
-
-
available from
-
HYNDMAN, R. 2002. Time Series Data Library, available from http://www-personal.buseco.monash. edu.au/∼hyndman/TSDL/.
-
(2002)
Time Series Data Library
-
-
HYNDMAN, R.1
-
43
-
-
0000153354
-
Design, implementation and performance results of an intelligent assistant for classifier selection
-
KALOUSIS, A. AND THEOHARIS, T. 1999. Design, implementation and performance results of an intelligent assistant for classifier selection. Intell. Data Anal. 3, 5, 319-337.
-
(1999)
Intell. Data Anal
, vol.3
, Issue.5
, pp. 319-337
-
-
KALOUSIS, A.1
THEOHARIS, T.2
-
45
-
-
4344674305
-
Towards landscape analysis to inform the design of a hybrid local search for the multiobjective quadratic assignment problem
-
A. Abraham et al, eds. IOS Press, Amsterdam
-
KNOWLES, J. D. AND CORNE, D. W. 2002. Towards landscape analysis to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. In Soft Computing Systems: Design, Management and Applications, A. Abraham et al., eds. IOS Press, Amsterdam, 271-279.
-
(2002)
Soft Computing Systems: Design, Management and Applications
, pp. 271-279
-
-
KNOWLES, J.D.1
CORNE, D.W.2
-
47
-
-
66749160928
-
Meta-Analysis: From data characterisation for meta-learning to meta-regression
-
P. Brazdil and A Jorge, eds
-
KOPF, C., TAYLOR, C., AND KELLER, J. 2000. Meta-Analysis: From data characterisation for meta-learning to meta-regression. In Proceedings of the PKDD Workshop on Data Mining, Decision Support, Meta-Learning and ILP, P. Brazdil and A Jorge, eds.
-
(2000)
Proceedings of the PKDD Workshop on Data Mining, Decision Support, Meta-Learning and ILP
-
-
KOPF, C.1
TAYLOR, C.2
KELLER, J.3
-
48
-
-
66749121332
-
Exploiting sampling and meta-learning for parameter setting for support vector machines
-
F. Herrera et al, eds
-
KUBA, P., BRÁRZDIL, P., SOARES, C., AND WOZNICA, A. 2002. Exploiting sampling and meta-learning for parameter setting for support vector machines. In Proceedings of the Workshop Learning and Data Mining Associated with Iberamia VIII Iberoamerican Conference on Artificial Intelligence. F. Herrera et al., eds., 209-216.
-
(2002)
Proceedings of the Workshop Learning and Data Mining Associated with Iberamia VIII Iberoamerican Conference on Artificial Intelligence
, pp. 209-216
-
-
KUBA, P.1
BRÁRZDIL, P.2
SOARES, C.3
WOZNICA, A.4
-
50
-
-
66749097244
-
Utilising regression-based landmarkers within a meta-learning framework for algorithm selection
-
LER, D., KOPRINSKA, I., AND CHAWLA, S. 2005. Utilising regression-based landmarkers within a meta-learning framework for algorithm selection. In Proceedings of the Workshop on Meta-Learning, 22nd International Conference on Machine Learning (ICML), 44-51.
-
(2005)
Proceedings of the Workshop on Meta-Learning, 22nd International Conference on Machine Learning (ICML)
, pp. 44-51
-
-
LER, D.1
KOPRINSKA, I.2
CHAWLA, S.3
-
51
-
-
84957035400
-
Learning the empirical hardness of optimization problems: The case of combinatorial auctions
-
LEYTON-BROWN, K., NUDELMAN, E., AND SHOHAM, Y. 2002. Learning the empirical hardness of optimization problems: The case of combinatorial auctions. Lecture Notes in Computer Science, vol. 2470, 556-569.
-
(2002)
Lecture Notes in Computer Science
, vol.2470
, pp. 556-569
-
-
LEYTON-BROWN, K.1
NUDELMAN, E.2
SHOHAM, Y.3
-
52
-
-
84880774150
-
A portfolio approach to algorithm selection
-
LEYTON-BROWN, K., NUDELMAN, E., ANDREW, G., MCFADDEN, J., AND SHOHAM, Y. 2003a. A portfolio approach to algorithm selection. In Proceedings of the International Joint Conference on Artificial Intelligence, 1542-1543.
-
(2003)
Proceedings of the International Joint Conference on Artificial Intelligence
, pp. 1542-1543
-
-
LEYTON-BROWN, K.1
NUDELMAN, E.2
ANDREW, G.3
MCFADDEN, J.4
SHOHAM, Y.5
-
53
-
-
33244494375
-
Boosting as a metaphor for algorithm design
-
LEYTON-BROWN, K., NUDELMAN, E., ANDREW, G., MCFADDEN, J., AND SHOHAM, Y 2003b. Boosting as a metaphor for algorithm design. In Proceedings of the Conference on Principles and Practice of Constraint Programming, 899-903.
-
(2003)
Proceedings of the Conference on Principles and Practice of Constraint Programming
, pp. 899-903
-
-
LEYTON-BROWN, K.1
NUDELMAN, E.2
ANDREW, G.3
MCFADDEN, J.4
SHOHAM, Y.5
-
54
-
-
0034274591
-
A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
-
LIM, T.-S., LOH, W.-Y., AND SHIH, Y.-S. 2000. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 40, 203-228.
-
(2000)
Mach. Learn
, vol.40
, pp. 203-228
-
-
LIM, T.-S.1
LOH, W.-Y.2
SHIH, Y.-S.3
-
56
-
-
0034288942
-
The M3-competition: Results, conclusions and implications
-
MAKRIDAKIS, S. AND HIBON, M. 2000. The M3-competition: Results, conclusions and implications. Int. J. Forecast. 16, 4, 451-476.
-
(2000)
Int. J. Forecast
, vol.16
, Issue.4
, pp. 451-476
-
-
MAKRIDAKIS, S.1
HIBON, M.2
-
58
-
-
0031069121
-
The racing algorithm: Model selection for lazy learners
-
MARON, O. AND MOORE, A. W. 1997. The racing algorithm: Model selection for lazy learners. Artif Intell. Rev., 193-225.
-
(1997)
Artif Intell. Rev
, pp. 193-225
-
-
MARON, O.1
MOORE, A.W.2
-
59
-
-
4544339487
-
Advanced fitness landscape analysis and the performance of memetic algorithms
-
MERZ, P. 2004. Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput. 12, 303-325.
-
(2004)
Evol. Comput
, vol.12
, pp. 303-325
-
-
MERZ, P.1
-
60
-
-
66749147256
-
-
MICHIE, D., SPIEGELHALTER, D. J., AND TAYLOR C. C. EDS. 1994. Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.
-
MICHIE, D., SPIEGELHALTER, D. J., AND TAYLOR C. C. EDS. 1994. Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.
-
-
-
-
61
-
-
33847303915
-
Understanding random SAT: Beyond the clauses-to-variables ratio
-
NUDELMAN, E., LEYTON-BROWN, K., HOOS, H., DEVKAR, A., AND SHOHAM, Y. 2004. Understanding random SAT: Beyond the clauses-to-variables ratio. Lecture Notes in Computer Science, vol. 3258, 438-452.
-
(2004)
Lecture Notes in Computer Science
, vol.3258
, pp. 438-452
-
-
NUDELMAN, E.1
LEYTON-BROWN, K.2
HOOS, H.3
DEVKAR, A.4
SHOHAM, Y.5
-
62
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
OPITZ, D. AND MACLIN, R. 1999. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169-198.
-
(1999)
J. Artif. Intell. Res
, vol.11
, pp. 169-198
-
-
OPITZ, D.1
MACLIN, R.2
-
63
-
-
84949799605
-
Improved dataset characterization for meta-learning
-
PENG, Y., FLACH, P., SOARES, C., AND BRAZDIL P. 2002. Improved dataset characterization for meta-learning. In Proceedings of the 5th International Conference on Discovery Science.
-
(2002)
Proceedings of the 5th International Conference on Discovery Science
-
-
PENG, Y.1
FLACH, P.2
SOARES, C.3
BRAZDIL, P.4
-
66
-
-
0002522158
-
Meta-Learning in distributed data mining systems: Issues and approaches
-
H. Kargupta and P. Chan, eds. AAAI Press
-
PRODROMIDIS, A. L., CHAN, P., AND STOLFO, S. J. 2000. Meta-Learning in distributed data mining systems: Issues and approaches. In Advances of Distributed Data Mining, H. Kargupta and P. Chan, eds. AAAI Press.
-
(2000)
Advances of Distributed Data Mining
-
-
PRODROMIDIS, A.L.1
CHAN, P.2
STOLFO, S.J.3
-
67
-
-
10244243684
-
Meta-Learning approaches to selecting time-series models
-
PRUDÊNCIO, R. AND LUDERMIR, T. 2004. Meta-Learning approaches to selecting time-series models. Neuro-comput. 61, 121-137.
-
(2004)
Neuro-comput
, vol.61
, pp. 121-137
-
-
PRUDÊNCIO, R.1
LUDERMIR, T.2
-
68
-
-
0000606355
-
Empirical learning as a function of concept character
-
RENDELL, L. AND CHO, H. 1990. Empirical learning as a function of concept character. Mach. Learn. 5, 267-298.
-
(1990)
Mach. Learn
, vol.5
, pp. 267-298
-
-
RENDELL, L.1
CHO, H.2
-
69
-
-
0001125131
-
Classes of recursively enumerable sets and their decision problems
-
RICE, J. R. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 89, 29-59.
-
(1953)
Trans. Amer. Math. Soc
, vol.89
, pp. 29-59
-
-
RICE, J.R.1
-
70
-
-
0003056605
-
The algorithm selection problem
-
RICE, J. R. 1976. The algorithm selection problem. Advances in Comput. 15, 65-118.
-
(1976)
Advances in Comput
, vol.15
, pp. 65-118
-
-
RICE, J.R.1
-
73
-
-
0030105333
-
Generating hard satisfiability problems
-
SELMAN, B., MITCHELL, D. G., AND LEVESQUE, H. J. 1996. Generating hard satisfiability problems. Artif. Intell. 81, 17-29.
-
(1996)
Artif. Intell
, vol.81
, pp. 17-29
-
-
SELMAN, B.1
MITCHELL, D.G.2
LEVESQUE, H.J.3
-
74
-
-
84856043672
-
A mathematical theory of communication
-
Jul, Oct, 379-423 and 623-656
-
SHANNON, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27 (Jul., Oct.), 379-423 and 623-656.
-
(1948)
Bell Syst. Tech. J
, vol.27
-
-
SHANNON, C.E.1
-
76
-
-
30344451274
-
Modelling the relationship between problem characteristics and data mining algorithm performance using neural networks
-
C. Dagli et al, eds. ASME Press
-
SMITH, K. A., WOO, F., CIESIELSKI, V., AND IBRAHIM, R. 2001. Modelling the relationship between problem characteristics and data mining algorithm performance using neural networks. In Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems, C. Dagli et al., eds. ASME Press, 11, 356-362.
-
(2001)
Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems
, vol.11
, pp. 356-362
-
-
SMITH, K.A.1
WOO, F.2
CIESIELSKI, V.3
IBRAHIM, R.4
-
77
-
-
66749134076
-
-
SMITH, K. A., WOO, F., CIESIELSKI, V., AND IBRAHIM, R. 2002. Matching data mining algorithm suitability to data characteristics using a self-organising map. In Hybrid Information Systems, A. Abraham and M. Koppen, M., eds. Physica, Heidelberg, 169-180.
-
SMITH, K. A., WOO, F., CIESIELSKI, V., AND IBRAHIM, R. 2002. Matching data mining algorithm suitability to data characteristics using a self-organising map. In Hybrid Information Systems, A. Abraham and M. Koppen, M., eds. Physica, Heidelberg, 169-180.
-
-
-
-
80
-
-
1642276856
-
A meta-learning method to select the kernel width in support vector regression
-
SOARES, C., BRAZDIL, P., AND KUBA, P. 2004. A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54, 3, 195-209.
-
(2004)
Mach. Learn
, vol.54
, Issue.3
, pp. 195-209
-
-
SOARES, C.1
BRAZDIL, P.2
KUBA, P.3
-
81
-
-
36349002829
-
Combining multiple heuristics online
-
STREETER, M., GOLOVIN, D., AND SMITH, S. F. 2007. Combining multiple heuristics online. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence, 1197-1203.
-
(2007)
Proceedings of the 22nd AAAI Conference on Artificial Intelligence
, pp. 1197-1203
-
-
STREETER, M.1
GOLOVIN, D.2
SMITH, S.F.3
-
82
-
-
33749581467
-
New benchmark instances for the QAP and the experimental analysis of algorithms
-
STÜTZLE, T. AND FERNANDES, S. 2004. New benchmark instances for the QAP and the experimental analysis of algorithms. Lecture Notes in Computer Science, vol. 3004, 199-209.
-
(2004)
Lecture Notes in Computer Science
, vol.3004
, pp. 199-209
-
-
STÜTZLE, T.1
FERNANDES, S.2
-
85
-
-
0037365188
-
Combining classifiers with meta decision trees
-
TODOROVSKI, L. AND DZEROSKI, S. 2003. Combining classifiers with meta decision trees. Mach. Learn.
-
(2003)
Mach. Learn
-
-
TODOROVSKI, L.1
DZEROSKI, S.2
-
86
-
-
33846274936
-
Evolving combinatorial problem instances that are difficult to solve
-
VAN HEMERT, J. I. 2006. Evolving combinatorial problem instances that are difficult to solve. Evol. Comput. 14, 433-462.
-
(2006)
Evol. Comput
, vol.14
, pp. 433-462
-
-
VAN HEMERT, J.I.1
-
87
-
-
0008327642
-
An intelligent model selection and forecasting system
-
VENKATACHALAM, A. R. AND SOHL, J. E. 1999. An intelligent model selection and forecasting system. Int. J. Forecast. 18, 3, 67-180.
-
(1999)
Int. J. Forecast
, vol.18
, Issue.3
, pp. 67-180
-
-
VENKATACHALAM, A.R.1
SOHL, J.E.2
-
88
-
-
0036791948
-
A perspective view and survey of meta-learning
-
VILALTA, R. AND DRISSI, Y. 2002. A perspective view and survey of meta-learning. Artif. Intell. Rev. 18, 77-95.
-
(2002)
Artif. Intell. Rev
, vol.18
, pp. 77-95
-
-
VILALTA, R.1
DRISSI, Y.2
-
89
-
-
0009553471
-
The facility layout problem in perspective
-
VOLLMANN, T. E. AND BUFFA, E. S. 1966. The facility layout problem in perspective. Manage. Sci. 12, 10, 450-468.
-
(1966)
Manage. Sci
, vol.12
, Issue.10
, pp. 450-468
-
-
VOLLMANN, T.E.1
BUFFA, E.S.2
-
90
-
-
0000107517
-
An information measure for classification
-
WALLACE, C. S. AND BOULTON D. M. 1968. An information measure for classification. Comput. J. 11, 2, 185-194.
-
(1968)
Comput. J
, vol.11
, Issue.2
, pp. 185-194
-
-
WALLACE, C.S.1
BOULTON, D.M.2
-
91
-
-
0141790754
-
Finding the right hybrid algorithm - A combinatorial meta-problem
-
WALLACE, M. AND SCHIMPF, J. 2002. Finding the right hybrid algorithm - A combinatorial meta-problem. Ann. Math. Artif Intell. 34, 259-269.
-
(2002)
Ann. Math. Artif Intell
, vol.34
, pp. 259-269
-
-
WALLACE, M.1
SCHIMPF, J.2
-
93
-
-
33749012790
-
Characteristic-Based clustering for time series data
-
WANG, X., SMITH, K. A., AND HYNDMAN, R. 2006. Characteristic-Based clustering for time series data. Data Mining Knowl. Discov. 13, 335-364.
-
(2006)
Data Mining Knowl. Discov
, vol.13
, pp. 335-364
-
-
WANG, X.1
SMITH, K.A.2
HYNDMAN, R.3
-
96
-
-
0026692226
-
Stacked generalization
-
WOLPERT, D. H. 1992. Stacked generalization. Neural Netw. 5, 241-259.
-
(1992)
Neural Netw
, vol.5
, pp. 241-259
-
-
WOLPERT, D.H.1
-
97
-
-
38349031300
-
Satzilla-07: The design and analysis of an algorithm portfolio for SAT
-
Principles and Practices of Constraint Programming
-
XU, L., HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2007a. Satzilla-07: The design and analysis of an algorithm portfolio for SAT. In Principles and Practices of Constraint Programming. Lecture Notes in Computer Science, 712-727.
-
(2007)
Lecture Notes in Computer Science
, vol.712-727
-
-
XU, L.1
HUTTER, F.2
HOOS, H.3
LEYTON-BROWN, K.4
-
98
-
-
38349063502
-
Hierarchical hardness models for SAT
-
Principles and Practices of Constraint Programming
-
XU, L., HOOS, H., AND LEYTON- BROWN, K. 2007b. Hierarchical hardness models for SAT. In Principles and Practices of Constraint Programming. Lecture Notes in Computer Science, 696-711.
-
(2007)
Lecture Notes in Computer Science
, vol.696-711
-
-
XU, L.1
HOOS, H.2
LEYTON- BROWN, K.3
|