메뉴 건너뛰기




Volumn 41, Issue 1, 2008, Pages

Cross-disciplinary perspectives on meta-learning for algorithm selection

Author keywords

Algorithm selection; Classification; Combinatorial optimization; Constraint satisfaction; Dataset characterization; Empirical hardness; Forecasting; Landscape analysis; Meta learning; Model selection; Sorting

Indexed keywords

ALGORITHM SELECTION; CLASSIFICATION; CONSTRAINT SATISFACTION; DATASET CHARACTERIZATION; EMPIRICAL HARDNESS; LANDSCAPE ANALYSIS; META-LEARNING; MODEL SELECTION;

EID: 49749086726     PISSN: 03600300     EISSN: 15577341     Source Type: Journal    
DOI: 10.1145/1456650.1456656     Document Type: Article
Times cited : (466)

References (99)
  • 1
    • 20544464593 scopus 로고    scopus 로고
    • Rigorous location of phase transitions in hard optimization problems
    • Jun
    • ACHLIOPTAS, D., NAOR, A., AND PERES, Y. 2005. Rigorous location of phase transitions in hard optimization problems. Nature 435 (Jun.), 759-764.
    • (2005) Nature , vol.435 , pp. 759-764
    • ACHLIOPTAS, D.1    NAOR, A.2    PERES, Y.3
  • 3
    • 85001609480 scopus 로고    scopus 로고
    • Kernel width selection for SVM classification: A meta learning approach
    • ALI, S. AND SMITH, K. A. 2005. Kernel width selection for SVM classification: A meta learning approach. Int. J. Data Warehousing Mining 1, 78-97.
    • (2005) Int. J. Data Warehousing Mining , vol.1 , pp. 78-97
    • ALI, S.1    SMITH, K.A.2
  • 4
    • 30344483921 scopus 로고    scopus 로고
    • On learning algorithm selection for classification
    • ALI, S. AND SMITH, K. 2006. On learning algorithm selection for classification. Appl. Soft Comput. 6, 2, 119-138.
    • (2006) Appl. Soft Comput , vol.6 , Issue.2 , pp. 119-138
    • ALI, S.1    SMITH, K.2
  • 5
    • 33750292535 scopus 로고    scopus 로고
    • A meta-learning approach to automatic kernel selection for support vector machines
    • ALI, S. AND SMITH-MILES, K. 2006. A meta-learning approach to automatic kernel selection for support vector machines. Neurocomput. 70, 1-3, 173-186.
    • (2006) Neurocomput , vol.70 , Issue.1-3 , pp. 173-186
    • ALI, S.1    SMITH-MILES, K.2
  • 6
    • 0036644699 scopus 로고    scopus 로고
    • On the hardness of the quadratic assignment problem with meta-heuristics
    • ANGEL, E. AND ZISSIMOPOULOS, V. 2002. On the hardness of the quadratic assignment problem with meta-heuristics. J. Heurist. 8, 399-414.
    • (2002) J. Heurist , vol.8 , pp. 399-414
    • ANGEL, E.1    ZISSIMOPOULOS, V.2
  • 7
    • 0042047333 scopus 로고
    • Selecting appropriate forecasting models using rule induction
    • ARINZE, B. 1995. Selecting appropriate forecasting models using rule induction. Omega Int. J. Manage. Sci. 22, 6, 647-658.
    • (1995) Omega Int. J. Manage. Sci , vol.22 , Issue.6 , pp. 647-658
    • ARINZE, B.1
  • 8
    • 0031141263 scopus 로고    scopus 로고
    • Combining and selecting forecasting models using rule based induction
    • ARINZE, B., KIM, S. L., AND ANANDARAJAN, M. 1997. Combining and selecting forecasting models using rule based induction. Comput. Oper. Res. 24, 5, 423-433.
    • (1997) Comput. Oper. Res , vol.24 , Issue.5 , pp. 423-433
    • ARINZE, B.1    KIM, S.L.2    ANANDARAJAN, M.3
  • 10
    • 36948999941 scopus 로고    scopus 로고
    • CA: University of California, Department of Information and Computer Science
    • ASUNCION, A AND NEWMAN, D.J. 2007. UCI Machine Learning Repository (http://www.ics.uci.edu/∼ mlearn/MLRepository.html). Irvine, CA: University of California, Department of Information and Computer Science.
    • (2007) UCI Machine Learning Repository
    • ASUNCION, A.1    NEWMAN, D.J.2
  • 13
    • 84948156093 scopus 로고    scopus 로고
    • Estimating the predictive accuracy of a classifier
    • BENSUSAN, H. AND KALOUSIS, A. 2001. Estimating the predictive accuracy of a classifier. Lecture Notes in Computer Science, vol. 2167, 25-31.
    • (2001) Lecture Notes in Computer Science , vol.2167 , pp. 25-31
    • BENSUSAN, H.1    KALOUSIS, A.2
  • 14
    • 17044440165 scopus 로고    scopus 로고
    • Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification
    • BERNSTEIN, A., PROVOST, F., AND HILL, S. 2005. Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification. IEEE Trans. Knowl. Data Eng. 17, 4, 503-518.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.4 , pp. 503-518
    • BERNSTEIN, A.1    PROVOST, F.2    HILL, S.3
  • 16
    • 34547264921 scopus 로고    scopus 로고
    • BORENSTEIN, Y., AND POLI, R. 2006. Kolmogorov complexity, optimization and hardness. IEEE Congress on Evol. Comput., 112-119.
    • BORENSTEIN, Y., AND POLI, R. 2006. Kolmogorov complexity, optimization and hardness. IEEE Congress on Evol. Comput., 112-119.
  • 19
    • 0037361994 scopus 로고    scopus 로고
    • Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
    • BRAZDIL, P., SOARES, C., AND COSTA, J. 2003. Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Mach. Learn. 50, 3, 251-277.
    • (2003) Mach. Learn , vol.50 , Issue.3 , pp. 251-277
    • BRAZDIL, P.1    SOARES, C.2    COSTA, J.3
  • 21
    • 3042708858 scopus 로고    scopus 로고
    • Hyper-Heuristics: An emerging direction in modern search technology
    • Glover and Kochen-berger, eds. Kluwer Academic, Dordrecht
    • BURKE, E., KENDALL, G., NEWALL, J., HART, E., ROSS, P., AND SCHULENBURG, S. 2003. Hyper-Heuristics: An emerging direction in modern search technology. In Handbook of Metaheuristics, Glover and Kochen-berger, eds. Kluwer Academic, Dordrecht, 457-474.
    • (2003) Handbook of Metaheuristics , pp. 457-474
    • BURKE, E.1    KENDALL, G.2    NEWALL, J.3    HART, E.4    ROSS, P.5    SCHULENBURG, S.6
  • 23
    • 0030681095 scopus 로고    scopus 로고
    • On the accuracy of meta-learning for scalable data mining
    • CHAN, P. AND STOLFO, S. J. 1997. On the accuracy of meta-learning for scalable data mining. J. Intell. Inf. Syst. 8, 19, 5-28.
    • (1997) J. Intell. Inf. Syst , vol.8 , Issue.19 , pp. 5-28
    • CHAN, P.1    STOLFO, S.J.2
  • 24
    • 0028485121 scopus 로고
    • A neural network system for forecasting method selection
    • CHU, C. H. AND WIDJAJA, D. 1994. A neural network system for forecasting method selection. Decis. Support Syst. 12, 13-24.
    • (1994) Decis. Support Syst , vol.12 , pp. 13-24
    • CHU, C.H.1    WIDJAJA, D.2
  • 25
    • 0010687813 scopus 로고
    • Special issue on bias evaluation and selection
    • DESJARDINS, M AND GORDON, D. F. 1995. Special issue on bias evaluation and selection. Mach. Learn. 20, 1-2.
    • (1995) Mach. Learn , vol.20 , pp. 1-2
    • DESJARDINS, M.1    GORDON, D.F.2
  • 27
    • 0026974993 scopus 로고
    • A survey of adaptive sorting algorithms
    • ESTIVILL-CASTRO, V. AND WOOD, D. 1992. A survey of adaptive sorting algorithms. ACM Comput. Surv. 24, 4, 441-476.
    • (1992) ACM Comput. Surv , vol.24 , Issue.4 , pp. 441-476
    • ESTIVILL-CASTRO, V.1    WOOD, D.2
  • 28
    • 0026120634 scopus 로고
    • Letter recognition using holland-style adaptive classifiers
    • FREY, P. W. AND SLATE, D. J. 1991. Letter recognition using holland-style adaptive classifiers. Mach. Learn. 6, 161-182.
    • (1991) Mach. Learn , vol.6 , pp. 161-182
    • FREY, P.W.1    SLATE, D.J.2
  • 30
    • 33847251055 scopus 로고    scopus 로고
    • GAGLIOLO, M. AND SCHMIDHUBER, J. 2006. Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47, 3-4 (Aug.), 295-328.
    • GAGLIOLO, M. AND SCHMIDHUBER, J. 2006. Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47, 3-4 (Aug.), 295-328.
  • 31
    • 0034541162 scopus 로고    scopus 로고
    • Cascade generalization
    • GAMA, J. AND BRAZDIL, P. 2000. Cascade generalization. Mach. Learn. 41, 3, 315-343.
    • (2000) Mach. Learn , vol.41 , Issue.3 , pp. 315-343
    • GAMA, J.1    BRAZDIL, P.2
  • 37
    • 0033170342 scopus 로고    scopus 로고
    • Towards a characterisation of the behaviour of stochastic local search algorithms for SAT
    • HOOS, H. H. AND STÜTZLE, T. 1999. Towards a characterisation of the behaviour of stochastic local search algorithms for SAT. Artif. Intell. 112, 1-2, 213-232.
    • (1999) Artif. Intell , vol.112 , Issue.1-2 , pp. 213-232
    • HOOS, H.H.1    STÜTZLE, T.2
  • 39
    • 0040321375 scopus 로고    scopus 로고
    • available from
    • HYNDMAN, R. 2002. Time Series Data Library, available from http://www-personal.buseco.monash. edu.au/∼hyndman/TSDL/.
    • (2002) Time Series Data Library
    • HYNDMAN, R.1
  • 43
    • 0000153354 scopus 로고    scopus 로고
    • Design, implementation and performance results of an intelligent assistant for classifier selection
    • KALOUSIS, A. AND THEOHARIS, T. 1999. Design, implementation and performance results of an intelligent assistant for classifier selection. Intell. Data Anal. 3, 5, 319-337.
    • (1999) Intell. Data Anal , vol.3 , Issue.5 , pp. 319-337
    • KALOUSIS, A.1    THEOHARIS, T.2
  • 45
    • 4344674305 scopus 로고    scopus 로고
    • Towards landscape analysis to inform the design of a hybrid local search for the multiobjective quadratic assignment problem
    • A. Abraham et al, eds. IOS Press, Amsterdam
    • KNOWLES, J. D. AND CORNE, D. W. 2002. Towards landscape analysis to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. In Soft Computing Systems: Design, Management and Applications, A. Abraham et al., eds. IOS Press, Amsterdam, 271-279.
    • (2002) Soft Computing Systems: Design, Management and Applications , pp. 271-279
    • KNOWLES, J.D.1    CORNE, D.W.2
  • 51
    • 84957035400 scopus 로고    scopus 로고
    • Learning the empirical hardness of optimization problems: The case of combinatorial auctions
    • LEYTON-BROWN, K., NUDELMAN, E., AND SHOHAM, Y. 2002. Learning the empirical hardness of optimization problems: The case of combinatorial auctions. Lecture Notes in Computer Science, vol. 2470, 556-569.
    • (2002) Lecture Notes in Computer Science , vol.2470 , pp. 556-569
    • LEYTON-BROWN, K.1    NUDELMAN, E.2    SHOHAM, Y.3
  • 54
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • LIM, T.-S., LOH, W.-Y., AND SHIH, Y.-S. 2000. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 40, 203-228.
    • (2000) Mach. Learn , vol.40 , pp. 203-228
    • LIM, T.-S.1    LOH, W.-Y.2    SHIH, Y.-S.3
  • 56
    • 0034288942 scopus 로고    scopus 로고
    • The M3-competition: Results, conclusions and implications
    • MAKRIDAKIS, S. AND HIBON, M. 2000. The M3-competition: Results, conclusions and implications. Int. J. Forecast. 16, 4, 451-476.
    • (2000) Int. J. Forecast , vol.16 , Issue.4 , pp. 451-476
    • MAKRIDAKIS, S.1    HIBON, M.2
  • 58
    • 0031069121 scopus 로고    scopus 로고
    • The racing algorithm: Model selection for lazy learners
    • MARON, O. AND MOORE, A. W. 1997. The racing algorithm: Model selection for lazy learners. Artif Intell. Rev., 193-225.
    • (1997) Artif Intell. Rev , pp. 193-225
    • MARON, O.1    MOORE, A.W.2
  • 59
    • 4544339487 scopus 로고    scopus 로고
    • Advanced fitness landscape analysis and the performance of memetic algorithms
    • MERZ, P. 2004. Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput. 12, 303-325.
    • (2004) Evol. Comput , vol.12 , pp. 303-325
    • MERZ, P.1
  • 60
    • 66749147256 scopus 로고    scopus 로고
    • MICHIE, D., SPIEGELHALTER, D. J., AND TAYLOR C. C. EDS. 1994. Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.
    • MICHIE, D., SPIEGELHALTER, D. J., AND TAYLOR C. C. EDS. 1994. Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.
  • 62
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • OPITZ, D. AND MACLIN, R. 1999. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169-198.
    • (1999) J. Artif. Intell. Res , vol.11 , pp. 169-198
    • OPITZ, D.1    MACLIN, R.2
  • 66
    • 0002522158 scopus 로고    scopus 로고
    • Meta-Learning in distributed data mining systems: Issues and approaches
    • H. Kargupta and P. Chan, eds. AAAI Press
    • PRODROMIDIS, A. L., CHAN, P., AND STOLFO, S. J. 2000. Meta-Learning in distributed data mining systems: Issues and approaches. In Advances of Distributed Data Mining, H. Kargupta and P. Chan, eds. AAAI Press.
    • (2000) Advances of Distributed Data Mining
    • PRODROMIDIS, A.L.1    CHAN, P.2    STOLFO, S.J.3
  • 67
    • 10244243684 scopus 로고    scopus 로고
    • Meta-Learning approaches to selecting time-series models
    • PRUDÊNCIO, R. AND LUDERMIR, T. 2004. Meta-Learning approaches to selecting time-series models. Neuro-comput. 61, 121-137.
    • (2004) Neuro-comput , vol.61 , pp. 121-137
    • PRUDÊNCIO, R.1    LUDERMIR, T.2
  • 68
    • 0000606355 scopus 로고
    • Empirical learning as a function of concept character
    • RENDELL, L. AND CHO, H. 1990. Empirical learning as a function of concept character. Mach. Learn. 5, 267-298.
    • (1990) Mach. Learn , vol.5 , pp. 267-298
    • RENDELL, L.1    CHO, H.2
  • 69
    • 0001125131 scopus 로고
    • Classes of recursively enumerable sets and their decision problems
    • RICE, J. R. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 89, 29-59.
    • (1953) Trans. Amer. Math. Soc , vol.89 , pp. 29-59
    • RICE, J.R.1
  • 70
    • 0003056605 scopus 로고
    • The algorithm selection problem
    • RICE, J. R. 1976. The algorithm selection problem. Advances in Comput. 15, 65-118.
    • (1976) Advances in Comput , vol.15 , pp. 65-118
    • RICE, J.R.1
  • 74
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Jul, Oct, 379-423 and 623-656
    • SHANNON, C. E. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27 (Jul., Oct.), 379-423 and 623-656.
    • (1948) Bell Syst. Tech. J , vol.27
    • SHANNON, C.E.1
  • 77
    • 66749134076 scopus 로고    scopus 로고
    • SMITH, K. A., WOO, F., CIESIELSKI, V., AND IBRAHIM, R. 2002. Matching data mining algorithm suitability to data characteristics using a self-organising map. In Hybrid Information Systems, A. Abraham and M. Koppen, M., eds. Physica, Heidelberg, 169-180.
    • SMITH, K. A., WOO, F., CIESIELSKI, V., AND IBRAHIM, R. 2002. Matching data mining algorithm suitability to data characteristics using a self-organising map. In Hybrid Information Systems, A. Abraham and M. Koppen, M., eds. Physica, Heidelberg, 169-180.
  • 78
  • 79
  • 80
    • 1642276856 scopus 로고    scopus 로고
    • A meta-learning method to select the kernel width in support vector regression
    • SOARES, C., BRAZDIL, P., AND KUBA, P. 2004. A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54, 3, 195-209.
    • (2004) Mach. Learn , vol.54 , Issue.3 , pp. 195-209
    • SOARES, C.1    BRAZDIL, P.2    KUBA, P.3
  • 82
    • 33749581467 scopus 로고    scopus 로고
    • New benchmark instances for the QAP and the experimental analysis of algorithms
    • STÜTZLE, T. AND FERNANDES, S. 2004. New benchmark instances for the QAP and the experimental analysis of algorithms. Lecture Notes in Computer Science, vol. 3004, 199-209.
    • (2004) Lecture Notes in Computer Science , vol.3004 , pp. 199-209
    • STÜTZLE, T.1    FERNANDES, S.2
  • 85
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • TODOROVSKI, L. AND DZEROSKI, S. 2003. Combining classifiers with meta decision trees. Mach. Learn.
    • (2003) Mach. Learn
    • TODOROVSKI, L.1    DZEROSKI, S.2
  • 86
    • 33846274936 scopus 로고    scopus 로고
    • Evolving combinatorial problem instances that are difficult to solve
    • VAN HEMERT, J. I. 2006. Evolving combinatorial problem instances that are difficult to solve. Evol. Comput. 14, 433-462.
    • (2006) Evol. Comput , vol.14 , pp. 433-462
    • VAN HEMERT, J.I.1
  • 87
    • 0008327642 scopus 로고    scopus 로고
    • An intelligent model selection and forecasting system
    • VENKATACHALAM, A. R. AND SOHL, J. E. 1999. An intelligent model selection and forecasting system. Int. J. Forecast. 18, 3, 67-180.
    • (1999) Int. J. Forecast , vol.18 , Issue.3 , pp. 67-180
    • VENKATACHALAM, A.R.1    SOHL, J.E.2
  • 88
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • VILALTA, R. AND DRISSI, Y. 2002. A perspective view and survey of meta-learning. Artif. Intell. Rev. 18, 77-95.
    • (2002) Artif. Intell. Rev , vol.18 , pp. 77-95
    • VILALTA, R.1    DRISSI, Y.2
  • 89
    • 0009553471 scopus 로고
    • The facility layout problem in perspective
    • VOLLMANN, T. E. AND BUFFA, E. S. 1966. The facility layout problem in perspective. Manage. Sci. 12, 10, 450-468.
    • (1966) Manage. Sci , vol.12 , Issue.10 , pp. 450-468
    • VOLLMANN, T.E.1    BUFFA, E.S.2
  • 90
    • 0000107517 scopus 로고
    • An information measure for classification
    • WALLACE, C. S. AND BOULTON D. M. 1968. An information measure for classification. Comput. J. 11, 2, 185-194.
    • (1968) Comput. J , vol.11 , Issue.2 , pp. 185-194
    • WALLACE, C.S.1    BOULTON, D.M.2
  • 91
    • 0141790754 scopus 로고    scopus 로고
    • Finding the right hybrid algorithm - A combinatorial meta-problem
    • WALLACE, M. AND SCHIMPF, J. 2002. Finding the right hybrid algorithm - A combinatorial meta-problem. Ann. Math. Artif Intell. 34, 259-269.
    • (2002) Ann. Math. Artif Intell , vol.34 , pp. 259-269
    • WALLACE, M.1    SCHIMPF, J.2
  • 93
    • 33749012790 scopus 로고    scopus 로고
    • Characteristic-Based clustering for time series data
    • WANG, X., SMITH, K. A., AND HYNDMAN, R. 2006. Characteristic-Based clustering for time series data. Data Mining Knowl. Discov. 13, 335-364.
    • (2006) Data Mining Knowl. Discov , vol.13 , pp. 335-364
    • WANG, X.1    SMITH, K.A.2    HYNDMAN, R.3
  • 95
  • 96
    • 0026692226 scopus 로고
    • Stacked generalization
    • WOLPERT, D. H. 1992. Stacked generalization. Neural Netw. 5, 241-259.
    • (1992) Neural Netw , vol.5 , pp. 241-259
    • WOLPERT, D.H.1
  • 97
    • 38349031300 scopus 로고    scopus 로고
    • Satzilla-07: The design and analysis of an algorithm portfolio for SAT
    • Principles and Practices of Constraint Programming
    • XU, L., HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2007a. Satzilla-07: The design and analysis of an algorithm portfolio for SAT. In Principles and Practices of Constraint Programming. Lecture Notes in Computer Science, 712-727.
    • (2007) Lecture Notes in Computer Science , vol.712-727
    • XU, L.1    HUTTER, F.2    HOOS, H.3    LEYTON-BROWN, K.4
  • 98
    • 38349063502 scopus 로고    scopus 로고
    • Hierarchical hardness models for SAT
    • Principles and Practices of Constraint Programming
    • XU, L., HOOS, H., AND LEYTON- BROWN, K. 2007b. Hierarchical hardness models for SAT. In Principles and Practices of Constraint Programming. Lecture Notes in Computer Science, 696-711.
    • (2007) Lecture Notes in Computer Science , vol.696-711
    • XU, L.1    HOOS, H.2    LEYTON- BROWN, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.