-
1
-
-
30344483921
-
On learning algorithm selection for classification
-
Ali, S. and Smith, K. A. (2006). On learning algorithm selection for classification. Applied Soft Computing, 6:119-138.
-
(2006)
Applied Soft Computing
, vol.6
, pp. 119-138
-
-
Ali, S.1
Smith, K.A.2
-
2
-
-
36948999941
-
-
University of California, Irvine, School of Information and Computer Sciences
-
Asuncion, A. and Newman, D. (2007). UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html University of California, Irvine, School of Information and Computer Sciences.
-
(2007)
UCI Machine Learning Repository
-
-
Asuncion, A.1
Newman, D.2
-
5
-
-
84948156093
-
Estimating the predictive accuracy of a classifier
-
De Raedt, L. and Flach, P., editors of Lecture Notes in Computer Science Springer Berlin / Heidelberg
-
Bensusan, H. and Kalousis, A. (2001). Estimating the predictive accuracy of a classifier. In De Raedt, L. and Flach, P., editors, Machine Learning: ECML 2001, volume 2167 of Lecture Notes in Computer Science, pages 25-36. Springer Berlin / Heidelberg.
-
(2001)
Machine Learning: Ecml 2001
, vol.2167
, pp. 25-36
-
-
Bensusan, H.1
Kalousis, A.2
-
6
-
-
0037361994
-
Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
-
Brazdil, P., Soares, C., and da Costa, J. P. (2003). Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning, 50(3):251-277.
-
(2003)
Machine Learning
, vol.50
, Issue.3
, pp. 251-277
-
-
Brazdil, P.1
Soares, C.2
Da Costa, J.P.3
-
9
-
-
0006655017
-
Characterization of classification algorithms
-
Pinto-Ferreira, C. and Mamede, N., editors Lecture Notes in Computer Science Springer Berlin / Heidelberg
-
Gama, J. and Brazdil, P. (1995). Characterization of classification algorithms. In Pinto-Ferreira, C. and Mamede, N., editors, Progress in Artificial Intelligence, volume 990 of Lecture Notes in Computer Science, pages 189-200. Springer Berlin / Heidelberg.
-
(1995)
Progress in Artificial Intelligence
, vol.990
, pp. 189-200
-
-
Gama, J.1
Brazdil, P.2
-
10
-
-
66749160928
-
Meta-analysis: From data characterisation for meta-learning to meta-regression
-
Köpf, C., Taylor, C., and Keller, J. (2000). Meta-analysis: From data characterisation for meta-learning to meta-regression. In Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-Learning and ILP.
-
(2000)
Proceedings of the PKDD-00 Workshop on Data Mining, Decision Support, Meta-learning and ILP
-
-
Köpf, C.1
Taylor, C.2
Keller, J.3
-
11
-
-
33749558210
-
Yale: Rapid prototyping for complex data mining tasks
-
Ungar, L., Craven, M., Gunopulos, D., and Eliassi-Rad, T., editors New York, NY, USA. ACM
-
Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and Euler, T. (2006). Yale: Rapid prototyping for complex data mining tasks. In Ungar, L., Craven, M., Gunopulos, D., and Eliassi-Rad, T., editors, KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 935-940, New York, NY, USA. ACM.
-
(2006)
KDD '06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 935-940
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
Scholz, M.4
Euler, T.5
-
12
-
-
84949799605
-
Improved dataset characterisation for meta-learning
-
Lange, S., Satoh, K., and Smith, C., editors Lecture Notes in Computer Science Springer Berlin / Heidelberg
-
Peng, Y., Flach, P., Soares, C., and Brazdil, P. (2002). Improved dataset characterisation for meta-learning. In Lange, S., Satoh, K., and Smith, C., editors, Discovery Science, volume 2534 of Lecture Notes in Computer Science, pages 193-208. Springer Berlin / Heidelberg.
-
(2002)
Discovery Science
, vol.2534
, pp. 193-208
-
-
Peng, Y.1
Flach, P.2
Soares, C.3
Brazdil, P.4
-
13
-
-
0013146682
-
Meta-learning by landmarking various learning algorithms
-
Morgan Kaufmann
-
Pfahringer, B., Bensusan, H., and Giraud-Carrier, C. (2000). Meta-learning by landmarking various learning algorithms. In In Proceedings of the Seventeenth International Conference on Machine Learning, pages 743-750. Morgan Kaufmann.
-
(2000)
Proceedings of the Seventeenth International Conference on Machine Learning
, pp. 743-750
-
-
Pfahringer, B.1
Bensusan, H.2
Giraud-Carrier, C.3
-
14
-
-
84862222981
-
Prediction of classifier training time including parameter optimization
-
Reif, M., Shafait, F., and Dengel, A. (2011). Prediction of classifier training time including parameter optimization. In 34th Annual German Conference on Artificial Intelligence KI11, Berlin, Germany.
-
(2011)
34th Annual German Conference on Artificial Intelligence KI11, Berlin, Germany
-
-
Reif, M.1
Shafait, F.2
Dengel, A.3
-
15
-
-
70350536765
-
Information-theoretic measures for meta-learning
-
Corchado, E., Abraham, A., and Pedrycz, W., editors of Lecture Notes in Computer Science Springer Berlin / Heidelberg
-
Segrera, S., Pinho, J., and Moreno, M. (2008). Information-theoretic measures for meta-learning. In Corchado, E., Abraham, A., and Pedrycz, W., editors, Hybrid Artificial Intelligence Systems, volume 5271 of Lecture Notes in Computer Science, pages 458-465. Springer Berlin / Heidelberg.
-
(2008)
Hybrid Artificial Intelligence Systems
, vol.5271
, pp. 458-465
-
-
Segrera, S.1
Pinho, J.2
Moreno, M.3
-
16
-
-
10144230420
-
-
Springer Texts in Statistics. Springer Berlin / Heidelberg
-
Simonoff, J. S. (2003). Analyzing Categorical Data. Springer Texts in Statistics. Springer Berlin / Heidelberg.
-
(2003)
Analyzing Categorical Data
-
-
Simonoff, J.S.1
-
17
-
-
33751067274
-
Selecting parameters of SVM using meta-learning and kernel matrix-based meta-features
-
New York, NY, USA. ACM
-
Soares, C. and Brazdil, P. B. (2006). Selecting parameters of SVM using meta-learning and kernel matrix-based meta-features. In SAC '06: Proceedings of the 2006 ACM symposium on Applied computing, pages 564-568, New York, NY, USA. ACM.
-
(2006)
SAC '06: Proceedings of the 2006 ACM Symposium on Applied Computing
, pp. 564-568
-
-
Soares, C.1
Brazdil, P.B.2
-
18
-
-
1642276856
-
A meta-learning method to select the kernel width in support vector regression
-
Soares, C., Brazdil, P. B., and Kuba, P. (2004). A meta-learning method to select the kernel width in support vector regression. Machine Learning, 54(3):195-209.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 195-209
-
-
Soares, C.1
Brazdil, P.B.2
Kuba, P.3
-
19
-
-
0033220832
-
Meta analysis of classification algorithms for pattern recognition
-
IEEE Transactions on
-
Sohn, S. Y. (1999). Meta analysis of classification algorithms for pattern recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(11):1137-1144.
-
(1999)
Pattern Analysis and Machine Intelligence
, vol.21
, Issue.11
, pp. 1137-1144
-
-
Sohn, S.Y.1
-
20
-
-
26944492773
-
Using meta-learning to support data mining
-
Vilalta, R., Giraud-carrier, C., Brazdil, P. B., and Soares, C. (2004). Using meta-learning to support data mining. International Journal of Computer Science and Applications, 1(1):31-45.
-
(2004)
International Journal of Computer Science and Applications
, vol.1
, Issue.1
, pp. 31-45
-
-
Vilalta, R.1
Giraud-Carrier, C.2
Brazdil, P.B.3
Soares, C.4
-
21
-
-
84870538169
-
-
Department of Statistics, Carnegie Mellon University
-
Vlachos, P. (1998). StatLib datasets archive. http://lib.stat.cmu.edu Department of Statistics, Carnegie Mellon University.
-
(1998)
StatLib Datasets Archive
-
-
Vlachos, P.1
|