메뉴 건너뛰기




Volumn 11, Issue 3, 2016, Pages 235-246

Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells

Author keywords

DNA methylation; Epigenetic; Histone modification; Mesenchymal stem cells; MicroRNA; Osteogenic differentiation

Indexed keywords

DNA METHYLTRANSFERASE; HISTONE H3; HISTONE H4; MICRORNA; MICRORNA 100; MICRORNA 124; MICRORNA 124A; MICRORNA 135B; MICRORNA 138; MICRORNA 142; MICRORNA 146A; MICRORNA 181A; MICRORNA 194; MICRORNA 196A; MICRORNA 204; MICRORNA 20A; MICRORNA 21; MICRORNA 218; MICRORNA 22; MICRORNA 27; MICRORNA 29A; MICRORNA 31; MICRORNA 322; MICRORNA 335; MICRORNA 346; MICRORNA 34A; MICRORNA 637; MICRORNA 96; NOTCH RECEPTOR; SONIC HEDGEHOG PROTEIN; UNCLASSIFIED DRUG; HISTONE;

EID: 84961692298     PISSN: 1574888X     EISSN: None     Source Type: Journal    
DOI: 10.2174/1574888X10666150528153313     Document Type: Review
Times cited : (29)

References (139)
  • 1
    • 0033515827 scopus 로고    scopus 로고
    • Multilineage potential of adult human mesenchymal stem cells
    • Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
    • (1999) Science , vol.284 , Issue.5411 , pp. 143-147
    • Pittenger, M.F.1    Mackay, A.M.2    Beck, S.C.3
  • 2
    • 0030889354 scopus 로고    scopus 로고
    • Marrow stromal cells as stem cells for nonhematopoietic tissues
    • Prockop DJ, Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276(5309): 71-4.
    • (1997) Science , vol.276 , Issue.5309 , pp. 71-74
    • Prockop, D.J.1
  • 3
    • 0017119380 scopus 로고
    • Fibroblast precursors in normal and irradiated mouse hematopoietic organs
    • Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4(5): 267-74.
    • (1976) Exp Hematol , vol.4 , Issue.5 , pp. 267-274
    • Friedenstein, A.J.1    Gorskaja, J.F.2    Kulagina, N.N.3
  • 4
    • 34948823819 scopus 로고    scopus 로고
    • Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds
    • Mauney JR, Nguyen T, Gillen K, et al. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007; 28(35): 5280-90.
    • (2007) Biomaterials , vol.28 , Issue.35 , pp. 5280-5290
    • Mauney, J.R.1    Nguyen, T.2    Gillen, K.3
  • 6
    • 0036377961 scopus 로고    scopus 로고
    • Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells
    • Noth U, Osyczka AM, Tuli R, et al. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 2002; 20(5): 1060-9.
    • (2002) J Orthop Res , vol.20 , Issue.5 , pp. 1060-1069
    • Noth, U.1    Osyczka, A.M.2    Tuli, R.3
  • 7
    • 0037261211 scopus 로고    scopus 로고
    • Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro
    • Fukumoto T, Sperling JW, Sanyal A, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 2003; 11(1): 55-64.
    • (2003) Osteoarthritis Cartilage , vol.11 , Issue.1 , pp. 55-64
    • Fukumoto, T.1    Sperling, J.W.2    Sanyal, A.3
  • 8
    • 66149164726 scopus 로고    scopus 로고
    • Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design
    • Fan X, Liu T, Liu Y, et al. Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design. Biotechnol Prog 2009; 25(2): 499-507.
    • (2009) Biotechnol Prog , vol.25 , Issue.2 , pp. 499-507
    • Fan, X.1    Liu, T.2    Liu, Y.3
  • 9
    • 3042634774 scopus 로고    scopus 로고
    • Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol
    • Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004; 19(6): 1450-6.
    • (2004) Hum Reprod , vol.19 , Issue.6 , pp. 1450-1456
    • Tsai, M.S.1    Lee, J.L.2    Chang, Y.J.3
  • 10
    • 3042749378 scopus 로고    scopus 로고
    • Investigation of multipotent postnatal stem cells from human periodontal ligament
    • Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149-55.
    • (2004) Lancet , vol.364 , Issue.9429 , pp. 149-155
    • Seo, B.M.1    Miura, M.2    Gronthos, S.3
  • 11
    • 0036704390 scopus 로고    scopus 로고
    • Stem cell properties of human dental pulp stem cells
    • Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81(8): 531-5.
    • (2002) J Dent Res , vol.81 , Issue.8 , pp. 531-535
    • Gronthos, S.1    Brahim, J.2    Li, W.3
  • 12
    • 11144252801 scopus 로고    scopus 로고
    • Mesenchymal stem cells: Biological characteristics and potential clinical applications
    • Kassem M, Mesenchymal stem cells: biological characteristics and potential clinical applications. Cloning Stem Cells 2004; 6(4): 369-74.
    • (2004) Cloning Stem Cells , vol.6 , Issue.4 , pp. 369-374
    • Kassem, M.1
  • 13
    • 0032976690 scopus 로고    scopus 로고
    • Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta
    • Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5(3): 309-13.
    • (1999) Nat Med , vol.5 , Issue.3 , pp. 309-313
    • Horwitz, E.M.1    Prockop, D.J.2    Fitzpatrick, L.A.3
  • 14
    • 34848863384 scopus 로고    scopus 로고
    • Adult mesenchymal stem cells for tissue engineering versus regenerative medicine
    • Caplan AI, Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213(2): 341-7.
    • (2007) J Cell Physiol , vol.213 , Issue.2 , pp. 341-347
    • Caplan, A.I.1
  • 15
    • 2642531973 scopus 로고    scopus 로고
    • Epigenetics in human disease and prospects for epigenetic therapy
    • Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429(6990): 457-63.
    • (2004) Nature , vol.429 , Issue.6990 , pp. 457-463
    • Egger, G.1    Liang, G.2    Aparicio, A.3
  • 16
    • 70249104155 scopus 로고    scopus 로고
    • Epigenetics, stem cells and epithelial cell fate
    • Vincent A, Van Seuningen I. Epigenetics, stem cells and epithelial cell fate. Differentiation 2009; 78(2-3): 99-107.
    • (2009) Differentiation , vol.78 , Issue.2-3 , pp. 99-107
    • Vincent, A.1    Van Seuningen, I.2
  • 17
    • 0034305821 scopus 로고    scopus 로고
    • DNA methylation in health and disease
    • Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet 2000; 1(1): 11-9.
    • (2000) Nat Rev Genet , vol.1 , Issue.1 , pp. 11-19
    • Robertson, K.D.1    Wolffe, A.P.2
  • 18
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
    • (2004) Cell , vol.116 , Issue.2 , pp. 281-297
    • Bartel, D.P.1
  • 19
    • 35348856827 scopus 로고    scopus 로고
    • Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells
    • Dai B, Rasmussen TP. Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells. Stem Cells 2007; 25(10): 2567-74.
    • (2007) Stem Cells , vol.25 , Issue.10 , pp. 2567-2574
    • Dai, B.1    Rasmussen, T.P.2
  • 20
    • 33845987376 scopus 로고    scopus 로고
    • Networks and hubs for the transcriptional control of osteoblastogenesis
    • Lian JB, Stein GS, Javed A, et al. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 2006; 7(1-2): 1-16.
    • (2006) Rev Endocr Metab Disord , vol.7 , Issue.1-2 , pp. 1-16
    • Lian, J.B.1    Stein, G.S.2    Javed, A.3
  • 22
    • 33645351946 scopus 로고    scopus 로고
    • BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype
    • Phimphilai M, Zhao Z, Boules H, et al. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res 2006; 21(4): 637-46.
    • (2006) J Bone Miner Res , vol.21 , Issue.4 , pp. 637-646
    • Phimphilai, M.1    Zhao, Z.2    Boules, H.3
  • 23
    • 12344291865 scopus 로고    scopus 로고
    • Bone morphogenetic proteins
    • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors 2004; 22(4): 233-41.
    • (2004) Growth Factors , vol.22 , Issue.4 , pp. 233-241
    • Chen, D.1    Zhao, M.2    Mundy, G.R.3
  • 24
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532): 1074-80.
    • (2001) Science , vol.293 , Issue.5532 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 25
    • 35349006314 scopus 로고    scopus 로고
    • Histone lysine demethylases: Emerging roles in development, physiology and disease
    • Shi Y, Histone lysine demethylases: emerging roles in development, physiology and disease. Nat Rev Genet 2007; 8(11): 829-33.
    • (2007) Nat Rev Genet , vol.8 , Issue.11 , pp. 829-833
    • Shi, Y.1
  • 26
    • 0034017895 scopus 로고    scopus 로고
    • Human bone cell cultures in biocompatibility testing. Part II: Effect of ascorbic acid, betaglycerophosphate and dexamethasone on osteoblastic differentiation
    • Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, betaglycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000; 21(11): 1095-102.
    • (2000) Biomaterials , vol.21 , Issue.11 , pp. 1095-1102
    • Coelho, M.J.1    Fernandes, M.H.2
  • 27
    • 0041820203 scopus 로고    scopus 로고
    • Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells
    • Porter RM, Huckle WR, Goldstein AS, Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J Cell Biochem 2003; 90(1): 13-22.
    • (2003) J Cell Biochem , vol.90 , Issue.1 , pp. 13-22
    • Porter, R.M.1    Huckle, W.R.2    Goldstein, A.S.3
  • 28
    • 47149090214 scopus 로고    scopus 로고
    • Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation
    • Choi KM, Seo YK, Yoon HH, et al. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng 2008; 105(6): 586-94.
    • (2008) J Biosci Bioeng , vol.105 , Issue.6 , pp. 586-594
    • Choi, K.M.1    Seo, Y.K.2    Yoon, H.H.3
  • 29
    • 0026463836 scopus 로고
    • Mechanism of action of beta-glycerophosphate on bone cell mineralization
    • Chung CH, Golub EE, Forbes E, et al. Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif Tissue Int 1992; 51(4): 305-11.
    • (1992) Calcif Tissue Int , vol.51 , Issue.4 , pp. 305-311
    • Chung, C.H.1    Golub, E.E.2    Forbes, E.3
  • 30
    • 0029092949 scopus 로고
    • Importance of 1,25-dihydroxyvitamin D3 and the nonadherent cells of marrow for osteoblast differentiation from rat marrow stromal cells
    • Rickard DJ, Kazhdan I, Leboy PS. Importance of 1,25-dihydroxyvitamin D3 and the nonadherent cells of marrow for osteoblast differentiation from rat marrow stromal cells. Bone 1995; 16(6): 671-8.
    • (1995) Bone , vol.16 , Issue.6 , pp. 671-678
    • Rickard, D.J.1    Kazhdan, I.2    Leboy, P.S.3
  • 31
    • 0036118070 scopus 로고    scopus 로고
    • Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells
    • Holzer G, Einhorn TA, Majeska RJ. Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. J Orthop Res 2002; 20(2): 281-8.
    • (2002) J Orthop Res , vol.20 , Issue.2 , pp. 281-288
    • Holzer, G.1    Einhorn, T.A.2    Majeska, R.J.3
  • 32
    • 84929072372 scopus 로고    scopus 로고
    • Role of FGF/FGFR signaling in skeletal development and homeostasis: Learning from mouse models
    • Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2014; 2: 14003.
    • (2014) Bone Res , vol.2
    • Su, N.1    Jin, M.2    Chen, L.3
  • 33
    • 84961737168 scopus 로고    scopus 로고
    • Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development
    • Wang Y, Bikle DD, Chang W. Autocrine and Paracrine Actions of IGF-I Signaling in Skeletal Development. Bone Res 2013; 1(3): 249-59.
    • (2013) Bone Res , vol.1 , Issue.3 , pp. 249-259
    • Wang, Y.1    Bikle, D.D.2    Chang, W.3
  • 34
    • 84961740350 scopus 로고    scopus 로고
    • Endogenous Glucocorticoids and Bone
    • Zhou H, Cooper MS, Seibel MJ. Endogenous Glucocorticoids and Bone. Bone Res 2013; 1(2): 107-19.
    • (2013) Bone Res , vol.1 , Issue.2 , pp. 107-119
    • Zhou, H.1    Cooper, M.S.2    Seibel, M.J.3
  • 35
    • 80054975678 scopus 로고    scopus 로고
    • Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation
    • Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 2011; 112(12): 3491-501.
    • (2011) J Cell Biochem , vol.112 , Issue.12 , pp. 3491-3501
    • Lin, G.L.1    Hankenson, K.D.2
  • 36
    • 0030678549 scopus 로고    scopus 로고
    • Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation
    • Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997; 89(5): 747-54.
    • (1997) Cell , vol.89 , Issue.5 , pp. 747-754
    • Ducy, P.1    Zhang, R.2    Geoffroy, V.3
  • 37
    • 0037059614 scopus 로고    scopus 로고
    • The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation
    • Nakashima K, Zhou X, Kunkel G, et al. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002; 108(1): 17-29.
    • (2002) Cell , vol.108 , Issue.1 , pp. 17-29
    • Nakashima, K.1    Zhou, X.2    Kunkel, G.3
  • 38
    • 0032872336 scopus 로고    scopus 로고
    • Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5
    • Acampora D, Merlo GR, Paleari L, et al. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 1999; 126(17): 3795-809.
    • (1999) Development , vol.126 , Issue.17 , pp. 3795-3809
    • Acampora, D.1    Merlo, G.R.2    Paleari, L.3
  • 39
    • 0242664267 scopus 로고    scopus 로고
    • MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors
    • Cheng SL, Shao JS, Charlton-Kachigian N, et al. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem 2003; 278(46): 45969-77.
    • (2003) J Biol Chem , vol.278 , Issue.46 , pp. 45969-45977
    • Cheng, S.L.1    Shao, J.S.2    Charlton-Kachigian, N.3
  • 40
    • 34247608645 scopus 로고    scopus 로고
    • HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes
    • Hassan MQ, Tare R, Lee SH, et al. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol 2007; 27(9): 3337-52.
    • (2007) Mol Cell Biol , vol.27 , Issue.9 , pp. 3337-3352
    • Hassan, M.Q.1    Tare, R.2    Lee, S.H.3
  • 41
    • 0032879350 scopus 로고    scopus 로고
    • Differentiation of human marrow stromal precursor cells: Bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation
    • Gori F, Thomas T, Hicok KC, et al. Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 1999; 14(9): 1522-35.
    • (1999) J Bone Miner Res , vol.14 , Issue.9 , pp. 1522-1535
    • Gori, F.1    Thomas, T.2    Hicok, K.C.3
  • 42
    • 0033567213 scopus 로고    scopus 로고
    • Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation
    • St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 1999; 13(16): 2072-86.
    • (1999) Genes Dev , vol.13 , Issue.16 , pp. 2072-2086
    • St-Jacques, B.1    Hammerschmidt, M.2    McMahon, A.P.3
  • 43
    • 0029777408 scopus 로고    scopus 로고
    • Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function
    • Chiang C, Litingtung Y, Lee E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383(6599): 407-13.
    • (1996) Nature , vol.383 , Issue.6599 , pp. 407-413
    • Chiang, C.1    Litingtung, Y.2    Lee, E.3
  • 44
    • 4444246433 scopus 로고    scopus 로고
    • Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity
    • Zamurovic N, Cappellen D, Rohner D, et al. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 2004; 279(36): 37704-15.
    • (2004) J Biol Chem , vol.279 , Issue.36 , pp. 37704-37715
    • Zamurovic, N.1    Cappellen, D.2    Rohner, D.3
  • 45
    • 14744275847 scopus 로고    scopus 로고
    • Regulation of osteoblastogenesis and bone mass by Wnt10b
    • Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA 2005; 102(9): 3324-9.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.9 , pp. 3324-3329
    • Bennett, C.N.1    Longo, K.A.2    Wright, W.S.3
  • 46
    • 11144296595 scopus 로고    scopus 로고
    • Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells
    • Boland GM, Perkins G, Hall DJ, et al. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem 2004; 93(6): 1210-30.
    • (2004) J Cell Biochem , vol.93 , Issue.6 , pp. 1210-1230
    • Boland, G.M.1    Perkins, G.2    Hall, D.J.3
  • 47
    • 70649099225 scopus 로고    scopus 로고
    • Epigenetic signatures associated with different levels of differentiation potential in human stem cells
    • Aranda P, Agirre X, Ballestar E, et al. Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS One 2009; 4(11): e7809.
    • (2009) PLoS One , vol.4 , Issue.11
    • Aranda, P.1    Agirre, X.2    Ballestar, E.3
  • 48
    • 0036144048 scopus 로고    scopus 로고
    • DNA methylation patterns and epigenetic memory
    • Bird A, DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16(1): 6-21.
    • (2002) Genes Dev , vol.16 , Issue.1 , pp. 6-21
    • Bird, A.1
  • 49
    • 0023216891 scopus 로고
    • CpG islands in vertebrate genomes
    • Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol 1987; 196(2): 261-82.
    • (1987) J Mol Biol , vol.196 , Issue.2 , pp. 261-282
    • Gardiner-Garden, M.1    Frommer, M.2
  • 50
    • 0016439429 scopus 로고
    • DNA modification mechanisms and gene activity during development
    • Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975; 187(4173): 226-32.
    • (1975) Science , vol.187 , Issue.4173 , pp. 226-232
    • Holliday, R.1    Pugh, J.E.2
  • 51
    • 0016692220 scopus 로고
    • X inactivation, differentiation, and DNA methylation
    • Riggs AD, X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 1975; 14(1): 9-25.
    • (1975) Cytogenet Cell Genet , vol.14 , Issue.1 , pp. 9-25
    • Riggs, A.D.1
  • 52
    • 33748274499 scopus 로고    scopus 로고
    • Human embryonic stem cells have a unique epigenetic signature
    • Bibikova M, Chudin E, Wu B, et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res 2006; 16(9): 1075-83.
    • (2006) Genome Res , vol.16 , Issue.9 , pp. 1075-1083
    • Bibikova, M.1    Chudin, E.2    Wu, B.3
  • 53
    • 49649125042 scopus 로고    scopus 로고
    • Genome-scale DNA methylation maps of pluripotent and differentiated cells
    • Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454(7205): 766-70.
    • (2008) Nature , vol.454 , Issue.7205 , pp. 766-770
    • Meissner, A.1    Mikkelsen, T.S.2    Gu, H.3
  • 54
    • 31544456085 scopus 로고    scopus 로고
    • The role of mammalian DNA methyltransferases in the regulation of gene expression
    • Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 2005; 10(4): 631-47.
    • (2005) Cell Mol Biol Lett , vol.10 , Issue.4 , pp. 631-647
    • Turek-Plewa, J.1    Jagodzinski, P.P.2
  • 55
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
    • Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3): 247-57.
    • (1999) Cell , vol.99 , Issue.3 , pp. 247-257
    • Okano, M.1    Bell, D.W.2    Haber, D.A.3
  • 56
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T, Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
    • (2007) Cell , vol.128 , Issue.4 , pp. 693-705
    • Kouzarides, T.1
  • 57
    • 49649095163 scopus 로고    scopus 로고
    • Epigenetic Basis for the Differentiation Potential of Mesenchymal and Embryonic Stem Cells
    • Collas P, Noer A, Sorensen AL. Epigenetic Basis for the Differentiation Potential of Mesenchymal and Embryonic Stem Cells. Transfus Med Hemother 2008; 35(3): 205-215.
    • (2008) Transfus Med Hemother , vol.35 , Issue.3 , pp. 205-215
    • Collas, P.1    Noer, A.2    Sorensen, A.L.3
  • 58
    • 0034051227 scopus 로고    scopus 로고
    • Acetylation of histones and transcriptionrelated factors
    • Sterner DE, Berger SL. Acetylation of histones and transcriptionrelated factors. Microbiol Mol Biol Rev 2000; 64(2): 435-59.
    • (2000) Microbiol Mol Biol Rev , vol.64 , Issue.2 , pp. 435-459
    • Sterner, D.E.1    Berger, S.L.2
  • 59
    • 34547924046 scopus 로고    scopus 로고
    • HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention
    • Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007; 26(37): 5310-8.
    • (2007) Oncogene , vol.26 , Issue.37 , pp. 5310-5318
    • Yang, X.J.1    Seto, E.2
  • 60
    • 58149295717 scopus 로고    scopus 로고
    • Protein arginine methylation in mammals: Who, what, and why
    • Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell 2009; 33(1): 1-13.
    • (2009) Mol Cell , vol.33 , Issue.1 , pp. 1-13
    • Bedford, M.T.1    Clarke, S.G.2
  • 61
    • 59349100985 scopus 로고    scopus 로고
    • Dynamic protein methylation in chromatin biology
    • Ng SS, Yue WW, Oppermann U, et al. Dynamic protein methylation in chromatin biology. Cell Mol Life Sci 2009; 66(3): 407-22.
    • (2009) Cell Mol Life Sci , vol.66 , Issue.3 , pp. 407-422
    • Ng, S.S.1    Yue, W.W.2    Oppermann, U.3
  • 62
    • 33845799903 scopus 로고    scopus 로고
    • Polycomb silencing mechanisms and the management of genomic programmes
    • Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 2007; 8(1): 9-22.
    • (2007) Nat Rev Genet , vol.8 , Issue.1 , pp. 9-22
    • Schwartz, Y.B.1    Pirrotta, V.2
  • 63
    • 70349469565 scopus 로고    scopus 로고
    • Mechanisms of polycomb gene silencing: Knowns and unknowns
    • Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10(10): 697-708.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , Issue.10 , pp. 697-708
    • Simon, J.A.1    Kingston, R.E.2
  • 64
    • 35148867907 scopus 로고    scopus 로고
    • UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development
    • Agger K, Cloos PA, Christensen J, et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 2007; 449(7163): 731-4.
    • (2007) Nature , vol.449 , Issue.7163 , pp. 731-734
    • Agger, K.1    Cloos, P.A.2    Christensen, J.3
  • 65
    • 34548644772 scopus 로고    scopus 로고
    • The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing
    • De Santa F, Totaro MG, Prosperini E, et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007; 130(6): 1083-94.
    • (2007) Cell , vol.130 , Issue.6 , pp. 1083-1094
    • De Santa, F.1    Totaro, M.G.2    Prosperini, E.3
  • 66
    • 35148898348 scopus 로고    scopus 로고
    • A histone H3 lysine 27 demethylase regulates animal posterior development
    • Lan F, Bayliss PE, Rinn JL, et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 2007; 449(7163): 689-94.
    • (2007) Nature , vol.449 , Issue.7163 , pp. 689-694
    • Lan, F.1    Bayliss, P.E.2    Rinn, J.L.3
  • 67
    • 33646872978 scopus 로고    scopus 로고
    • Chromatin signatures of pluripotent cell lines
    • Azuara V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol 2006; 8(5): 532-8.
    • (2006) Nat Cell Biol , vol.8 , Issue.5 , pp. 532-538
    • Azuara, V.1    Perry, P.2    Sauer, S.3
  • 68
    • 19944430797 scopus 로고    scopus 로고
    • Genomic maps and comparative analysis of histone modifications in human and mouse
    • Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005; 120(2): 169-81.
    • (2005) Cell , vol.120 , Issue.2 , pp. 169-181
    • Bernstein, B.E.1    Kamal, M.2    Lindblad-Toh, K.3
  • 69
    • 69949148388 scopus 로고    scopus 로고
    • Protein methyltransferases as a target class for drug discovery
    • Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 2009; 8(9): 724-32.
    • (2009) Nat Rev Drug Discov , vol.8 , Issue.9 , pp. 724-732
    • Copeland, R.A.1    Solomon, M.E.2    Richon, V.M.3
  • 70
    • 11144332565 scopus 로고    scopus 로고
    • Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
    • Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119(7): 941-53.
    • (2004) Cell , vol.119 , Issue.7 , pp. 941-953
    • Shi, Y.1    Lan, F.2    Matson, C.3
  • 71
    • 84884702109 scopus 로고    scopus 로고
    • Mechanical compressive force inhibits adipogenesis of adipose stem cells
    • Li G, Fu N, Yang X, et al. Mechanical compressive force inhibits adipogenesis of adipose stem cells. Cell Prolif 2013; 46(5): 586-94.
    • (2013) Cell Prolif , vol.46 , Issue.5 , pp. 586-594
    • Li, G.1    Fu, N.2    Yang, X.3
  • 72
    • 84903756762 scopus 로고    scopus 로고
    • MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: Potential biomarkers and therapeutic targets
    • Huang J, Zhang SY, Gao YM, et al. MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: potential biomarkers and therapeutic targets. Cell Prolif 2014; 47(4): 277-86.
    • (2014) Cell Prolif , vol.47 , Issue.4 , pp. 277-286
    • Huang, J.1    Zhang, S.Y.2    Gao, Y.M.3
  • 73
    • 84875280021 scopus 로고    scopus 로고
    • miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis
    • Li M, Yu M, Liu C, et al. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs) apoptosis. Cell Prolif 2013; 46(2): 223-31.
    • (2013) Cell Prolif , vol.46 , Issue.2 , pp. 223-231
    • Li, M.1    Yu, M.2    Liu, C.3
  • 74
    • 41149123358 scopus 로고    scopus 로고
    • Dicer-dependent pathways regulate chondrocyte proliferation and differentiation
    • Kobayashi T, Lu J, Cobb BS, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA 2008; 105(6): 1949-54.
    • (2008) Proc Natl Acad Sci USA , vol.105 , Issue.6 , pp. 1949-1954
    • Kobayashi, T.1    Lu, J.2    Cobb, B.S.3
  • 75
    • 84880692987 scopus 로고    scopus 로고
    • Effects of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse adiposederived stem cells
    • Wei X, Li G, Yang X, et al. Effects of bone morphogenetic protein-4 (BMP-4) on adipocyte differentiation from mouse adiposederived stem cells. Cell Prolif 2013; 46(4): 416-24.
    • (2013) Cell Prolif , vol.46 , Issue.4 , pp. 416-424
    • Wei, X.1    Li, G.2    Yang, X.3
  • 76
    • 77956314095 scopus 로고    scopus 로고
    • Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types
    • Sorensen AL, Timoskainen S, West FD, et al. Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells Dev 2010; 19(8): 1257-66.
    • (2010) Stem Cells Dev , vol.19 , Issue.8 , pp. 1257-1266
    • Sorensen, A.L.1    Timoskainen, S.2    West, F.D.3
  • 77
    • 84871566166 scopus 로고    scopus 로고
    • Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells
    • Yannarelli G, Pacienza N, Cuniberti L, et al. Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 2013; 31(1): 215-20.
    • (2013) Stem Cells , vol.31 , Issue.1 , pp. 215-220
    • Yannarelli, G.1    Pacienza, N.2    Cuniberti, L.3
  • 78
    • 77953521548 scopus 로고    scopus 로고
    • Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage
    • Sorensen AL, Jacobsen BM, Reiner AH, et al. Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage. Mol Biol Cell 2010; 21(12): 2066-77.
    • (2010) Mol Biol Cell , vol.21 , Issue.12 , pp. 2066-2077
    • Sorensen, A.L.1    Jacobsen, B.M.2    Reiner, A.H.3
  • 79
    • 0036197327 scopus 로고    scopus 로고
    • Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts
    • Villagra A, Gutierrez J, Paredes R, et al. Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem 2002; 85(1): 112-22.
    • (2002) J Cell Biochem , vol.85 , Issue.1 , pp. 112-122
    • Villagra, A.1    Gutierrez, J.2    Paredes, R.3
  • 80
    • 84878186794 scopus 로고    scopus 로고
    • Low-intensity pulsed ultrasound induced enhanced adipogenesis of adipose-derived stem cells
    • Fu N, Yang X, Ba K, et al. Low-intensity pulsed ultrasound induced enhanced adipogenesis of adipose-derived stem cells. Cell Prolif 2013; 46(3): 312-9.
    • (2013) Cell Prolif , vol.46 , Issue.3 , pp. 312-319
    • Fu, N.1    Yang, X.2    Ba, K.3
  • 81
    • 84882956710 scopus 로고    scopus 로고
    • Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells
    • Hu M, Yeh R, Lien M, et al. Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells. Bone Res 2013; 1(1): 98-104.
    • (2013) Bone Res , vol.1 , Issue.1 , pp. 98-104
    • Hu, M.1    Yeh, R.2    Lien, M.3
  • 82
    • 84904501121 scopus 로고    scopus 로고
    • Comparison of Effects of Mechanical Stretching on Osteogenic Potential of ASCs and BMSCs
    • Grottkau BE, Yang X, Zhang L, et al. Comparison of Effects of Mechanical Stretching on Osteogenic Potential of ASCs and BMSCs. Bone Res 2013; 1(3): 282-290.
    • (2013) Bone Res , vol.1 , Issue.3 , pp. 282-290
    • Grottkau, B.E.1    Yang, X.2    Zhang, L.3
  • 83
    • 78149281847 scopus 로고    scopus 로고
    • The epigenetic mechanism of mechanically induced osteogenic differentiation
    • Arnsdorf EJ, Tummala P, Castillo AB, et al. The epigenetic mechanism of mechanically induced osteogenic differentiation. J Biomech 2010; 43(15): 2881-6.
    • (2010) J Biomech , vol.43 , Issue.15 , pp. 2881-2886
    • Arnsdorf, E.J.1    Tummala, P.2    Castillo, A.B.3
  • 84
    • 80054768335 scopus 로고    scopus 로고
    • ROR2 Promoter Methylation Change in Osteoblastic Differentiation of Mesenchymal Stem Cells
    • Tarfiei G, Noruzinia M, Soleimani M, et al. ROR2 Promoter Methylation Change in Osteoblastic Differentiation of Mesenchymal Stem Cells. Cell J 2011; 13(1): 11-5.
    • (2011) Cell J , vol.13 , Issue.1 , pp. 11-15
    • Tarfiei, G.1    Noruzinia, M.2    Soleimani, M.3
  • 85
    • 65349095110 scopus 로고    scopus 로고
    • The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation
    • Dansranjavin T, Krehl S, Mueller T, et al. The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation. Cell Cycle 2009; 8(6): 916-24.
    • (2009) Cell Cycle , vol.8 , Issue.6 , pp. 916-924
    • Dansranjavin, T.1    Krehl, S.2    Mueller, T.3
  • 86
    • 33846183761 scopus 로고    scopus 로고
    • Bmi1 cooperates with Dnmt1-associated protein 1 in gene silencing
    • Negishi M, Saraya A, Miyagi S, et al. Bmi1 cooperates with Dnmt1-associated protein 1 in gene silencing. Biochem Biophys Res Commun 2007; 353(4): 992-8.
    • (2007) Biochem Biophys Res Commun , vol.353 , Issue.4 , pp. 992-998
    • Negishi, M.1    Saraya, A.2    Miyagi, S.3
  • 87
    • 77956901192 scopus 로고    scopus 로고
    • DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination
    • Hsiao SH, Lee KD, Hsu CC, et al. DNA methylation of the Trip10 promoter accelerates mesenchymal stem cell lineage determination. Biochem Biophys Res Commun 2010; 400(3): 305-12.
    • (2010) Biochem Biophys Res Commun , vol.400 , Issue.3 , pp. 305-312
    • Hsiao, S.H.1    Lee, K.D.2    Hsu, C.C.3
  • 88
    • 0037385256 scopus 로고    scopus 로고
    • Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones h3 and h4
    • Shen J, Hovhannisyan H, Lian JB, et al. Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones h3 and h4. Mol Endocrinol 2003; 17(4): 743-56.
    • (2003) Mol Endocrinol , vol.17 , Issue.4 , pp. 743-756
    • Shen, J.1    Hovhannisyan, H.2    Lian, J.B.3
  • 89
    • 77953935060 scopus 로고    scopus 로고
    • Serum regulates adipogenesis of mesenchymal stem cells via MEK/ERK-dependent PPARgamma expression and phosphorylation
    • Wu L, Cai X, Dong H, et al. Serum regulates adipogenesis of mesenchymal stem cells via MEK/ERK-dependent PPARgamma expression and phosphorylation. J Cell Mol Med 2010; 14(4): 922-32.
    • (2010) J Cell Mol Med , vol.14 , Issue.4 , pp. 922-932
    • Wu, L.1    Cai, X.2    Dong, H.3
  • 90
    • 79958278471 scopus 로고    scopus 로고
    • Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation
    • Li Z, Liu C, Xie Z, et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 2011; 6(6): e20526.
    • (2011) PLoS One , vol.6 , Issue.6
    • Li, Z.1    Liu, C.2    Xie, Z.3
  • 91
    • 69449102520 scopus 로고    scopus 로고
    • Genome-wide analysis of histone H3 lysine9 modifications in human mesenchymal stem cell osteogenic differentiation
    • Tan J, Lu J, Huang W, et al. Genome-wide analysis of histone H3 lysine9 modifications in human mesenchymal stem cell osteogenic differentiation. PLoS One 2009; 4(8): e6792.
    • (2009) PLoS One , vol.4 , Issue.8
    • Tan, J.1    Lu, J.2    Huang, W.3
  • 92
    • 84863633423 scopus 로고    scopus 로고
    • Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs
    • Ye L, Fan Z, Yu B, et al. Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 2012; 11(1): 50-61.
    • (2012) Cell Stem Cell , vol.11 , Issue.1 , pp. 50-61
    • Ye, L.1    Fan, Z.2    Yu, B.3
  • 93
    • 84889792353 scopus 로고    scopus 로고
    • KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells
    • Xu J, Yu B, Hong C, et al. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2013; 5(4): 200-5.
    • (2013) Int J Oral Sci , vol.5 , Issue.4 , pp. 200-205
    • Xu, J.1    Yu, B.2    Hong, C.3
  • 94
    • 78650511231 scopus 로고    scopus 로고
    • CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells
    • Wei Y, Chen YH, Li LY, et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol 2011; 13(1): 87-94.
    • (2011) Nat Cell Biol , vol.13 , Issue.1 , pp. 87-94
    • Wei, Y.1    Chen, Y.H.2    Li, L.Y.3
  • 95
    • 84894262774 scopus 로고    scopus 로고
    • EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification
    • Hemming S, Cakouros D, Isenmann S, et al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells 2014; 32(3): 802-15.
    • (2014) Stem Cells , vol.32 , Issue.3 , pp. 802-815
    • Hemming, S.1    Cakouros, D.2    Isenmann, S.3
  • 96
    • 12144287606 scopus 로고    scopus 로고
    • Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR
    • Ng D, Thakker N, Corcoran CM, et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet 2004; 36(4): 411-6.
    • (2004) Nat Genet , vol.36 , Issue.4 , pp. 411-416
    • Ng, D.1    Thakker, N.2    Corcoran, C.M.3
  • 97
    • 22044455119 scopus 로고    scopus 로고
    • Case reports of oculofaciocardiodental syndrome with unusual dental findings
    • Oberoi S, Winder AE, Johnston J, et al. Case reports of oculofaciocardiodental syndrome with unusual dental findings. Am J Med Genet A 2005; 136(3): 275-7.
    • (2005) Am J Med Genet A , vol.136 , Issue.3 , pp. 275-277
    • Oberoi, S.1    Winder, A.E.2    Johnston, J.3
  • 98
    • 21044442981 scopus 로고    scopus 로고
    • Novel mutations in BCOR in three patients with oculo-facio-cardio-dental syndrome, but none in Lenz microphthalmia syndrome
    • Horn D, Chyrek M, Kleier S, et al. Novel mutations in BCOR in three patients with oculo-facio-cardio-dental syndrome, but none in Lenz microphthalmia syndrome. Eur J Hum Genet 2005; 13(5): 563-9.
    • (2005) Eur J Hum Genet , vol.13 , Issue.5 , pp. 563-569
    • Horn, D.1    Chyrek, M.2    Kleier, S.3
  • 99
    • 68249129007 scopus 로고    scopus 로고
    • BCOR regulates mesenchymal stem cell function by epigenetic mechanisms
    • Fan Z, Yamaza T, Lee JS, et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 2009; 11(8): 1002-9.
    • (2009) Nat Cell Biol , vol.11 , Issue.8 , pp. 1002-1009
    • Fan, Z.1    Yamaza, T.2    Lee, J.S.3
  • 100
    • 84872687459 scopus 로고    scopus 로고
    • MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling
    • Zhang JF, Fu WM, He ML, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 2011; 8(5): 829-38.
    • (2011) RNA Biol , vol.8 , Issue.5 , pp. 829-838
    • Zhang, J.F.1    Fu, W.M.2    He, M.L.3
  • 101
    • 77955492538 scopus 로고    scopus 로고
    • miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop
    • Kapinas K, Kessler C, Ricks T, et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 2010; 285(33): 25221-31.
    • (2010) J Biol Chem , vol.285 , Issue.33 , pp. 25221-25231
    • Kapinas, K.1    Kessler, C.2    Ricks, T.3
  • 102
    • 77958086896 scopus 로고    scopus 로고
    • miR-27 promotes osteoblast differentiation by modulating Wnt signaling
    • Wang T, Xu Z. miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 2010; 402(2): 186-9.
    • (2010) Biochem Biophys Res Commun , vol.402 , Issue.2 , pp. 186-189
    • Wang, T.1    Xu, Z.2
  • 103
    • 84873814382 scopus 로고    scopus 로고
    • miR1423p promotes osteoblast differentiation by modulating Wnt signaling
    • Hu W, Ye Y, Zhang W, et al. miR1423p promotes osteoblast differentiation by modulating Wnt signaling. Mol Med Rep 2013; 7(2): 689-93.
    • (2013) Mol Med Rep , vol.7 , Issue.2 , pp. 689-693
    • Hu, W.1    Ye, Y.2    Zhang, W.3
  • 104
    • 84886774405 scopus 로고    scopus 로고
    • A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation
    • Zhang WB, Zhong WJ, Wang L. A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone 2014; 58: 59-66.
    • (2014) Bone , vol.58 , pp. 59-66
    • Zhang, W.B.1    Zhong, W.J.2    Wang, L.3
  • 105
    • 84883400075 scopus 로고    scopus 로고
    • miR-346 regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the Wnt/beta-catenin pathway
    • Wang Q, Cai J, Cai XH, et al. miR-346 regulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting the Wnt/beta-catenin pathway. PLoS One 2013; 8(9): e72266.
    • (2013) PLoS One , vol.8 , Issue.9
    • Wang, Q.1    Cai, J.2    Cai, X.H.3
  • 106
    • 84864281323 scopus 로고    scopus 로고
    • Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression
    • Huang S, Wang S, Bian C, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 2012; 21(13): 2531-40.
    • (2012) Stem Cells Dev , vol.21 , Issue.13 , pp. 2531-2540
    • Huang, S.1    Wang, S.2    Bian, C.3
  • 107
    • 84877892009 scopus 로고    scopus 로고
    • MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability
    • Gamez B, Rodriguez-Carballo E, Bartrons R, et al. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem 2013; 288(20): 14264-75.
    • (2013) J Biol Chem , vol.288 , Issue.20 , pp. 14264-14275
    • Gamez, B.1    Rodriguez-Carballo, E.2    Bartrons, R.3
  • 108
    • 84873944895 scopus 로고    scopus 로고
    • Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis
    • Yang N, Wang G, Hu C, et al. Tumor necrosis factor alpha suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency-induced osteoporosis. J Bone Miner Res 2013; 28(3): 559-73.
    • (2013) J Bone Miner Res , vol.28 , Issue.3 , pp. 559-573
    • Yang, N.1    Wang, G.2    Hu, C.3
  • 109
    • 84892740666 scopus 로고    scopus 로고
    • Sox2 suppression by miR-21 governs human mesenchymal stem cell properties
    • Trohatou O, Zagoura D, Bitsika V, et al. Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med 2014; 3(1): 54-68.
    • (2014) Stem Cells Transl Med , vol.3 , Issue.1 , pp. 54-68
    • Trohatou, O.1    Zagoura, D.2    Bitsika, V.3
  • 110
    • 84915811140 scopus 로고    scopus 로고
    • miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells
    • Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells. FEBS Lett 2014; 588(24): 4761-8.
    • (2014) FEBS Lett , vol.588 , Issue.24 , pp. 4761-4768
    • Yang, M.1    Pan, Y.2    Zhou, Y.3
  • 111
    • 84927918342 scopus 로고    scopus 로고
    • MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression
    • Jeong BC, Kang IH, Hwang YC, et al. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis 2014; 5: e1532.
    • (2014) Cell Death Dis , vol.5
    • Jeong, B.C.1    Kang, I.H.2    Hwang, Y.C.3
  • 112
    • 65949105697 scopus 로고    scopus 로고
    • miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue
    • Kim YJ, Bae SW, Yu SS, et al. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 2009; 24(5): 816-25.
    • (2009) J Bone Miner Res , vol.24 , Issue.5 , pp. 816-825
    • Kim, Y.J.1    Bae, S.W.2    Yu, S.S.3
  • 113
    • 84924328173 scopus 로고    scopus 로고
    • miR-124 Negatively Regulates Osteogenic Differentiation and In Vivo Bone Formation of Mesenchymal Stem Cells
    • Qadir AS, Um S, Lee H, et al. miR-124 Negatively Regulates Osteogenic Differentiation and In Vivo Bone Formation of Mesenchymal Stem Cells. J Cell Biochem 2014.
    • (2014) J Cell Biochem
    • Qadir, A.S.1    Um, S.2    Lee, H.3
  • 114
    • 84898000580 scopus 로고    scopus 로고
    • Effects of miR-31 on the osteogenesis of human mesenchymal stem cells
    • Xie Q, Wang Z, Bi X, et al. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun 2014; 446(1): 98-104.
    • (2014) Biochem Biophys Res Commun , vol.446 , Issue.1 , pp. 98-104
    • Xie, Q.1    Wang, Z.2    Bi, X.3
  • 115
    • 84881157835 scopus 로고    scopus 로고
    • Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells
    • Deng Y, Wu S, Zhou H, et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev 2013; 22(16): 2278-86.
    • (2013) Stem Cells Dev , vol.22 , Issue.16 , pp. 2278-2286
    • Deng, Y.1    Wu, S.2    Zhou, H.3
  • 116
    • 85027948268 scopus 로고    scopus 로고
    • MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31
    • Baglio SR, Devescovi V, Granchi D, et al. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 2013; 527(1): 321-31.
    • (2013) Gene , vol.527 , Issue.1 , pp. 321-331
    • Baglio, S.R.1    Devescovi, V.2    Granchi, D.3
  • 117
    • 84892416479 scopus 로고    scopus 로고
    • Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients
    • Xu S, Cecilia Santini G, De Veirman K, et al. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One 2013; 8(11): e79752.
    • (2013) PLoS One , vol.8 , Issue.11
    • Xu, S.1    Cecilia Santini, G.2    De Veirman, K.3
  • 118
    • 84863263055 scopus 로고    scopus 로고
    • miR-30 family members negatively regulate osteoblast differentiation
    • Wu T, Zhou H, Hong Y, et al. miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem 2012; 287(10): 7503-11.
    • (2012) J Biol Chem , vol.287 , Issue.10 , pp. 7503-7511
    • Wu, T.1    Zhou, H.2    Hong, Y.3
  • 119
    • 84873659056 scopus 로고    scopus 로고
    • miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells
    • Li H, Li T, Wang S, et al. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res 2013; 10(3): 313-24.
    • (2013) Stem Cell Res , vol.10 , Issue.3 , pp. 313-324
    • Li, H.1    Li, T.2    Wang, S.3
  • 120
    • 84876928351 scopus 로고    scopus 로고
    • Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow
    • Liao L, Yang X, Su X, et al. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 2013; 4: e600.
    • (2013) Cell Death Dis , vol.4
    • Liao, L.1    Yang, X.2    Su, X.3
  • 121
    • 84865308101 scopus 로고    scopus 로고
    • Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells
    • Okamoto H, Matsumi Y, Hoshikawa Y, et al. Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS One 2012; 7(8): e43800.
    • (2012) PLoS One , vol.7 , Issue.8
    • Okamoto, H.1    Matsumi, Y.2    Hoshikawa, Y.3
  • 122
    • 84896373668 scopus 로고    scopus 로고
    • MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells
    • Chen L, Holmstrom K, Qiu W, et al. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 2014: 32(4): 902-12.
    • (2014) Stem Cells , vol.32 , Issue.4 , pp. 902-912
    • Chen, L.1    Holmstrom, K.2    Qiu, W.3
  • 123
    • 84864286762 scopus 로고    scopus 로고
    • MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2
    • Zeng Y, Qu X, Li H, et al. MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 2012; 586(16): 2375-81.
    • (2012) FEBS Lett , vol.586 , Issue.16 , pp. 2375-2381
    • Zeng, Y.1    Qu, X.2    Li, H.3
  • 124
    • 84899504939 scopus 로고    scopus 로고
    • MicroRNA125b suppresses the proliferation and osteogenic differentiation of human bone marrowderived mesenchymal stem cells
    • Chen S, Yang L, Jie Q, et al. MicroRNA125b suppresses the proliferation and osteogenic differentiation of human bone marrowderived mesenchymal stem cells. Mol Med Rep 2014; 9(5): 1820-6.
    • (2014) Mol Med Rep , vol.9 , Issue.5 , pp. 1820-1826
    • Chen, S.1    Yang, L.2    Jie, Q.3
  • 125
    • 84901804072 scopus 로고    scopus 로고
    • MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfbeta in vitro
    • Huang K, Fu J, Zhou W, et al. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfbeta in vitro. Biochimie 2014; 102: 47-55.
    • (2014) Biochimie , vol.102 , pp. 47-55
    • Huang, K.1    Fu, J.2    Zhou, W.3
  • 126
    • 79955016827 scopus 로고    scopus 로고
    • MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo
    • Eskildsen T, Taipaleenmaki H, Stenvang J, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 2011; 108(15): 6139-44.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.15 , pp. 6139-6144
    • Eskildsen, T.1    Taipaleenmaki, H.2    Stenvang, J.3
  • 127
    • 84906265350 scopus 로고    scopus 로고
    • miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells
    • Hwang S, Park SK, Lee HY, et al. miR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett 2014; 588(17): 2957-63.
    • (2014) FEBS Lett , vol.588 , Issue.17 , pp. 2957-2963
    • Hwang, S.1    Park, S.K.2    Lee, H.Y.3
  • 128
    • 84899658053 scopus 로고    scopus 로고
    • MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells
    • Huszar JM and Payne CJ, MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett 2014; 588(9): 1850-6.
    • (2014) FEBS Lett , vol.588 , Issue.9 , pp. 1850-1856
    • Huszar, J.M.1    Payne, C.J.2
  • 129
    • 77149136767 scopus 로고    scopus 로고
    • MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation
    • Huang J, Zhao L, Xing L, et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010; 28(2): 357-64.
    • (2010) Stem Cells , vol.28 , Issue.2 , pp. 357-364
    • Huang, J.1    Zhao, L.2    Xing, L.3
  • 130
    • 79955805703 scopus 로고    scopus 로고
    • miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells
    • Tome M, Lopez-Romero P, Albo C, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ 2011; 18(6): 985-95.
    • (2011) Cell Death Differ , vol.18 , Issue.6 , pp. 985-995
    • Tome, M.1    Lopez-Romero, P.2    Albo, C.3
  • 131
    • 80655125005 scopus 로고    scopus 로고
    • MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix
    • Zhang JF, Fu WM, He ML, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 2011; 22(21): 3955-61.
    • (2011) Mol Biol Cell , vol.22 , Issue.21 , pp. 3955-3961
    • Zhang, J.F.1    Fu, W.M.2    He, M.L.3
  • 132
    • 34247587041 scopus 로고    scopus 로고
    • Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation
    • Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9(1): 204.
    • (2007) Arthritis Res Ther , vol.9 , Issue.1 , pp. 204
    • Kolf, C.M.1    Cho, E.2    Tuan, R.S.3
  • 133
    • 36249021493 scopus 로고    scopus 로고
    • Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair--current views
    • Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 2007; 25(11): 2896-902.
    • (2007) Stem Cells , vol.25 , Issue.11 , pp. 2896-2902
    • Phinney, D.G.1    Prockop, D.J.2
  • 134
    • 70350212674 scopus 로고    scopus 로고
    • Mesenchymal stem cells for bone repair and metabolic bone diseases
    • Undale AH, Westendorf JJ, Yaszemski MJ, et al. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc 2009; 84(10): 893-902.
    • (2009) Mayo Clin Proc , vol.84 , Issue.10 , pp. 893-902
    • Undale, A.H.1    Westendorf, J.J.2    Yaszemski, M.J.3
  • 135
    • 33847620202 scopus 로고    scopus 로고
    • Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells
    • Chen TH, Chen WM, Hsu KH, et al. Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2007; 355(4): 913-8.
    • (2007) Biochem Biophys Res Commun , vol.355 , Issue.4 , pp. 913-918
    • Chen, T.H.1    Chen, W.M.2    Hsu, K.H.3
  • 136
    • 84877615059 scopus 로고    scopus 로고
    • Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo
    • Xu S, De Veirman K, Evans H, et al. Effect of the HDAC inhibitor vorinostat on the osteogenic differentiation of mesenchymal stem cells in vitro and bone formation in vivo. Acta Pharmacol Sin 2013; 34(5): 699-709.
    • (2013) Acta Pharmacol Sin , vol.34 , Issue.5 , pp. 699-709
    • Xu, S.1    De Veirman, K.2    Evans, H.3
  • 137
    • 84885587761 scopus 로고    scopus 로고
    • Inhibition of histone deacetylases potentiates BMP9-induced osteogenic signaling in mouse mesenchymal stem cells
    • Hu N, Wang C, Liang X, et al. Inhibition of histone deacetylases potentiates BMP9-induced osteogenic signaling in mouse mesenchymal stem cells. Cell Physiol Biochem 2013; 32(2): 486-98.
    • (2013) Cell Physiol Biochem , vol.32 , Issue.2 , pp. 486-498
    • Hu, N.1    Wang, C.2    Liang, X.3
  • 138
    • 84903472809 scopus 로고    scopus 로고
    • Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis
    • Yan J, Zhang C, Zhao Y, et al. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials 2014; 35(27): 7734-49.
    • (2014) Biomaterials , vol.35 , Issue.27 , pp. 7734-7749
    • Yan, J.1    Zhang, C.2    Zhao, Y.3
  • 139
    • 84908116644 scopus 로고    scopus 로고
    • Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells
    • Deng Y, Zhou H, Gu P, et al. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells. Invest Ophthalmol Vis Sci 2014; 55(9): 6016-23.
    • (2014) Invest Ophthalmol Vis Sci , vol.55 , Issue.9 , pp. 6016-6023
    • Deng, Y.1    Zhou, H.2    Gu, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.