-
1
-
-
84856072854
-
Packaging of fat: an evolving model of lipid droplet assembly and expansion
-
Brasaemle D.L., Wolins N.E. Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem 2012, 287:2273-2279.
-
(2012)
J Biol Chem
, vol.287
, pp. 2273-2279
-
-
Brasaemle, D.L.1
Wolins, N.E.2
-
3
-
-
84871820511
-
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn' em down
-
Kohlwein S.D., Veenhuis M., van der Klei I.J. Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat-store 'em up or burn' em down. Genetics 2013, 193:1-50.
-
(2013)
Genetics
, vol.193
, pp. 1-50
-
-
Kohlwein, S.D.1
Veenhuis, M.2
van der Klei, I.J.3
-
4
-
-
84895735915
-
Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites
-
Pol A., Gross S.P., Parton R.G. Biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 2014, 204:635-646.
-
(2014)
J Cell Biol
, vol.204
, pp. 635-646
-
-
Pol, A.1
Gross, S.P.2
Parton, R.G.3
-
5
-
-
84892678440
-
Open questions in lipid droplet biology
-
Ohsaki Y., Suzuki M., Fujimoto T. Open questions in lipid droplet biology. Chem Biol 2014, 21:86-96.
-
(2014)
Chem Biol
, vol.21
, pp. 86-96
-
-
Ohsaki, Y.1
Suzuki, M.2
Fujimoto, T.3
-
6
-
-
0032911957
-
Mechanisms of lipid-body formation
-
Murphy D.J., Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci 1999, 24:109-115.
-
(1999)
Trends Biochem Sci
, vol.24
, pp. 109-115
-
-
Murphy, D.J.1
Vance, J.2
-
7
-
-
84864864505
-
Lipid droplet formation on opposing sides of the endoplasmic reticulum
-
Sturley S.L., Hussain M.M. Lipid droplet formation on opposing sides of the endoplasmic reticulum. J Lipid Res 2012, 53:1800-1810.
-
(2012)
J Lipid Res
, vol.53
, pp. 1800-1810
-
-
Sturley, S.L.1
Hussain, M.M.2
-
8
-
-
49649118638
-
Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100
-
Ohsaki Y., Cheng J., Suzuki M., Fujita A., Fujimoto T. Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 2008, 121:2415-2422.
-
(2008)
J Cell Sci
, vol.121
, pp. 2415-2422
-
-
Ohsaki, Y.1
Cheng, J.2
Suzuki, M.3
Fujita, A.4
Fujimoto, T.5
-
9
-
-
33751161853
-
Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis
-
Robenek H., Hofnagel O., Buers I., Robenek M.J., Troyer D., Severs N.J. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 2006, 119:4215-4224.
-
(2006)
J Cell Sci
, vol.119
, pp. 4215-4224
-
-
Robenek, H.1
Hofnagel, O.2
Buers, I.3
Robenek, M.J.4
Troyer, D.5
Severs, N.J.6
-
10
-
-
84875326507
-
Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
-
Wilfling F., Wang H., Haas J.T., Krahmer N., Gould T.J., Uchida A., Cheng J.X., Graham M., Christiano R., Fröhlich F., et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013, 24:384-399.
-
(2013)
Dev Cell
, vol.24
, pp. 384-399
-
-
Wilfling, F.1
Wang, H.2
Haas, J.T.3
Krahmer, N.4
Gould, T.J.5
Uchida, A.6
Cheng, J.X.7
Graham, M.8
Christiano, R.9
Fröhlich, F.10
-
11
-
-
84895764551
-
Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
-
Kassan A., Herms A., Fernández-Vidal A., Bosch M., Schieber N.L., Reddy B.J., Fajardo A., Gelabert-Baldrich M., Tebar F., Enrich C., et al. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. J Cell Biol 2013, 203:985-1001.
-
(2013)
J Cell Biol
, vol.203
, pp. 985-1001
-
-
Kassan, A.1
Herms, A.2
Fernández-Vidal, A.3
Bosch, M.4
Schieber, N.L.5
Reddy, B.J.6
Fajardo, A.7
Gelabert-Baldrich, M.8
Tebar, F.9
Enrich, C.10
-
12
-
-
79955486102
-
The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets
-
Adeyo O., Horn P.J., Lee S., Binns D.D., Chandrahas A., Chapman K.D., Goodman J.M. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 2011, 192:1043-1055.
-
(2011)
J Cell Biol
, vol.192
, pp. 1043-1055
-
-
Adeyo, O.1
Horn, P.J.2
Lee, S.3
Binns, D.D.4
Chandrahas, A.5
Chapman, K.D.6
Goodman, J.M.7
-
13
-
-
84856731141
-
A role for seipin in lipid droplet dynamics and inheritance in yeast
-
Wolinski H., Kolb D., Hermann S., Koning R.I., Kohlwein S.D. A role for seipin in lipid droplet dynamics and inheritance in yeast. J Cell Sci 2011, 124:3894-3904.
-
(2011)
J Cell Sci
, vol.124
, pp. 3894-3904
-
-
Wolinski, H.1
Kolb, D.2
Hermann, S.3
Koning, R.I.4
Kohlwein, S.D.5
-
14
-
-
79960398841
-
Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae
-
Jacquier N., Choudhary V., Mari M., Toulmay A., Reggiori F., Schneiter R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 2011, 124:2424-2437.
-
(2011)
J Cell Sci
, vol.124
, pp. 2424-2437
-
-
Jacquier, N.1
Choudhary, V.2
Mari, M.3
Toulmay, A.4
Reggiori, F.5
Schneiter, R.6
-
15
-
-
84923248278
-
Transport and retention mechanisms govern lipid droplet inheritance in Saccharomyces cerevisiae
-
Knoblach B., Rachubinski R.A. Transport and retention mechanisms govern lipid droplet inheritance in Saccharomyces cerevisiae. Traffic 2015, 16:298-309.
-
(2015)
Traffic
, vol.16
, pp. 298-309
-
-
Knoblach, B.1
Rachubinski, R.A.2
-
16
-
-
0030867130
-
Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae
-
Athenstaedt K., Daum G. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J Bacteriol 1997, 179:7611-7616.
-
(1997)
J Bacteriol
, vol.179
, pp. 7611-7616
-
-
Athenstaedt, K.1
Daum, G.2
-
17
-
-
0031931498
-
Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles
-
Leber R., Landl K., Zinser E., Ahorn H., Spök A., Kohlwein S.D., Turnowsky F., Daum G. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 1998, 9:375-386.
-
(1998)
Mol Biol Cell
, vol.9
, pp. 375-386
-
-
Leber, R.1
Landl, K.2
Zinser, E.3
Ahorn, H.4
Spök, A.5
Kohlwein, S.D.6
Turnowsky, F.7
Daum, G.8
-
18
-
-
38849096602
-
Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets
-
Kuerschner L., Moessinger C., Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 2008, 9:338-352.
-
(2008)
Traffic
, vol.9
, pp. 338-352
-
-
Kuerschner, L.1
Moessinger, C.2
Thiele, C.3
-
19
-
-
64149132208
-
The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria
-
Stone S.J., Levin M.C., Zhou P., Han J., Walther T.C., Farese R.V. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem 2009, 284:5352-5361.
-
(2009)
J Biol Chem
, vol.284
, pp. 5352-5361
-
-
Stone, S.J.1
Levin, M.C.2
Zhou, P.3
Han, J.4
Walther, T.C.5
Farese, R.V.6
-
20
-
-
84880070195
-
Regulation of the yeast triacylglycerol lipase TGl3p by formation of nonpolar lipids
-
Schmidt C., Athenstaedt K., Koch B., Ploier B., Daum G. Regulation of the yeast triacylglycerol lipase TGl3p by formation of nonpolar lipids. J Biol Chem 2013, 288:19939-19948.
-
(2013)
J Biol Chem
, vol.288
, pp. 19939-19948
-
-
Schmidt, C.1
Athenstaedt, K.2
Koch, B.3
Ploier, B.4
Daum, G.5
-
21
-
-
79958712557
-
Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine
-
Moessinger C., Kuerschner L., Spandl J., Shevchenko A., Thiele C. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 2011, 286:21330-21339.
-
(2011)
J Biol Chem
, vol.286
, pp. 21330-21339
-
-
Moessinger, C.1
Kuerschner, L.2
Spandl, J.3
Shevchenko, A.4
Thiele, C.5
-
22
-
-
47149111389
-
Cell biology of lipid droplets
-
Thiele C., Spandl J. Cell biology of lipid droplets. Curr Opin Cell Biol 2008, 20:378-385.
-
(2008)
Curr Opin Cell Biol
, vol.20
, pp. 378-385
-
-
Thiele, C.1
Spandl, J.2
-
23
-
-
84872472046
-
Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1
-
Stevanovic A., Thiele C. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J Lipid Res 2013, 54:503-513.
-
(2013)
J Lipid Res
, vol.54
, pp. 503-513
-
-
Stevanovic, A.1
Thiele, C.2
-
24
-
-
84903847093
-
Characterization of the interaction of diacylglycerol acyltransferase-2 with the endoplasmic reticulum and lipid droplets
-
McFie P.J., Jin Y., Banman S.L., Beauchamp E., Berthiaume L.G., Stone S.J. Characterization of the interaction of diacylglycerol acyltransferase-2 with the endoplasmic reticulum and lipid droplets. Biochim Biophys Acta 2014, 1841:1318-1328.
-
(2014)
Biochim Biophys Acta
, vol.1841
, pp. 1318-1328
-
-
McFie, P.J.1
Jin, Y.2
Banman, S.L.3
Beauchamp, E.4
Berthiaume, L.G.5
Stone, S.J.6
-
25
-
-
33644853354
-
Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast
-
Kurat C.F., Natter K., Petschnigg J., Wolinski H., Scheuringer K., Scholz H., Zimmermann R., Leber R., Zechner R., Kohlwein S.D. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem 2006, 281:491-500.
-
(2006)
J Biol Chem
, vol.281
, pp. 491-500
-
-
Kurat, C.F.1
Natter, K.2
Petschnigg, J.3
Wolinski, H.4
Scheuringer, K.5
Scholz, H.6
Zimmermann, R.7
Leber, R.8
Zechner, R.9
Kohlwein, S.D.10
-
26
-
-
84888101258
-
Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum
-
Jacquier N., Mishra S., Choudhary V., Schneiter R. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J Cell Sci 2013, 126:5198-5209.
-
(2013)
J Cell Sci
, vol.126
, pp. 5198-5209
-
-
Jacquier, N.1
Mishra, S.2
Choudhary, V.3
Schneiter, R.4
-
27
-
-
80053927108
-
Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase
-
Krahmer N., Guo Y., Wilfling F., Hilger M., Lingrell S., Heger K., Newman H.W., Schmidt-Supprian M., Vance D.E., Mann M., et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 2011, 14:504-515.
-
(2011)
Cell Metab
, vol.14
, pp. 504-515
-
-
Krahmer, N.1
Guo, Y.2
Wilfling, F.3
Hilger, M.4
Lingrell, S.5
Heger, K.6
Newman, H.W.7
Schmidt-Supprian, M.8
Vance, D.E.9
Mann, M.10
-
29
-
-
79960933880
-
A role for phosphatidic acid in the formation of "supersized" lipid droplets
-
Fei W., Shui G., Zhang Y., Krahmer N., Ferguson C., Kapterian T.S., Lin R.C., Dawes I.W., Brown A.J., Li P., et al. A role for phosphatidic acid in the formation of "supersized" lipid droplets. PLoS Genet 2011, 7:e1002201.
-
(2011)
PLoS Genet
, vol.7
, pp. e1002201
-
-
Fei, W.1
Shui, G.2
Zhang, Y.3
Krahmer, N.4
Ferguson, C.5
Kapterian, T.S.6
Lin, R.C.7
Dawes, I.W.8
Brown, A.J.9
Li, P.10
-
30
-
-
56849110119
-
COPI complex is a regulator of lipid homeostasis
-
Beller M., Sztalryd C., Southall N., Bell M., Jäckle H., Auld D.S., Oliver B. COPI complex is a regulator of lipid homeostasis. PLoS Biol 2008, 6:e292.
-
(2008)
PLoS Biol
, vol.6
, pp. e292
-
-
Beller, M.1
Sztalryd, C.2
Southall, N.3
Bell, M.4
Jäckle, H.5
Auld, D.S.6
Oliver, B.7
-
31
-
-
69449095908
-
Coatomer-dependent protein delivery to lipid droplets
-
Soni K.G., Mardones G.A., Sougrat R., Smirnova E., Jackson C.L., Bonifacino J.S. Coatomer-dependent protein delivery to lipid droplets. J Cell Sci 2009, 122:1834-1841.
-
(2009)
J Cell Sci
, vol.122
, pp. 1834-1841
-
-
Soni, K.G.1
Mardones, G.A.2
Sougrat, R.3
Smirnova, E.4
Jackson, C.L.5
Bonifacino, J.S.6
-
32
-
-
84898715853
-
Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
-
Wilfling F., Thiam A.R., Olarte M.J., Wang J., Beck R., Gould T.J., Allgeyer E.S., Pincet F., Bewersdorf J., Farese R.V., et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 2014, 3:e01607.
-
(2014)
Elife
, vol.3
, pp. e01607
-
-
Wilfling, F.1
Thiam, A.R.2
Olarte, M.J.3
Wang, J.4
Beck, R.5
Gould, T.J.6
Allgeyer, E.S.7
Pincet, F.8
Bewersdorf, J.9
Farese, R.V.10
-
33
-
-
84882290578
-
COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function
-
Thiam A.R., Antonny B., Wang J., Delacotte J., Wilfling F., Walther T.C., Beck R., Rothman J.E., Pincet F. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function. Proc Natl Acad Sci USA 2013, 110:13244-13249.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 13244-13249
-
-
Thiam, A.R.1
Antonny, B.2
Wang, J.3
Delacotte, J.4
Wilfling, F.5
Walther, T.C.6
Beck, R.7
Rothman, J.E.8
Pincet, F.9
-
34
-
-
84866382121
-
The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface
-
Xu N., Zhang S.O., Cole R.A., McKinney S.A., Guo F., Haas J.T., Bobba S., Farese R.V., Mak H.Y. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol 2012, 198:895-911.
-
(2012)
J Cell Biol
, vol.198
, pp. 895-911
-
-
Xu, N.1
Zhang, S.O.2
Cole, R.A.3
McKinney, S.A.4
Guo, F.5
Haas, J.T.6
Bobba, S.7
Farese, R.V.8
Mak, H.Y.9
-
35
-
-
33744904687
-
The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion
-
Marcinkiewicz A., Gauthier D., Garcia A., Brasaemle D.L. The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem 2006, 281:11901-11909.
-
(2006)
J Biol Chem
, vol.281
, pp. 11901-11909
-
-
Marcinkiewicz, A.1
Gauthier, D.2
Garcia, A.3
Brasaemle, D.L.4
-
36
-
-
47649114826
-
Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner
-
Boulant S., Douglas M.W., Moody L., Budkowska A., Targett-Adams P., McLauchlan J. Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic 2008, 9:1268-1282.
-
(2008)
Traffic
, vol.9
, pp. 1268-1282
-
-
Boulant, S.1
Douglas, M.W.2
Moody, L.3
Budkowska, A.4
Targett-Adams, P.5
McLauchlan, J.6
-
37
-
-
84879367440
-
Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion
-
Orlicky D.J., Monks J., Stefanski A.L., McManaman J.L. Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion. PLoS One 2013, 8:e66837.
-
(2013)
PLoS One
, vol.8
, pp. e66837
-
-
Orlicky, D.J.1
Monks, J.2
Stefanski, A.L.3
McManaman, J.L.4
-
38
-
-
84883508817
-
Monoubiquitination of ancient ubiquitous protein 1 promotes lipid droplet clustering
-
Lohmann D., Spandl J., Stevanovic A., Schoene M., Philippou-Massier J., Thiele C. Monoubiquitination of ancient ubiquitous protein 1 promotes lipid droplet clustering. PLoS One 2013, 8:e72453.
-
(2013)
PLoS One
, vol.8
, pp. e72453
-
-
Lohmann, D.1
Spandl, J.2
Stevanovic, A.3
Schoene, M.4
Philippou-Massier, J.5
Thiele, C.6
-
39
-
-
84913594154
-
GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions
-
Lucken-Ardjomande Häsler S., Vallis Y., Jolin H.E., McKenzie A.N., McMahon H.T. GRAF1a is a brain-specific protein that promotes lipid droplet clustering and growth, and is enriched at lipid droplet junctions. J Cell Sci 2014, 127:4602-4619.
-
(2014)
J Cell Sci
, vol.127
, pp. 4602-4619
-
-
Lucken-Ardjomande Häsler, S.1
Vallis, Y.2
Jolin, H.E.3
McKenzie, A.N.4
McMahon, H.T.5
-
40
-
-
44949130214
-
Fat-specific protein 27 regulates storage of triacylglycerol
-
Keller P., Petrie J.T., De Rose P., Gerin I., Wright W.S., Chiang S.H., Nielsen A.R., Fischer C.P., Pedersen B.K., MacDougald O.A. Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem 2008, 283:14355-14365.
-
(2008)
J Biol Chem
, vol.283
, pp. 14355-14365
-
-
Keller, P.1
Petrie, J.T.2
De Rose, P.3
Gerin, I.4
Wright, W.S.5
Chiang, S.H.6
Nielsen, A.R.7
Fischer, C.P.8
Pedersen, B.K.9
MacDougald, O.A.10
-
41
-
-
48749103552
-
FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets
-
Nishino N., Tamori Y., Tateya S., Kawaguchi T., Shibakusa T., Mizunoya W., Inoue K., Kitazawa R., Kitazawa S., Matsuki Y., et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 2008, 118:2808-2821.
-
(2008)
J Clin Invest
, vol.118
, pp. 2808-2821
-
-
Nishino, N.1
Tamori, Y.2
Tateya, S.3
Kawaguchi, T.4
Shibakusa, T.5
Mizunoya, W.6
Inoue, K.7
Kitazawa, R.8
Kitazawa, S.9
Matsuki, Y.10
-
42
-
-
51449123610
-
Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice
-
Toh S.Y., Gong J., Du G., Li J.Z., Yang S., Ye J., Yao H., Zhang Y., Xue B., Li Q., et al. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 2008, 3:e2890.
-
(2008)
PLoS One
, vol.3
, pp. e2890
-
-
Toh, S.Y.1
Gong, J.2
Du, G.3
Li, J.Z.4
Yang, S.5
Ye, J.6
Yao, H.7
Zhang, Y.8
Xue, B.9
Li, Q.10
-
43
-
-
84931289926
-
Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice
-
Zhou L., Park S., Xu L., Xia X., Ye J., Su L., Jeong K., Hur J.H., Oh H., Tamori Y., et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun 2015, 6:5949.
-
(2015)
Nat Commun
, vol.6
, pp. 5949
-
-
Zhou, L.1
Park, S.2
Xu, L.3
Xia, X.4
Ye, J.5
Su, L.6
Jeong, K.7
Hur, J.H.8
Oh, H.9
Tamori, Y.10
-
44
-
-
70450220107
-
Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC
-
Rubio-Cabezas O., Puri V., Murano I., Saudek V., Semple R.K., Dash S., Hyden C.S., Bottomley W., Vigouroux C., Magré J., et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 2009, 1:280-287.
-
(2009)
EMBO Mol Med
, vol.1
, pp. 280-287
-
-
Rubio-Cabezas, O.1
Puri, V.2
Murano, I.3
Saudek, V.4
Semple, R.K.5
Dash, S.6
Hyden, C.S.7
Bottomley, W.8
Vigouroux, C.9
Magré, J.10
-
45
-
-
84921921686
-
Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice
-
Tanaka N., Takahashi S., Matusbara T., Jiang C., Sakamoto W., Chanturiya T., Teng R., Gavrilova O., Gonzalez F.J. Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem 2015, 290:3092-3105.
-
(2015)
J Biol Chem
, vol.290
, pp. 3092-3105
-
-
Tanaka, N.1
Takahashi, S.2
Matusbara, T.3
Jiang, C.4
Sakamoto, W.5
Chanturiya, T.6
Teng, R.7
Gavrilova, O.8
Gonzalez, F.J.9
-
46
-
-
84862908504
-
Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
-
Gong J., Sun Z., Wu L., Xu W., Schieber N., Xu D., Shui G., Yang H., Parton R.G., Li P. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 2011, 195:953-963.
-
(2011)
J Cell Biol
, vol.195
, pp. 953-963
-
-
Gong, J.1
Sun, Z.2
Wu, L.3
Xu, W.4
Schieber, N.5
Xu, D.6
Shui, G.7
Yang, H.8
Parton, R.G.9
Li, P.10
-
47
-
-
44449095056
-
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization
-
Guo Y., Walther T.C., Rao M., Stuurman N., Goshima G., Terayama K., Wong J.S., Vale R.D., Walter P., Farese R.V. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 2008, 453:657-661.
-
(2008)
Nature
, vol.453
, pp. 657-661
-
-
Guo, Y.1
Walther, T.C.2
Rao, M.3
Stuurman, N.4
Goshima, G.5
Terayama, K.6
Wong, J.S.7
Vale, R.D.8
Walter, P.9
Farese, R.V.10
-
48
-
-
78650825607
-
Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens
-
Murphy S., Martin S., Parton R.G. Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 2010, 5:e15030.
-
(2010)
PLoS One
, vol.5
, pp. e15030
-
-
Murphy, S.1
Martin, S.2
Parton, R.G.3
-
49
-
-
84859489655
-
Remodeling of lipid droplets during lipolysis and growth in adipocytes
-
Paar M., Jüngst C., Steiner N.A., Magnes C., Sinner F., Kolb D., Lass A., Zimmermann R., Zumbusch A., Kohlwein S.D., et al. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 2012, 287:11164-11173.
-
(2012)
J Biol Chem
, vol.287
, pp. 11164-11173
-
-
Paar, M.1
Jüngst, C.2
Steiner, N.A.3
Magnes, C.4
Sinner, F.5
Kolb, D.6
Lass, A.7
Zimmermann, R.8
Zumbusch, A.9
Kohlwein, S.D.10
-
50
-
-
84887898571
-
Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes
-
Jüngst C., Klein M., Zumbusch A. Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes. J Lipid Res 2013, 54:3419-3429.
-
(2013)
J Lipid Res
, vol.54
, pp. 3419-3429
-
-
Jüngst, C.1
Klein, M.2
Zumbusch, A.3
-
51
-
-
84875871194
-
Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes
-
Sun Z., Gong J., Wu H., Xu W., Wu L., Xu D., Gao J., Wu J.W., Yang H., Yang M., et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 2013, 4:1594.
-
(2013)
Nat Commun
, vol.4
, pp. 1594
-
-
Sun, Z.1
Gong, J.2
Wu, H.3
Xu, W.4
Wu, L.5
Xu, D.6
Gao, J.7
Wu, J.W.8
Yang, H.9
Yang, M.10
-
52
-
-
84907327727
-
Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth
-
Wu L., Xu D., Zhou L., Xie B., Yu L., Yang H., Huang L., Ye J., Deng H., Yuan Y.A., et al. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell 2014, 30:378-393.
-
(2014)
Dev Cell
, vol.30
, pp. 378-393
-
-
Wu, L.1
Xu, D.2
Zhou, L.3
Xie, B.4
Yu, L.5
Yang, H.6
Huang, L.7
Ye, J.8
Deng, H.9
Yuan, Y.A.10
-
53
-
-
80052454265
-
ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1
-
Haemmerle G., Moustafa T., Woelkart G., Büttner S., Schmidt A., van de Weijer T., Hesselink M., Jaeger D., Kienesberger P.C., Zierler K., et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat Med 2011, 17:1076-1085.
-
(2011)
Nat Med
, vol.17
, pp. 1076-1085
-
-
Haemmerle, G.1
Moustafa, T.2
Woelkart, G.3
Büttner, S.4
Schmidt, A.5
van de Weijer, T.6
Hesselink, M.7
Jaeger, D.8
Kienesberger, P.C.9
Zierler, K.10
-
54
-
-
80053062569
-
Interactomic study on interaction between lipid droplets and mitochondria
-
Pu J., Ha C.W., Zhang S., Jung J.P., Huh W.K., Liu P. Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell 2011, 2:487-496.
-
(2011)
Protein Cell
, vol.2
, pp. 487-496
-
-
Pu, J.1
Ha, C.W.2
Zhang, S.3
Jung, J.P.4
Huh, W.K.5
Liu, P.6
-
55
-
-
33747380991
-
An intimate collaboration between peroxisomes and lipid bodies
-
Binns D., Januszewski T., Chen Y., Hill J., Markin V.S., Zhao Y., Gilpin C., Chapman K.D., Anderson R.G., Goodman J.M. An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 2006, 173:719-731.
-
(2006)
J Cell Biol
, vol.173
, pp. 719-731
-
-
Binns, D.1
Januszewski, T.2
Chen, Y.3
Hill, J.4
Markin, V.S.5
Zhao, Y.6
Gilpin, C.7
Chapman, K.D.8
Anderson, R.G.9
Goodman, J.M.10
-
56
-
-
37249058863
-
Network distribution of mitochondria and lipid droplets in human muscle fibres
-
Shaw C.S., Jones D.A., Wagenmakers A.J. Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 2008, 129:65-72.
-
(2008)
Histochem Cell Biol
, vol.129
, pp. 65-72
-
-
Shaw, C.S.1
Jones, D.A.2
Wagenmakers, A.J.3
-
57
-
-
80455135722
-
Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria
-
Wang H., Sreenivasan U., Hu H., Saladino A., Polster B.M., Lund L.M., Gong D.W., Stanley W.C., Sztalryd C. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 2011, 52:2159-2168.
-
(2011)
J Lipid Res
, vol.52
, pp. 2159-2168
-
-
Wang, H.1
Sreenivasan, U.2
Hu, H.3
Saladino, A.4
Polster, B.M.5
Lund, L.M.6
Gong, D.W.7
Stanley, W.C.8
Sztalryd, C.9
-
58
-
-
84857632171
-
The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria
-
Bosma M., Minnaard R., Sparks L.M., Schaart G., Losen M., de Baets M.H., Duimel H., Kersten S., Bickel P.E., Schrauwen P., et al. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol 2012, 137:205-216.
-
(2012)
Histochem Cell Biol
, vol.137
, pp. 205-216
-
-
Bosma, M.1
Minnaard, R.2
Sparks, L.M.3
Schaart, G.4
Losen, M.5
de Baets, M.H.6
Duimel, H.7
Kersten, S.8
Bickel, P.E.9
Schrauwen, P.10
-
59
-
-
84875828716
-
Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction
-
Wang H., Sreenivasan U., Gong D.W., O'Connell K.A., Dabkowski E.R., Hecker P.A., Ionica N., Konig M., Mahurkar A., Sun Y., et al. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J Lipid Res 2013, 54:953-965.
-
(2013)
J Lipid Res
, vol.54
, pp. 953-965
-
-
Wang, H.1
Sreenivasan, U.2
Gong, D.W.3
O'Connell, K.A.4
Dabkowski, E.R.5
Hecker, P.A.6
Ionica, N.7
Konig, M.8
Mahurkar, A.9
Sun, Y.10
-
60
-
-
84925324049
-
Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold A.S., Cohen S., Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell 2015, 32:678-692.
-
(2015)
Dev Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
61
-
-
84899433517
-
Phospholipid methylation in mammals: from biochemistry to physiological function
-
Vance D.E. Phospholipid methylation in mammals: from biochemistry to physiological function. Biochim Biophys Acta 2014, 1838:1477-1487.
-
(2014)
Biochim Biophys Acta
, vol.1838
, pp. 1477-1487
-
-
Vance, D.E.1
-
62
-
-
79955750296
-
Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo
-
Hörl G., Wagner A., Cole L.K., Malli R., Reicher H., Kotzbeck P., Köfeler H., Höfler G., Frank S., Bogner-Strauss J.G., et al. Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem 2011, 286:17338-17350.
-
(2011)
J Biol Chem
, vol.286
, pp. 17338-17350
-
-
Hörl, G.1
Wagner, A.2
Cole, L.K.3
Malli, R.4
Reicher, H.5
Kotzbeck, P.6
Köfeler, H.7
Höfler, G.8
Frank, S.9
Bogner-Strauss, J.G.10
-
63
-
-
34147152663
-
Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic
-
Bartz R., Li W.H., Venables B., Zehmer J.K., Roth M.R., Welti R., Anderson R.G., Liu P., Chapman K.D. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res 2007, 48:837-847.
-
(2007)
J Lipid Res
, vol.48
, pp. 837-847
-
-
Bartz, R.1
Li, W.H.2
Venables, B.3
Zehmer, J.K.4
Roth, M.R.5
Welti, R.6
Anderson, R.G.7
Liu, P.8
Chapman, K.D.9
-
64
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., Kaushik S., Wang Y., Xiang Y., Novak I., Komatsu M., Tanaka K., Cuervo A.M., Czaja M.J. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
65
-
-
84883028352
-
β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation
-
Lizaso A., Tan K.T., Lee Y.H. β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 2013, 9:1228-1243.
-
(2013)
Autophagy
, vol.9
, pp. 1228-1243
-
-
Lizaso, A.1
Tan, K.T.2
Lee, Y.H.3
-
66
-
-
84929606449
-
The Small GTPase Rab7 as a central regulator of hepatocellular lipophagy
-
Schroeder B., Schulze R.J., Weller S.G., Sletten A.C., Casey C.A., McNiven M.A. The Small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015, 10.1002/hep.27667.
-
(2015)
Hepatology
-
-
Schroeder, B.1
Schulze, R.J.2
Weller, S.G.3
Sletten, A.C.4
Casey, C.A.5
McNiven, M.A.6
-
67
-
-
84894442654
-
Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism
-
Tseng Y.H., Ke P.Y., Liao C.J., Wu S.M., Chi H.C., Tsai C.Y., Chen C.Y., Lin Y.H., Lin K.H. Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy 2014, 10:20-31.
-
(2014)
Autophagy
, vol.10
, pp. 20-31
-
-
Tseng, Y.H.1
Ke, P.Y.2
Liao, C.J.3
Wu, S.M.4
Chi, H.C.5
Tsai, C.Y.6
Chen, C.Y.7
Lin, Y.H.8
Lin, K.H.9
-
68
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
van Zutphen T., Todde V., de Boer R., Kreim M., Hofbauer H.F., Wolinski H., Veenhuis M., van der Klei I.J., Kohlwein S.D. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2014, 25:290-301.
-
(2014)
Mol Biol Cell
, vol.25
, pp. 290-301
-
-
van Zutphen, T.1
Todde, V.2
de Boer, R.3
Kreim, M.4
Hofbauer, H.F.5
Wolinski, H.6
Veenhuis, M.7
van der Klei, I.J.8
Kohlwein, S.D.9
-
69
-
-
84905981861
-
A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast
-
Wang C.W., Miao Y.H., Chang Y.S. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Biol 2014, 206:357-366.
-
(2014)
J Cell Biol
, vol.206
, pp. 357-366
-
-
Wang, C.W.1
Miao, Y.H.2
Chang, Y.S.3
-
70
-
-
84880596969
-
Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells
-
Toulmay A., Prinz W.A. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J Cell Biol 2013, 202:35-44.
-
(2013)
J Cell Biol
, vol.202
, pp. 35-44
-
-
Toulmay, A.1
Prinz, W.A.2
-
71
-
-
84896542255
-
Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis
-
Dupont N., Chauhan S., Arko-Mensah J., Castillo E.F., Masedunskas A., Weigert R., Robenek H., Proikas-Cezanne T., Deretic V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 2014, 24:609-620.
-
(2014)
Curr Biol
, vol.24
, pp. 609-620
-
-
Dupont, N.1
Chauhan, S.2
Arko-Mensah, J.3
Castillo, E.F.4
Masedunskas, A.5
Weigert, R.6
Robenek, H.7
Proikas-Cezanne, T.8
Deretic, V.9
-
72
-
-
84920724964
-
Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation
-
Li D., Song J.Z., Li H., Shan M.H., Liang Y., Zhu J., Xie Z. Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Lett 2015, 589:269-276.
-
(2015)
FEBS Lett
, vol.589
, pp. 269-276
-
-
Li, D.1
Song, J.Z.2
Li, H.3
Shan, M.H.4
Liang, Y.5
Zhu, J.6
Xie, Z.7
|