-
1
-
-
36249025723
-
Autophagy: process and function
-
Mizushima N. Autophagy: process and function. Genes Dev. 2007, 21:2861-2873.
-
(2007)
Genes Dev.
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
2
-
-
77955964664
-
Selective autophagy regulates various cellular functions
-
Komatsu M., Ichimura Y. Selective autophagy regulates various cellular functions. Genes Cells 2010, 15:923-933.
-
(2010)
Genes Cells
, vol.15
, pp. 923-933
-
-
Komatsu, M.1
Ichimura, Y.2
-
3
-
-
33845298622
-
Pexophagy: autophagic degradation of peroxisomes
-
Sakai Y., Oku M., van der Klei I.J., Kiel J.A. Pexophagy: autophagic degradation of peroxisomes. Biochim. Biophys. Acta 2006, 1763:1767-1775.
-
(2006)
Biochim. Biophys. Acta
, vol.1763
, pp. 1767-1775
-
-
Sakai, Y.1
Oku, M.2
van der Klei, I.J.3
Kiel, J.A.4
-
4
-
-
0018090257
-
Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii
-
Bormann C., Sahm H. Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii. Arch. Microbiol. 1978, 117:67-72.
-
(1978)
Arch. Microbiol.
, vol.117
, pp. 67-72
-
-
Bormann, C.1
Sahm, H.2
-
5
-
-
0027207680
-
Selective autophagy of peroxisomes in methylotrophic yeasts
-
Tuttle D.L., Lewin A.S., Dunn W.A. Selective autophagy of peroxisomes in methylotrophic yeasts. Eur. J. Cell Biol. 1993, 60:283-290.
-
(1993)
Eur. J. Cell Biol.
, vol.60
, pp. 283-290
-
-
Tuttle, D.L.1
Lewin, A.S.2
Dunn, W.A.3
-
6
-
-
0028855325
-
Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris
-
Tuttle D.L., Dunn W.A. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J. Cell Sci. 1995, 108(Pt 1):25-35.
-
(1995)
J. Cell Sci.
, vol.108
, pp. 25-35
-
-
Tuttle, D.L.1
Dunn, W.A.2
-
7
-
-
0033490110
-
Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway
-
Hutchins M.U., Veenhuis M., Klionsky D.J. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J. Cell Sci. 1999, 112(Pt 22):4079-4087.
-
(1999)
J. Cell Sci.
, vol.112
, pp. 4079-4087
-
-
Hutchins, M.U.1
Veenhuis, M.2
Klionsky, D.J.3
-
8
-
-
0038523786
-
Selective degradation of peroxisomes in yeasts
-
Bellu A.R., Kiel J.A. Selective degradation of peroxisomes in yeasts. Microsc. Res. Tech. 2003, 61:161-170.
-
(2003)
Microsc. Res. Tech.
, vol.61
, pp. 161-170
-
-
Bellu, A.R.1
Kiel, J.A.2
-
9
-
-
0141964578
-
Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure
-
Mukaiyama H., Baba M., Osumi M., Aoyagi S., Kato N., Ohsumi Y., Sakai Y. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol. Biol. Cell 2004, 15:58-70.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 58-70
-
-
Mukaiyama, H.1
Baba, M.2
Osumi, M.3
Aoyagi, S.4
Kato, N.5
Ohsumi, Y.6
Sakai, Y.7
-
10
-
-
0029875385
-
Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation
-
Chiang H.L., Schekman R., Hamamoto S. Selective uptake of cytosolic, peroxisomal, and plasma membrane proteins into the yeast lysosome for degradation. J. Biol. Chem. 1996, 271:9934-9941.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 9934-9941
-
-
Chiang, H.L.1
Schekman, R.2
Hamamoto, S.3
-
11
-
-
0032482219
-
Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates
-
Sakai Y., Koller A., Rangell L.K., Keller G.A., Subramani S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J. Cell Biol. 1998, 141:625-636.
-
(1998)
J. Cell Biol.
, vol.141
, pp. 625-636
-
-
Sakai, Y.1
Koller, A.2
Rangell, L.K.3
Keller, G.A.4
Subramani, S.5
-
12
-
-
12444293887
-
Atg8 is essential for macropexophagy in Hansenula polymorpha
-
Monastyrska I., van der Heide M., Krikken A.M., Kiel J.A., van der Klei I.J., Veenhuis M. Atg8 is essential for macropexophagy in Hansenula polymorpha. Traffic 2005, 6:66-74.
-
(2005)
Traffic
, vol.6
, pp. 66-74
-
-
Monastyrska, I.1
van der Heide, M.2
Krikken, A.M.3
Kiel, J.A.4
van der Klei, I.J.5
Veenhuis, M.6
-
13
-
-
23944495522
-
Intracellular ATP correlates with mode of pexophagy in Pichia pastoris
-
Ano Y., Hattori T., Kato N., Sakai Y. Intracellular ATP correlates with mode of pexophagy in Pichia pastoris. Biosci. Biotechnol. Biochem. 2005, 69:1527-1533.
-
(2005)
Biosci. Biotechnol. Biochem.
, vol.69
, pp. 1527-1533
-
-
Ano, Y.1
Hattori, T.2
Kato, N.3
Sakai, Y.4
-
14
-
-
0030883562
-
Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase
-
Yuan W., Tuttle D.L., Shi Y.J., Ralph G.S., Dunn W.A. Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J. Cell Sci. 1997, 110(Pt 16):1935-1945.
-
(1997)
J. Cell Sci.
, vol.110
, pp. 1935-1945
-
-
Yuan, W.1
Tuttle, D.L.2
Shi, Y.J.3
Ralph, G.S.4
Dunn, W.A.5
-
15
-
-
33748433784
-
Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8
-
Fry M.R., Thomson J.M., Tomasini A.J., Dunn W.A. Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8. Autophagy 2006, 2:280-288.
-
(2006)
Autophagy
, vol.2
, pp. 280-288
-
-
Fry, M.R.1
Thomson, J.M.2
Tomasini, A.J.3
Dunn, W.A.4
-
16
-
-
33748434220
-
Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy
-
Oku M., Nishimura T., Hattori T., Ano Y., Yamashita S., Sakai Y. Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy. Autophagy 2006, 2:272-279.
-
(2006)
Autophagy
, vol.2
, pp. 272-279
-
-
Oku, M.1
Nishimura, T.2
Hattori, T.3
Ano, Y.4
Yamashita, S.5
Sakai, Y.6
-
17
-
-
79251558467
-
Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris
-
Nazarko V.Y., Nazarko T.Y., Farre J.C., Stasyk O.V., Warnecke D., Ulaszewski S., Cregg J.M., Sibirny A.A., Subramani S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 2011, 7:375-385.
-
(2011)
Autophagy
, vol.7
, pp. 375-385
-
-
Nazarko, V.Y.1
Nazarko, T.Y.2
Farre, J.C.3
Stasyk, O.V.4
Warnecke, D.5
Ulaszewski, S.6
Cregg, J.M.7
Sibirny, A.A.8
Subramani, S.9
-
18
-
-
33644587420
-
Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris
-
Stasyk O.V., Stasyk O.G., Mathewson R.D., Farre J.C., Nazarko V.Y., Krasovska O.S., Subramani S., Cregg J.M., Sibirny A.A. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy 2006, 2:30-38.
-
(2006)
Autophagy
, vol.2
, pp. 30-38
-
-
Stasyk, O.V.1
Stasyk, O.G.2
Mathewson, R.D.3
Farre, J.C.4
Nazarko, V.Y.5
Krasovska, O.S.6
Subramani, S.7
Cregg, J.M.8
Sibirny, A.A.9
-
19
-
-
44149095068
-
G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae
-
Nazarko V.Y., Thevelein J.M., Sibirny A.A. G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol. Int. 2008, 32:502-504.
-
(2008)
Cell Biol. Int.
, vol.32
, pp. 502-504
-
-
Nazarko, V.Y.1
Thevelein, J.M.2
Sibirny, A.A.3
-
20
-
-
41449111597
-
Differences in glucose sensing and signaling for pexophagy between the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris
-
Nazarko V.Y., Futej K.O., Thevelein J.M., Sibirny A.A. Differences in glucose sensing and signaling for pexophagy between the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. Autophagy 2008, 4:381-384.
-
(2008)
Autophagy
, vol.4
, pp. 381-384
-
-
Nazarko, V.Y.1
Futej, K.O.2
Thevelein, J.M.3
Sibirny, A.A.4
-
21
-
-
0032865543
-
Function and regulation of yeast hexose transporters
-
Ozcan S., Johnston M. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 1999, 63:554-569.
-
(1999)
Microbiol. Mol. Biol. Rev.
, vol.63
, pp. 554-569
-
-
Ozcan, S.1
Johnston, M.2
-
22
-
-
1242274644
-
Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
-
Moriya H., Johnston M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:1572-1577.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 1572-1577
-
-
Moriya, H.1
Johnston, M.2
-
23
-
-
1542319811
-
A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha
-
Stasyk O.V., Stasyk O.G., Komduur J., Veenhuis M., Cregg J.M., Sibirny A.A. A hexose transporter homologue controls glucose repression in the methylotrophic yeast Hansenula polymorpha. J. Biol. Chem. 2004, 279:8116-8125.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 8116-8125
-
-
Stasyk, O.V.1
Stasyk, O.G.2
Komduur, J.3
Veenhuis, M.4
Cregg, J.M.5
Sibirny, A.A.6
-
24
-
-
84864751089
-
Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression
-
Polupanov A.S., Nazarko V.Y., Sibirny A.A. Gss1 protein of the methylotrophic yeast Pichia pastoris is involved in glucose sensing, pexophagy and catabolite repression. Int. J. Biochem. Cell Biol. 2012, 44:1906-1918.
-
(2012)
Int. J. Biochem. Cell Biol.
, vol.44
, pp. 1906-1918
-
-
Polupanov, A.S.1
Nazarko, V.Y.2
Sibirny, A.A.3
-
25
-
-
84895910672
-
Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signalling
-
Polupanov A.S., Sibirny A.A. Cytoplasmic extension peptide of Pichia pastoris glucose sensor Gss1 is not compulsory for glucose signalling. Cell Biol. Int. 2014, 38:172-178.
-
(2014)
Cell Biol. Int.
, vol.38
, pp. 172-178
-
-
Polupanov, A.S.1
Sibirny, A.A.2
-
26
-
-
77951168347
-
A yeast MAPK cascade regulates pexophagy but not other autophagy pathways
-
Manjithaya R., Jain S., Farre J.C., Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J. Cell Biol. 2010, 189:303-310.
-
(2010)
J. Cell Biol.
, vol.189
, pp. 303-310
-
-
Manjithaya, R.1
Jain, S.2
Farre, J.C.3
Subramani, S.4
-
27
-
-
79958219318
-
Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
-
Mao K., Wang K., Zhao M., Xu T., Klionsky D.J. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. J. Cell Biol. 2011, 193:755-767.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 755-767
-
-
Mao, K.1
Wang, K.2
Zhao, M.3
Xu, T.4
Klionsky, D.J.5
-
28
-
-
0035503594
-
The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki K., Kirisako T., Kamada Y., Mizushima N., Noda T., Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 2001, 20:5971-5981.
-
(2001)
EMBO J.
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
Mizushima, N.4
Noda, T.5
Ohsumi, Y.6
-
29
-
-
33846514235
-
Hierarchy of Atg proteins in pre-autophagosomal structure organization
-
Suzuki K., Kubota Y., Sekito T., Ohsumi Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 2007, 12:209-218.
-
(2007)
Genes Cells
, vol.12
, pp. 209-218
-
-
Suzuki, K.1
Kubota, Y.2
Sekito, T.3
Ohsumi, Y.4
-
30
-
-
43149125546
-
Organization of the pre-autophagosomal structure responsible for autophagosome formation
-
Kawamata T., Kamada Y., Kabeya Y., Sekito T., Ohsumi Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell 2008, 19:2039-2050.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2039-2050
-
-
Kawamata, T.1
Kamada, Y.2
Kabeya, Y.3
Sekito, T.4
Ohsumi, Y.5
-
31
-
-
3142677196
-
Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
-
Shintani T., Klionsky D.J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 2004, 279:29889-29894.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 29889-29894
-
-
Shintani, T.1
Klionsky, D.J.2
-
32
-
-
0035897414
-
Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole
-
Kim J., Kamada Y., Stromhaug P.E., Guan J., Hefner-Gravink A., Baba M., Scott S.V., Ohsumi Y., Dunn W.A., Klionsky D.J. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 2001, 153:381-396.
-
(2001)
J. Cell Biol.
, vol.153
, pp. 381-396
-
-
Kim, J.1
Kamada, Y.2
Stromhaug, P.E.3
Guan, J.4
Hefner-Gravink, A.5
Baba, M.6
Scott, S.V.7
Ohsumi, Y.8
Dunn, W.A.9
Klionsky, D.J.10
-
33
-
-
33745964401
-
The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy
-
Monastyrska I., Kiel J.A., Krikken A.M., Komduur J.A., Veenhuis M., van der Klei I.J. The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy 2005, 1:92-100.
-
(2005)
Autophagy
, vol.1
, pp. 92-100
-
-
Monastyrska, I.1
Kiel, J.A.2
Krikken, A.M.3
Komduur, J.A.4
Veenhuis, M.5
van der Klei, I.J.6
-
34
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
Kanki T., Klionsky D.J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 2008, 283:32386-32393.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
35
-
-
70349334586
-
Peroxisome size provides insights into the function of autophagy-related proteins
-
Nazarko T.Y., Farre J.C., Subramani S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol. Biol. Cell 2009, 20:3828-3839.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3828-3839
-
-
Nazarko, T.Y.1
Farre, J.C.2
Subramani, S.3
-
36
-
-
73949122199
-
A genomic screen for yeast mutants defective in selective mitochondria autophagy
-
Kanki T., Wang K., Baba M., Bartholomew C.R., Lynch-Day M.A., Du Z., Geng J., Mao K., Yang Z., Yen W.L., Klionsky D.J. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell 2009, 20:4730-4738.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4730-4738
-
-
Kanki, T.1
Wang, K.2
Baba, M.3
Bartholomew, C.R.4
Lynch-Day, M.A.5
Du, Z.6
Geng, J.7
Mao, K.8
Yang, Z.9
Yen, W.L.10
Klionsky, D.J.11
-
37
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farre J.C., Manjithaya R., Mathewson R.D., Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 2008, 14:365-376.
-
(2008)
Dev. Cell
, vol.14
, pp. 365-376
-
-
Farre, J.C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
38
-
-
84877579321
-
Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
-
Farre J.C., Burkenroad A., Burnett S.F., Subramani S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 2013, 14:441-449.
-
(2013)
EMBO Rep.
, vol.14
, pp. 441-449
-
-
Farre, J.C.1
Burkenroad, A.2
Burnett, S.F.3
Subramani, S.4
-
39
-
-
77950484269
-
Atg8-family interacting motif crucial for selective autophagy
-
Noda N.N., Ohsumi Y., Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 2010, 584:1379-1385.
-
(2010)
FEBS Lett.
, vol.584
, pp. 1379-1385
-
-
Noda, N.N.1
Ohsumi, Y.2
Inagaki, F.3
-
40
-
-
84863843241
-
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley A.M., Nuttall J.M., Hettema E.H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 2012, 31:2852-2868.
-
(2012)
EMBO J.
, vol.31
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
41
-
-
84925776380
-
Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30
-
Burnett S.F., Farre J.C., Nazarko T.Y., Subramani S. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J. Biol. Chem. 2015, 290:8623-8631.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 8623-8631
-
-
Burnett, S.F.1
Farre, J.C.2
Nazarko, T.Y.3
Subramani, S.4
-
42
-
-
0037044768
-
Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha
-
Bellu A.R., Salomons F.A., Kiel J.A., Veenhuis M., Van Der Klei I.J. Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J. Biol. Chem. 2002, 277:42875-42880.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 42875-42880
-
-
Bellu, A.R.1
Salomons, F.A.2
Kiel, J.A.3
Veenhuis, M.4
Van Der Klei, I.J.5
-
43
-
-
79961124209
-
Damaged peroxisomes are subject to rapid autophagic degradation in the yeast Hansenula polymorpha
-
van Zutphen T., Veenhuis M., van der Klei I.J. Damaged peroxisomes are subject to rapid autophagic degradation in the yeast Hansenula polymorpha. Autophagy 2011, 7:863-872.
-
(2011)
Autophagy
, vol.7
, pp. 863-872
-
-
van Zutphen, T.1
Veenhuis, M.2
van der Klei, I.J.3
-
44
-
-
84908361088
-
Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins
-
Tanaka C., Tan L.J., Mochida K., Kirisako H., Koizumi M., Asai E., Sakoh-Nakatogawa M., Ohsumi Y., Nakatogawa H. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J. Cell Biol. 2014, 207:91-105.
-
(2014)
J. Cell Biol.
, vol.207
, pp. 91-105
-
-
Tanaka, C.1
Tan, L.J.2
Mochida, K.3
Kirisako, H.4
Koizumi, M.5
Asai, E.6
Sakoh-Nakatogawa, M.7
Ohsumi, Y.8
Nakatogawa, H.9
-
45
-
-
84908227585
-
Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of alpha-mannosidase under nitrogen starvation conditions
-
Mochida K., Ohsumi Y., Nakatogawa H. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of alpha-mannosidase under nitrogen starvation conditions. FEBS Lett. 2014, 588:3862-3869.
-
(2014)
FEBS Lett.
, vol.588
, pp. 3862-3869
-
-
Mochida, K.1
Ohsumi, Y.2
Nakatogawa, H.3
-
46
-
-
84905391741
-
Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19
-
Pfaffenwimmer T., Reiter W., Brach T., Nogellova V., Papinski D., Schuschnig M., Abert C., Ammerer G., Martens S., Kraft C. Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep. 2014, 15:862-870.
-
(2014)
EMBO Rep.
, vol.15
, pp. 862-870
-
-
Pfaffenwimmer, T.1
Reiter, W.2
Brach, T.3
Nogellova, V.4
Papinski, D.5
Schuschnig, M.6
Abert, C.7
Ammerer, G.8
Martens, S.9
Kraft, C.10
-
47
-
-
84894030921
-
Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy
-
Nazarko T.Y., Ozeki K., Till A., Ramakrishnan G., Lotfi P., Yan M., Subramani S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J. Cell Biol. 2014, 204:541-557.
-
(2014)
J. Cell Biol.
, vol.204
, pp. 541-557
-
-
Nazarko, T.Y.1
Ozeki, K.2
Till, A.3
Ramakrishnan, G.4
Lotfi, P.5
Yan, M.6
Subramani, S.7
-
48
-
-
27144513797
-
Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation
-
Thoms S., Erdmann R. Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J. 2005, 272:5169-5181.
-
(2005)
FEBS J.
, vol.272
, pp. 5169-5181
-
-
Thoms, S.1
Erdmann, R.2
-
49
-
-
33750447941
-
Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae
-
Kuravi K., Nagotu S., Krikken A.M., Sjollema K., Deckers M., Erdmann R., Veenhuis M., van der Klei I.J. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J. Cell Sci. 2006, 119:3994-4001.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3994-4001
-
-
Kuravi, K.1
Nagotu, S.2
Krikken, A.M.3
Sjollema, K.4
Deckers, M.5
Erdmann, R.6
Veenhuis, M.7
van der Klei, I.J.8
-
50
-
-
46249130452
-
Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p
-
Motley A.M., Ward G.P., Hettema E.H. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J. Cell Sci. 2008, 121:1633-1640.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 1633-1640
-
-
Motley, A.M.1
Ward, G.P.2
Hettema, E.H.3
-
51
-
-
49749135155
-
Peroxisome fission in Hansenula polymorpha requires Mdv1 and Fis1, two proteins also involved in mitochondrial fission
-
Nagotu S., Krikken A.M., Otzen M., Kiel J.A., Veenhuis M., van der Klei I.J. Peroxisome fission in Hansenula polymorpha requires Mdv1 and Fis1, two proteins also involved in mitochondrial fission. Traffic 2008, 9:1471-1484.
-
(2008)
Traffic
, vol.9
, pp. 1471-1484
-
-
Nagotu, S.1
Krikken, A.M.2
Otzen, M.3
Kiel, J.A.4
Veenhuis, M.5
van der Klei, I.J.6
-
52
-
-
84885195830
-
Dynamin assembly strategies and adaptor proteins in mitochondrial fission
-
Bui H.T., Shaw J.M. Dynamin assembly strategies and adaptor proteins in mitochondrial fission. Curr. Biol. 2013, 23:R891-R899.
-
(2013)
Curr. Biol.
, vol.23
, pp. R891-R899
-
-
Bui, H.T.1
Shaw, J.M.2
-
53
-
-
84898400392
-
The progression of peroxisomal degradation through autophagy requires peroxisomal division
-
Mao K., Liu X., Feng Y., Klionsky D.J. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 2014, 10:652-661.
-
(2014)
Autophagy
, vol.10
, pp. 652-661
-
-
Mao, K.1
Liu, X.2
Feng, Y.3
Klionsky, D.J.4
-
54
-
-
84880863470
-
Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events
-
Manivannan S., de Boer R., Veenhuis M., van der Klei I.J. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 2013, 9:1044-1056.
-
(2013)
Autophagy
, vol.9
, pp. 1044-1056
-
-
Manivannan, S.1
de Boer, R.2
Veenhuis, M.3
van der Klei, I.J.4
-
55
-
-
84880506979
-
The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
-
Mao K., Wang K., Liu X., Klionsky D.J. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 2013, 26:9-18.
-
(2013)
Dev. Cell
, vol.26
, pp. 9-18
-
-
Mao, K.1
Wang, K.2
Liu, X.3
Klionsky, D.J.4
-
56
-
-
84938737846
-
Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex
-
Mattiazzi Usaj M., Brloznik M., Kaferle P., Zitnik M., Wolinski H., Leitner F., Kohlwein S.D., Zupan B., Petrovic U. Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J. Mol. Biol. 2015, 427:2072-2087.
-
(2015)
J. Mol. Biol.
, vol.427
, pp. 2072-2087
-
-
Mattiazzi Usaj, M.1
Brloznik, M.2
Kaferle, P.3
Zitnik, M.4
Wolinski, H.5
Leitner, F.6
Kohlwein, S.D.7
Zupan, B.8
Petrovic, U.9
-
57
-
-
0035661648
-
Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris
-
Guan J., Stromhaug P.E., George M.D., Habibzadegah-Tari P., Bevan A., Dunn W.A., Klionsky D.J. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol. Biol. Cell 2001, 12:3821-3838.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 3821-3838
-
-
Guan, J.1
Stromhaug, P.E.2
George, M.D.3
Habibzadegah-Tari, P.4
Bevan, A.5
Dunn, W.A.6
Klionsky, D.J.7
-
58
-
-
84884239840
-
Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity
-
Tamura N., Oku M., Ito M., Noda N.N., Inagaki F., Sakai Y. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. J. Cell Biol. 2013, 202:685-698.
-
(2013)
J. Cell Biol.
, vol.202
, pp. 685-698
-
-
Tamura, N.1
Oku, M.2
Ito, M.3
Noda, N.N.4
Inagaki, F.5
Sakai, Y.6
-
59
-
-
3142583199
-
Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors
-
Dove S.K., Piper R.C., McEwen R.K., Yu J.W., King M.C., Hughes D.C., Thuring J., Holmes A.B., Cooke F.T., Michell R.H., Parker P.J., Lemmon M.A. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 2004, 23:1922-1933.
-
(2004)
EMBO J.
, vol.23
, pp. 1922-1933
-
-
Dove, S.K.1
Piper, R.C.2
McEwen, R.K.3
Yu, J.W.4
King, M.C.5
Hughes, D.C.6
Thuring, J.7
Holmes, A.B.8
Cooke, F.T.9
Michell, R.H.10
Parker, P.J.11
Lemmon, M.A.12
-
60
-
-
35848929068
-
Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate
-
Efe J.A., Botelho R.J., Emr S.D. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell 2007, 18:4232-4244.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 4232-4244
-
-
Efe, J.A.1
Botelho, R.J.2
Emr, S.D.3
-
61
-
-
78649735149
-
Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris
-
Tamura N., Oku M., Sakai Y. Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. J. Cell Sci. 2010, 123:4107-4116.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 4107-4116
-
-
Tamura, N.1
Oku, M.2
Sakai, Y.3
-
62
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura Y., Kirisako T., Takao T., Satomi Y., Shimonishi Y., Ishihara N., Mizushima N., Tanida I., Kominami E., Ohsumi M., Noda T., Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature 2000, 408:488-492.
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
Mizushima, N.7
Tanida, I.8
Kominami, E.9
Ohsumi, M.10
Noda, T.11
Ohsumi, Y.12
-
63
-
-
39449102806
-
Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis
-
Kutschera U. Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal. Behav. 2007, 2:74-78.
-
(2007)
Plant Signal. Behav.
, vol.2
, pp. 74-78
-
-
Kutschera, U.1
-
64
-
-
80053143813
-
Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves
-
Kawaguchi K., Yurimoto H., Oku M., Sakai Y. Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves. PLoS One 2011, 6.
-
(2011)
PLoS One
, vol.6
-
-
Kawaguchi, K.1
Yurimoto, H.2
Oku, M.3
Sakai, Y.4
-
65
-
-
0038263977
-
Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain
-
Oku M., Warnecke D., Noda T., Muller F., Heinz E., Mukaiyama H., Kato N., Sakai Y. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J. 2003, 22:3231-3241.
-
(2003)
EMBO J.
, vol.22
, pp. 3231-3241
-
-
Oku, M.1
Warnecke, D.2
Noda, T.3
Muller, F.4
Heinz, E.5
Mukaiyama, H.6
Kato, N.7
Sakai, Y.8
-
66
-
-
84928401808
-
Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy
-
Shiraishi K., Oku M., Kawaguchi K., Uchida D., Yurimoto H., Sakai Y. Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy. Sci. Rep. 2015, 5:9719.
-
(2015)
Sci. Rep.
, vol.5
, pp. 9719
-
-
Shiraishi, K.1
Oku, M.2
Kawaguchi, K.3
Uchida, D.4
Yurimoto, H.5
Sakai, Y.6
-
67
-
-
77649201449
-
Autophagy supports Candida glabrata survival during phagocytosis
-
Roetzer A., Gratz N., Kovarik P., Schuller C. Autophagy supports Candida glabrata survival during phagocytosis. Cell. Microbiol. 2010, 12:199-216.
-
(2010)
Cell. Microbiol.
, vol.12
, pp. 199-216
-
-
Roetzer, A.1
Gratz, N.2
Kovarik, P.3
Schuller, C.4
-
68
-
-
66149184398
-
Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare
-
Asakura M., Ninomiya S., Sugimoto M., Oku M., Yamashita S., Okuno T., Sakai Y., Takano Y. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 2009, 21:1291-1304.
-
(2009)
Plant Cell
, vol.21
, pp. 1291-1304
-
-
Asakura, M.1
Ninomiya, S.2
Sugimoto, M.3
Oku, M.4
Yamashita, S.5
Okuno, T.6
Sakai, Y.7
Takano, Y.8
-
69
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G., Elorza A., Molina A.J., Mohamed H., Wikstrom J.D., Walzer G., Stiles L., Haigh S.E., Katz S., Las G., Alroy J., Wu M., Py B.F., Yuan J., Deeney J.T., Corkey B.E., Shirihai O.S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008, 27:433-446.
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
Elorza, A.2
Molina, A.J.3
Mohamed, H.4
Wikstrom, J.D.5
Walzer, G.6
Stiles, L.7
Haigh, S.E.8
Katz, S.9
Las, G.10
Alroy, J.11
Wu, M.12
Py, B.F.13
Yuan, J.14
Deeney, J.T.15
Corkey, B.E.16
Shirihai, O.S.17
|