-
1
-
-
66149184398
-
Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare
-
Asakura, M., S. Ninomiya, M. Sugimoto, M. Oku, S. Yamashita, T. Okuno, Y. Sakai, and Y. Takano. 2009. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell. 21:1291-1304. http://dx.doi.org/10.1105/tpc.108.060996
-
(2009)
Plant Cell.
, vol.21
, pp. 1291-1304
-
-
Asakura, M.1
Ninomiya, S.2
Sugimoto, M.3
Oku, M.4
Yamashita, S.5
Okuno, T.6
Sakai, Y.7
Takano, Y.8
-
2
-
-
84864960430
-
Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy
-
Baskaran, S., M.J. Ragusa, E. Boura, and J.H. Hurley. 2012. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol. Cell. 47:339-348. http://dx.doi.org/10.1016/j.molcel.2012.05.027
-
(2012)
Mol. Cell.
, vol.47
, pp. 339-348
-
-
Baskaran, S.1
Ragusa, M.J.2
Boura, E.3
Hurley, J.H.4
-
3
-
-
65249126973
-
Vps41 phosphorylation and the Rab Ypt7 control the targeting of the HOPS complex to endosome-vacuole fusion sites
-
Cabrera, M., C.W. Ostrowicz, M. Mari, T.J. LaGrassa, F. Reggiori, and C. Ungermann. 2009. Vps41 phosphorylation and the Rab Ypt7 control the targeting of the HOPS complex to endosome-vacuole fusion sites. Mol. Biol. Cell. 20:1937-1948. http://dx.doi.org/10.1091/mbc.E08-09-0943
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 1937-1948
-
-
Cabrera, M.1
Ostrowicz, C.W.2
Mari, M.3
LaGrassa, T.J.4
Reggiori, F.5
Ungermann, C.6
-
4
-
-
78149340673
-
Phosphorylation of a membrane curvature-sensing motif switches function of the HOPS subunit Vps41 in membrane tethering
-
Cabrera, M., L. Langemeyer, M. Mari, R. Rethmeier, I. Orban, A. Perz, C. Bröcker, J. Griffith, D. Klose, H.J. Steinhoff, et al. 2010. Phosphorylation of a membrane curvature-sensing motif switches function of the HOPS subunit Vps41 in membrane tethering. J. Cell Biol. 191:845-859. http://dx.doi.org/10.1083/jcb.201004092
-
(2010)
J. Cell Biol.
, vol.191
, pp. 845-859
-
-
Cabrera, M.1
Langemeyer, L.2
Mari, M.3
Rethmeier, R.4
Orban, I.5
Perz, A.6
Bröcker, C.7
Griffith, J.8
Klose, D.9
Steinhoff, H.J.10
-
5
-
-
33749836234
-
Phosphoinositides in cell regulation and membrane dynamics
-
Di Paolo, G., and P. De Camilli. 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature. 443:651-657. http://dx.doi.org/10.1038/nature05185
-
(2006)
Nature.
, vol.443
, pp. 651-657
-
-
Di Paolo, G.1
De Camilli, P.2
-
6
-
-
0030669546
-
Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis
-
Dove, S.K., F.T. Cooke, M.R. Douglas, L.G. Sayers, P.J. Parker, and R.H. Michell. 1997. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature. 390:187-192. http://dx.doi.org/10.1038/36613
-
(1997)
Nature.
, vol.390
, pp. 187-192
-
-
Dove, S.K.1
Cooke, F.T.2
Douglas, M.R.3
Sayers, L.G.4
Parker, P.J.5
Michell, R.H.6
-
7
-
-
3142583199
-
Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors
-
Dove, S.K., R.C. Piper, R.K. McEwen, J.W. Yu, M.C. King, D.C. Hughes, J. Thuring, A.B. Holmes, F.T. Cooke, R.H. Michell, et al. 2004. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 23:1922-1933. http://dx.doi.org/10.1038/sj.emboj.7600203
-
(2004)
EMBO J.
, vol.23
, pp. 1922-1933
-
-
Dove, S.K.1
Piper, R.C.2
McEwen, R.K.3
Yu, J.W.4
King, M.C.5
Hughes, D.C.6
Thuring, J.7
Holmes, A.B.8
Cooke, F.T.9
Michell, R.H.10
-
8
-
-
62749090535
-
Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function
-
Dove, S.K., K. Dong, T. Kobayashi, F.K. Williams, and R.H. Michell. 2009. Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem. J. 419:1-13. http://dx.doi.org/10.1042/BJ20081950
-
(2009)
Biochem. J.
, vol.419
, pp. 1-13
-
-
Dove, S.K.1
Dong, K.2
Kobayashi, T.3
Williams, F.K.4
Michell, R.H.5
-
9
-
-
35848929068
-
Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate
-
Efe, J.A., R.J. Botelho, and S.D. Emr. 2007. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell. 18:4232-4244. http://dx.doi.org/10.1091/mbc.E07-04-0301
-
(2007)
Mol. Biol. Cell.
, vol.18
, pp. 4232-4244
-
-
Efe, J.A.1
Botelho, R.J.2
Emr, S.D.3
-
10
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farré, J.-C., R. Manjithaya, R.D. Mathewson, and S. Subramani. 2008. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 14:365- 376. http://dx.doi.org/10.1016/j.devcel.2007.12.011
-
(2008)
Dev. Cell.
, vol.14
-
-
Farré, J.-C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
11
-
-
0035661648
-
Cvt18/Gsa12 is required for cytoplasm- to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris
-
Guan, J., P.E. Stromhaug, M.D. George, P. Habibzadegah-Tari, A. Bevan, W.A. Dunn Jr., and D.J. Klionsky. 2001. Cvt18/Gsa12 is required for cytoplasm- to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Mol. Biol. Cell. 12:3821-3838. http://dx.doi.org/10.1091/mbc.12.12.3821
-
(2001)
Mol. Biol. Cell.
, vol.12
, pp. 3821-3838
-
-
Guan, J.1
Stromhaug, P.E.2
George, M.D.3
Habibzadegah-Tari, P.4
Bevan, A.5
Dunn Jr., W.A.6
Klionsky, D.J.7
-
12
-
-
80053143813
-
Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves
-
Kawaguchi, K., H. Yurimoto, M. Oku, and Y. Sakai. 2011. Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves. PLoS ONE. 6:e25257. http://dx.doi.org/10.1371/journal.pone.0025257
-
(2011)
PLoS ONE.
, vol.6
-
-
Kawaguchi, K.1
Yurimoto, H.2
Oku, M.3
Sakai, Y.4
-
13
-
-
84864282281
-
Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2
-
Kobayashi, T., K. Suzuki, and Y. Ohsumi. 2012. Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett. 586:2473-2478. http://dx.doi.org/10.1016/j.febslet.2012.06.008
-
(2012)
FEBS Lett.
, vol.586
, pp. 2473-2478
-
-
Kobayashi, T.1
Suzuki, K.2
Ohsumi, Y.3
-
14
-
-
33746867157
-
The relevance of the phosphatidylinositolphosphat-binding motif FRRGT of Atg18 and Atg21 for the Cvt pathway and autophagy
-
Krick, R., J. Tolstrup, A. Appelles, S. Henke, and M. Thumm. 2006. The relevance of the phosphatidylinositolphosphat-binding motif FRRGT of Atg18 and Atg21 for the Cvt pathway and autophagy. FEBS Lett. 580:4632-4638. http://dx.doi.org/10.1016/j.febslet.2006.07.041
-
(2006)
FEBS Lett.
, vol.580
, pp. 4632-4638
-
-
Krick, R.1
Tolstrup, J.2
Appelles, A.3
Henke, S.4
Thumm, M.5
-
15
-
-
84864337089
-
Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family
-
Krick, R., R.A. Busse, A. Scacioc, M. Stephan, A. Janshoff, M. Thumm, and K. Kühnel. 2012. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc. Natl. Acad. Sci. USA. 109:E2042-E2049. http://dx.doi.org/10.1073/pnas.1205128109
-
(2012)
Proc. Natl. Acad. Sci. USA.
, vol.109
-
-
Krick, R.1
Busse, R.A.2
Scacioc, A.3
Stephan, M.4
Janshoff, A.5
Thumm, M.6
Kühnel, K.7
-
16
-
-
13444251066
-
The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex
-
LaGrassa, T.J., and C. Ungermann. 2005. The vacuolar kinase Yck3 maintains organelle fragmentation by regulating the HOPS tethering complex. J. Cell Biol. 168:401-414. http://dx.doi.org/10.1083/jcb.200407141
-
(2005)
J. Cell Biol.
, vol.168
, pp. 401-414
-
-
LaGrassa, T.J.1
Ungermann, C.2
-
17
-
-
38549092474
-
Membrane recognition by phospholipid-binding domains
-
Lemmon, M.A. 2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:99-111. http://dx.doi.org/10.1038/nrm2328
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 99-111
-
-
Lemmon, M.A.1
-
18
-
-
62949218373
-
The yeast lysosome-like vacuole: endpoint and crossroads
-
Li, S.C., and P.M. Kane. 2009. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta. 1793:650-663. http://dx.doi.org/10 .1016/j.bbamcr.2008.08.003
-
(2009)
Biochim. Biophys. Acta.
, vol.1793
, pp. 650-663
-
-
Li, S.C.1
Kane, P.M.2
-
19
-
-
77950470469
-
Molecular mechanism and physiological role of pexophagy
-
Manjithaya, R., T.Y. Nazarko, J.C. Farré, and S. Subramani. 2010. Molecular mechanism and physiological role of pexophagy. FEBS Lett. 584:1367- 1373. http://dx.doi.org/10.1016/j.febslet.2010.01.019
-
(2010)
FEBS Lett.
, vol.584
-
-
Manjithaya, R.1
Nazarko, T.Y.2
Farré, J.C.3
Subramani, S.4
-
20
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107-132. http://dx.doi.org/10.1146/annurev-cellbio-092910-154005
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
21
-
-
53049102656
-
The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function
-
Obara, K., T. Sekito, K. Niimi, and Y. Ohsumi. 2008. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283:23972-23980. http://dx.doi.org/10.1074/jbc.M803180200
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23972-23980
-
-
Obara, K.1
Sekito, T.2
Niimi, K.3
Ohsumi, Y.4
-
22
-
-
77955259144
-
Peroxisomes as dynamic organelles: autophagic degradation
-
Oku, M., and Y. Sakai. 2010. Peroxisomes as dynamic organelles: autophagic degradation. FEBS J. 277:3289-3294. http://dx.doi.org/10.1111/j.1742-4658.2010.07741.x
-
(2010)
FEBS J.
, vol.277
, pp. 3289-3294
-
-
Oku, M.1
Sakai, Y.2
-
23
-
-
0142091454
-
Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism
-
Powell, D.J., E. Hajduch, G. Kular, and H.S. Hundal. 2003. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell. Biol. 23:7794-7808. http://dx.doi.org/10.1128/MCB.23.21.7794-7808.2003
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7794-7808
-
-
Powell, D.J.1
Hajduch, E.2
Kular, G.3
Hundal, H.S.4
-
24
-
-
84876087626
-
Atg18 function in autophagy is regulated by specific sites within its β-propeller
-
Rieter, E., F. Vinke, D. Bakula, E. Cebollero, C. Ungermann, T. Proikas-Cezanne, and F. Reggiori. 2013. Atg18 function in autophagy is regulated by specific sites within its β-propeller. J. Cell Sci. 126:593-604. http://dx.doi.org/10.1242/jcs.115725
-
(2013)
J. Cell Sci.
, vol.126
, pp. 593-604
-
-
Rieter, E.1
Vinke, F.2
Bakula, D.3
Cebollero, E.4
Ungermann, C.5
Proikas-Cezanne, T.6
Reggiori, F.7
-
25
-
-
33846514235
-
Hierarchy of Atg proteins in pre-autophagosomal structure organization
-
Suzuki, K., Y. Kubota, T. Sekito, and Y. Ohsumi. 2007. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 12:209- 218. http://dx.doi.org/10.1111/j.1365-2443.2007.01050.x
-
(2007)
Genes Cells.
, vol.12
-
-
Suzuki, K.1
Kubota, Y.2
Sekito, T.3
Ohsumi, Y.4
-
26
-
-
78649735149
-
Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris
-
Tamura, N., M. Oku, and Y. Sakai. 2010. Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. J. Cell Sci. 123:4107-4116. http://dx.doi.org/10.1242/jcs.070045
-
(2010)
J. Cell Sci.
, vol.123
, pp. 4107-4116
-
-
Tamura, N.1
Oku, M.2
Sakai, Y.3
-
27
-
-
84866419794
-
Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18
-
Watanabe, Y., T. Kobayashi, H. Yamamoto, H. Hoshida, R. Akada, F. Inagaki, Y. Ohsumi, and N.N. Noda. 2012. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem. 287:31681-31690. http://dx.doi.org/10.1074/jbc.M112.397570
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 31681-31690
-
-
Watanabe, Y.1
Kobayashi, T.2
Yamamoto, H.3
Hoshida, H.4
Akada, R.5
Inagaki, F.6
Ohsumi, Y.7
Noda, N.N.8
-
28
-
-
33645754484
-
Organelles on the move: insights from yeast vacuole inheritance
-
Weisman, L.S. 2006. Organelles on the move: insights from yeast vacuole inheritance. Nat. Rev. Mol. Cell Biol. 7:243-252. http://dx.doi.org/10.1038/nrm1892
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 243-252
-
-
Weisman, L.S.1
-
29
-
-
67649458197
-
Lag-phase autophagy in the methylotrophic yeast Pichia pastoris
-
Yamashita, S., H. Yurimoto, D. Murakami, M. Yoshikawa, M. Oku, and Y. Sakai. 2009. Lag-phase autophagy in the methylotrophic yeast Pichia pastoris. Genes Cells. 14:861-870. http://dx.doi.org/10.1111/j.1365-2443.2009.01316x.
-
(2009)
Genes Cells.
, vol.14
, pp. 861-870
-
-
Yamashita, S.1
Yurimoto, H.2
Murakami, D.3
Yoshikawa, M.4
Oku, M.5
Sakai, Y.6
|