-
1
-
-
67349189383
-
The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain
-
Anfinsen CB, Haber E, Sela M, White FH, Jr. 1961. The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A 47:1309-1314. http://dx.doi.org/10.1073/pnas.47.9.1309.
-
(1961)
Proc Natl Acad Sci U S A
, vol.47
, pp. 1309-1314
-
-
Anfinsen, C.B.1
Haber, E.2
Sela, M.3
White, F.H.4
-
2
-
-
73649177752
-
Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver
-
Goldberger RF, Epstein CJ, Anfinsen CB. 1963. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem 238:628-635.
-
(1963)
J Biol Chem
, vol.238
, pp. 628-635
-
-
Goldberger, R.F.1
Epstein, C.J.2
Anfinsen, C.B.3
-
3
-
-
0003226410
-
Oxidation and disulfide interchange in the reactivation of reduced ribonuclease
-
Givol D, Goldberger RF, Anfinsen CB. 1964. Oxidation and disulfide interchange in the reactivation of reduced ribonuclease. J Biol Chem 239: PC3114-PC3116.
-
(1964)
J Biol Chem
, vol.239
, pp. PC3114-PC3116
-
-
Givol, D.1
Goldberger, R.F.2
Anfinsen, C.B.3
-
4
-
-
30344444015
-
The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites
-
Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H. 2006. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61-73. http://dx.doi.org/10.1016/j.cell.2005.10.044.
-
(2006)
Cell
, vol.124
, pp. 61-73
-
-
Tian, G.1
Xiang, S.2
Noiva, R.3
Lennarz, W.J.4
Schindelin, H.5
-
5
-
-
0028983824
-
Mechanisms and catalysts of disulfide bond formation in proteins
-
Creighton TE, Zapun A, Darby NJ. 1995. Mechanisms and catalysts of disulfide bond formation in proteins. Trends Biotechnol 13:18-23. http://dx.doi.org/10.1016/S0167-7799(00)88896-4.
-
(1995)
Trends Biotechnol
, vol.13
, pp. 18-23
-
-
Creighton, T.E.1
Zapun, A.2
Darby, N.J.3
-
6
-
-
55849147995
-
Disulfide-linked protein folding pathways
-
Mamathambika BS, Bardwell JC. 2008. Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24:211-235. http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175333.
-
(2008)
Annu Rev Cell Dev Biol
, vol.24
, pp. 211-235
-
-
Mamathambika, B.S.1
Bardwell, J.C.2
-
7
-
-
84878877273
-
Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead
-
Denoncin K, Collet JF. 2013. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid Redox Signal 19:63-71. http://dx.doi.org/10.1089/ars.2012.4864.
-
(2013)
Antioxid Redox Signal
, vol.19
, pp. 63-71
-
-
Denoncin, K.1
Collet, J.F.2
-
8
-
-
70149110001
-
Detecting folding intermediates of a protein as it passes through the bacterial translocation channel
-
Kadokura H, Beckwith J. 2009. Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 138: 1164-1173. http://dx.doi.org/10.1016/j.cell.2009.07.030.
-
(2009)
Cell
, vol.138
, pp. 1164-1173
-
-
Kadokura, H.1
Beckwith, J.2
-
9
-
-
26644437700
-
Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC
-
Hiniker A, Collet JF, Bardwell JC. 2005. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280:33785-33791. http://dx.doi.org/10.1074/jbc.M505742200.
-
(2005)
J Biol Chem
, vol.280
, pp. 33785-33791
-
-
Hiniker, A.1
Collet, J.F.2
Bardwell, J.C.3
-
10
-
-
0034607656
-
DsbG, a protein disulfide isomerase with chaperone activity
-
Shao F, Bader MW, Jakob U, Bardwell JC. 2000. DsbG, a protein disulfide isomerase with chaperone activity. J Biol Chem 275:13349-13352. http://dx.doi.org/10.1074/jbc.275.18.13349.
-
(2000)
J Biol Chem
, vol.275
, pp. 13349-13352
-
-
Shao, F.1
Bader, M.W.2
Jakob, U.3
Bardwell, J.C.4
-
11
-
-
1842477219
-
In vivo substrate specificity of periplasmic disulfide oxidoreductases
-
Hiniker A, Bardwell JC. 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279:12967-12973. http://dx.doi.org/10.1074/jbc.M311391200.
-
(2004)
J Biol Chem
, vol.279
, pp. 12967-12973
-
-
Hiniker, A.1
Bardwell, J.C.2
-
12
-
-
31344459535
-
Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus
-
Matias VR, Beveridge TJ. 2006. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J Bacteriol 188:1011-1021. http://dx.doi.org/10.1128/JB.188.3.1011-1021.2006.
-
(2006)
J Bacteriol
, vol.188
, pp. 1011-1021
-
-
Matias, V.R.1
Beveridge, T.J.2
-
13
-
-
16244387909
-
Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space
-
Matias VR, Beveridge TJ. 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56:240-251. http://dx.doi.org/10.1111/j.1365-2958.2005.04535.x.
-
(2005)
Mol Microbiol
, vol.56
, pp. 240-251
-
-
Matias, V.R.1
Beveridge, T.J.2
-
14
-
-
77449145515
-
Disulfide bond formation and cysteine exclusion in Gram-positive bacteria
-
Daniels R, Mellroth P, Bernsel A, Neiers F, Normark S, von Heijne G, Henriques-Normark B. 2010. Disulfide bond formation and cysteine exclusion in Gram-positive bacteria. J Biol Chem 285:3300-3309. http://dx.doi.org/10.1074/jbc.M109.081398.
-
(2010)
J Biol Chem
, vol.285
, pp. 3300-3309
-
-
Daniels, R.1
Mellroth, P.2
Bernsel, A.3
Neiers, F.4
Normark, S.5
von Heijne, G.6
Henriques-Normark, B.7
-
15
-
-
50149109183
-
Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation
-
Dutton RJ, Boyd D, Berkmen M, Beckwith J. 2008. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc Natl Acad SciUSA105:11933-11938. http://dx.doi.org/10.1073/pnas.0804621105.
-
(2008)
Proc Natl Acad SciUSA
, vol.105
, pp. 11933-11938
-
-
Dutton, R.J.1
Boyd, D.2
Berkmen, M.3
Beckwith, J.4
-
16
-
-
0028942303
-
Cloning and characterization of the gene for a protein thioldisulfide oxidoreductase in Bacillus brevis
-
Ishihara T, Tomita H, Hasegawa Y, Tsukagoshi N, Yamagata H, Udaka S. 1995. Cloning and characterization of the gene for a protein thioldisulfide oxidoreductase in Bacillus brevis. J Bacteriol 177:745-749.
-
(1995)
J Bacteriol
, vol.177
, pp. 745-749
-
-
Ishihara, T.1
Tomita, H.2
Hasegawa, Y.3
Tsukagoshi, N.4
Yamagata, H.5
Udaka, S.6
-
17
-
-
0037053393
-
Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168
-
Dorenbos R, Stein T, Kabel J, Bruand C, Bolhuis A, Bron S, Quax WJ, Van Dijl JM. 2002. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J Biol Chem 277:16682-16688. http://dx.doi.org/10.1074/jbc.M201158200.
-
(2002)
J Biol Chem
, vol.277
, pp. 16682-16688
-
-
Dorenbos, R.1
Stein, T.2
Kabel, J.3
Bruand, C.4
Bolhuis, A.5
Bron, S.6
Quax, W.J.7
Van Dijl, J.M.8
-
18
-
-
0036510360
-
The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development
-
Meima R, Eschevins C, Fillinger S, Bolhuis A, Hamoen LW, Dorenbos R, Quax WJ, van Dijl JM, Provvedi R, Chen I, Dubnau D, Bron S. 2002. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J Biol Chem 277:6994-7001. http://dx.doi.org/10.1074/jbc.M111380200.
-
(2002)
J Biol Chem
, vol.277
, pp. 6994-7001
-
-
Meima, R.1
Eschevins, C.2
Fillinger, S.3
Bolhuis, A.4
Hamoen, L.W.5
Dorenbos, R.6
Quax, W.J.7
van Dijl, J.M.8
Provvedi, R.9
Chen, I.10
Dubnau, D.11
Bron, S.12
-
19
-
-
84885496417
-
Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis
-
Chim N, Harmston CA, Guzman DJ, Goulding CW. 2013. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. BMC Struct Biol 13:23. http://dx.doi.org/10.1186/1472-6807-13-23.
-
(2013)
BMC Struct Biol
, vol.13
, pp. 23
-
-
Chim, N.1
Harmston, C.A.2
Guzman, D.J.3
Goulding, C.W.4
-
20
-
-
0942287201
-
Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis
-
Goulding CW, Apostol MI, Gleiter S, Parseghian A, Bardwell J, Gennaro M, Eisenberg D. 2004. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem 279:3516-3524.
-
(2004)
J Biol Chem
, vol.279
, pp. 3516-3524
-
-
Goulding, C.W.1
Apostol, M.I.2
Gleiter, S.3
Parseghian, A.4
Bardwell, J.5
Gennaro, M.6
Eisenberg, D.7
-
21
-
-
77649272164
-
An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis
-
Chim N, Riley R, The J, Im S, Segelke B, Lekin T, Yu M, Hung LW, Terwilliger T, Whitelegge JP, Goulding CW. 2010. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis. J Mol Biol 396: 1211-1226. http://dx.doi.org/10.1016/j.jmb.2009.12.060.
-
(2010)
J Mol Biol
, vol.396
, pp. 1211-1226
-
-
Chim, N.1
Riley, R.2
The, J.3
Im, S.4
Segelke, B.5
Lekin, T.6
Yu, M.7
Hung, L.W.8
Terwilliger, T.9
Whitelegge, J.P.10
Goulding, C.W.11
-
22
-
-
75749153714
-
Structure of a bacterial homologue of vitamin K epoxide reductase
-
Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA. 2010. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463:507-512. http://dx.doi.org/10.1038/nature08720.
-
(2010)
Nature
, vol.463
, pp. 507-512
-
-
Li, W.1
Schulman, S.2
Dutton, R.J.3
Boyd, D.4
Beckwith, J.5
Rapoport, T.A.6
-
23
-
-
84940421682
-
A disulfide bond-forming machine is linked to the sortase-mediated pilus assembly pathway in the Gram-positive bacterium Actinomyces oris
-
Reardon-Robinson ME, Osipiuk J, Chang C, Wu C, Jooya N, Joachimiak A, Das A, Ton-That H. 2015. A disulfide bond-forming machine is linked to the sortase-mediated pilus assembly pathway in the Gram-positive bacterium Actinomyces oris. J Biol Chem 290:21393-21405. http://dx.doi.org/10.1074/jbc.M115.672253.
-
(2015)
J Biol Chem
, vol.290
, pp. 21393-21405
-
-
Reardon-Robinson, M.E.1
Osipiuk, J.2
Chang, C.3
Wu, C.4
Jooya, N.5
Joachimiak, A.6
Das, A.7
Ton-That, H.8
-
24
-
-
84983097787
-
A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence
-
21 August
-
Reardon-Robinson ME, Osipiuk J, Jooya N, Chang C, Joachimiak A, Das A, Ton-That H. 21 August 2015. A thiol-disulfide oxidoreductase of the Gram-positive pathogen Corynebacterium diphtheriae is essential for viability, pilus assembly, toxin production and virulence. Mol Microbiol http://dx.doi.org/10.1111/mmi.13172.
-
(2015)
Mol Microbiol
-
-
Reardon-Robinson, M.E.1
Osipiuk, J.2
Jooya, N.3
Chang, C.4
Joachimiak, A.5
Das, A.6
Ton-That, H.7
-
25
-
-
84902315337
-
Folding mechanisms of periplasmic proteins
-
Goemans C, Denoncin K, Collet JF. 2014. Folding mechanisms of periplasmic proteins. Biochim Biophys Acta 1843:1517-1528. http://dx.doi.org/10.1016/j.bbamcr.2013.10.014.
-
(2014)
Biochim Biophys Acta
, vol.1843
, pp. 1517-1528
-
-
Goemans, C.1
Denoncin, K.2
Collet, J.F.3
-
26
-
-
77956318615
-
Mechanisms of oxidative protein folding in the bacterial cell envelope
-
Kadokura H, Beckwith J. 2010. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 13:1231-1246. http://dx.doi.org/10.1089/ars.2010.3187.
-
(2010)
Antioxid Redox Signal
, vol.13
, pp. 1231-1246
-
-
Kadokura, H.1
Beckwith, J.2
-
27
-
-
0026091179
-
Identification of a protein required for disulfide bond formation in vivo
-
Bardwell JC, McGovern K, Beckwith J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67:581-589. http://dx.doi.org/10.1016/0092-8674(91)90532-4.
-
(1991)
Cell
, vol.67
, pp. 581-589
-
-
Bardwell, J.C.1
McGovern, K.2
Beckwith, J.3
-
28
-
-
0023883641
-
Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli
-
Froshauer S, Green GN, Boyd D, McGovern K, Beckwith J. 1988. Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J Mol Biol 200:501-511. http://dx.doi.org/10.1016/0022-2836(88)90539-6.
-
(1988)
J Mol Biol
, vol.200
, pp. 501-511
-
-
Froshauer, S.1
Green, G.N.2
Boyd, D.3
McGovern, K.4
Beckwith, J.5
-
29
-
-
0027373949
-
Crystal structure of the DsbA protein required for disulphide bond formation in vivo
-
Martin JL, Bardwell JC, Kuriyan J. 1993. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365:464-468. http://dx.doi.org/10.1038/365464a0.
-
(1993)
Nature
, vol.365
, pp. 464-468
-
-
Martin, J.L.1
Bardwell, J.C.2
Kuriyan, J.3
-
30
-
-
1642556877
-
Snapshots of DsbA in action: detection of proteins in the process of oxidative folding
-
Kadokura H, Tian H, Zander T, Bardwell JC, Beckwith J. 2004. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303:534-537. http://dx.doi.org/10.1126/science.1091724.
-
(2004)
Science
, vol.303
, pp. 534-537
-
-
Kadokura, H.1
Tian, H.2
Zander, T.3
Bardwell, J.C.4
Beckwith, J.5
-
31
-
-
0028953741
-
Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase
-
Darby NJ, Creighton TE. 1995. Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry 34: 3576-3587. http://dx.doi.org/10.1021/bi00011a012.
-
(1995)
Biochemistry
, vol.34
, pp. 3576-3587
-
-
Darby, N.J.1
Creighton, T.E.2
-
32
-
-
84869069153
-
Protein folding drives disulfide formation
-
Kosuri P, Alegre-Cebollada J, Feng J, Kaplan A, Ingles-Prieto A, Badilla CL, Stockwell BR, Sanchez-Ruiz JM, Holmgren A, Fernandez JM. 2012. Protein folding drives disulfide formation. Cell 151:794-806. http://dx.doi.org/10.1016/j.cell.2012.09.036.
-
(2012)
Cell
, vol.151
, pp. 794-806
-
-
Kosuri, P.1
Alegre-Cebollada, J.2
Feng, J.3
Kaplan, A.4
Ingles-Prieto, A.5
Badilla, C.L.6
Stockwell, B.R.7
Sanchez-Ruiz, J.M.8
Holmgren, A.9
Fernandez, J.M.10
-
33
-
-
0027254133
-
The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo
-
Zapun A, Bardwell JC, Creighton TE. 1993. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32:5083-5092. http://dx.doi.org/10.1021/bi00070a016.
-
(1993)
Biochemistry
, vol.32
, pp. 5083-5092
-
-
Zapun, A.1
Bardwell, J.C.2
Creighton, T.E.3
-
34
-
-
0030880594
-
Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability
-
Guddat LW, Bardwell JC, Glockshuber R, Huber-Wunderlich M, Zander T, Martin JL. 1997. Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability. Protein Sci 6:1893-1900. http://dx.doi.org/10.1002/pro.5560060910.
-
(1997)
Protein Sci
, vol.6
, pp. 1893-1900
-
-
Guddat, L.W.1
Bardwell, J.C.2
Glockshuber, R.3
Huber-Wunderlich, M.4
Zander, T.5
Martin, J.L.6
-
35
-
-
0028360184
-
Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo
-
Nelson JW, Creighton TE. 1994. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33:5974-5983. http://dx.doi.org/10.1021/bi00185a039.
-
(1994)
Biochemistry
, vol.33
, pp. 5974-5983
-
-
Nelson, J.W.1
Creighton, T.E.2
-
36
-
-
0029559184
-
Why is DsbA such an oxidizing disulfide catalyst?
-
Grauschopf U, Winther JR, Korber P, Zander T, Dallinger P, Bardwell JC. 1995. Why is DsbA such an oxidizing disulfide catalyst? Cell 83:947-955. http://dx.doi.org/10.1016/0092-8674(95)90210-4.
-
(1995)
Cell
, vol.83
, pp. 947-955
-
-
Grauschopf, U.1
Winther, J.R.2
Korber, P.3
Zander, T.4
Dallinger, P.5
Bardwell, J.C.6
-
37
-
-
0026748718
-
Conserved residues flanking the thiol/disulfide centers of protein disulfide isomerase are not essential for catalysis of thiol/disulfide exchange
-
Lu X, Gilbert HF, Harper JW. 1992. Conserved residues flanking the thiol/disulfide centers of protein disulfide isomerase are not essential for catalysis of thiol/disulfide exchange. Biochemistry 31:4205-4210. http://dx.doi.org/10.1021/bi00132a008.
-
(1992)
Biochemistry
, vol.31
, pp. 4205-4210
-
-
Lu, X.1
Gilbert, H.F.2
Harper, J.W.3
-
38
-
-
0033982936
-
KEGG: Kyoto Encyclopedia of Genes and Genomes
-
Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27-30. http://dx.doi.org/10.1093/nar/28.1.27.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
39
-
-
0027358654
-
The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form
-
Wunderlich M, Jaenicke R, Glockshuber R. 1993. The redox properties of protein disulfide isomerase (DsbA) of Escherichia coli result from a tense conformation of its oxidized form. J Mol Biol 233:559-566. http://dx.doi.org/10.1006/jmbi.1993.1535.
-
(1993)
J Mol Biol
, vol.233
, pp. 559-566
-
-
Wunderlich, M.1
Jaenicke, R.2
Glockshuber, R.3
-
40
-
-
0027291239
-
Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo
-
Missiakas D, Georgopoulos C, Raina S. 1993. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci U S A 90: 7084-7088. http://dx.doi.org/10.1073/pnas.90.15.7084.
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, pp. 7084-7088
-
-
Missiakas, D.1
Georgopoulos, C.2
Raina, S.3
-
41
-
-
0027475212
-
A pathway for disulfide bond formation in vivo
-
Bardwell JC, Lee JO, Jander G, Martin N, Belin D, Beckwith J. 1993. A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A 90:1038-1042. http://dx.doi.org/10.1073/pnas.90.3.1038.
-
(1993)
Proc Natl Acad Sci U S A
, vol.90
, pp. 1038-1042
-
-
Bardwell, J.C.1
Lee, J.O.2
Jander, G.3
Martin, N.4
Belin, D.5
Beckwith, J.6
-
42
-
-
0030671552
-
Respiratory chain is required to maintain oxidized states of the DsbADsbB disulfide bond formation system in aerobically growing Escherichia coli cells
-
Kobayashi T, Kishigami S, Sone M, Inokuchi H, Mogi T, Ito K. 1997. Respiratory chain is required to maintain oxidized states of the DsbADsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc Natl Acad Sci U S A 94:11857-11862. http://dx.doi.org/10.1073/pnas.94.22.11857.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 11857-11862
-
-
Kobayashi, T.1
Kishigami, S.2
Sone, M.3
Inokuchi, H.4
Mogi, T.5
Ito, K.6
-
43
-
-
0037013828
-
Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade
-
Inaba K, Ito K. 2002. Paradoxical redox properties of DsbB and DsbA in the protein disulfide-introducing reaction cascade. EMBO J 21:2646-2654. http://dx.doi.org/10.1093/emboj/21.11.2646.
-
(2002)
EMBO J
, vol.21
, pp. 2646-2654
-
-
Inaba, K.1
Ito, K.2
-
44
-
-
33750813327
-
Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation
-
Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, Okada K, Ito K. 2006. Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell 127:789-801. http://dx.doi.org/10.1016/j.cell.2006.10.034.
-
(2006)
Cell
, vol.127
, pp. 789-801
-
-
Inaba, K.1
Murakami, S.2
Suzuki, M.3
Nakagawa, A.4
Yamashita, E.5
Okada, K.6
Ito, K.7
-
45
-
-
0028222390
-
Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and alpha-lactalbumin
-
Zapun A, Creighton TE. 1994. Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and alpha-lactalbumin. Biochemistry 33:5202-5211. http://dx.doi.org/10.1021/bi00183a025.
-
(1994)
Biochemistry
, vol.33
, pp. 5202-5211
-
-
Zapun, A.1
Creighton, T.E.2
-
46
-
-
0030668672
-
Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin
-
Rietsch A, Bessette P, Georgiou G, Beckwith J. 1997. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179:6602-6608.
-
(1997)
J Bacteriol
, vol.179
, pp. 6602-6608
-
-
Rietsch, A.1
Bessette, P.2
Georgiou, G.3
Beckwith, J.4
-
47
-
-
0033230589
-
Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli
-
Stewart EJ, Katzen F, Beckwith J. 1999. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 18:5963-5971. http://dx.doi.org/10.1093/emboj/18.21.5963.
-
(1999)
EMBO J
, vol.18
, pp. 5963-5971
-
-
Stewart, E.J.1
Katzen, F.2
Beckwith, J.3
-
48
-
-
0034703766
-
Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade
-
Katzen F, Beckwith J. 2000. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103: 769-779. http://dx.doi.org/10.1016/S0092-8674(00)00180-X.
-
(2000)
Cell
, vol.103
, pp. 769-779
-
-
Katzen, F.1
Beckwith, J.2
-
49
-
-
0035793545
-
DsbD-catalyzed transport of electrons across the membrane of Escherichia coli
-
Krupp R, Chan C, Missiakas D. 2001. DsbD-catalyzed transport of electrons across the membrane of Escherichia coli. J Biol Chem 276:3696-3701. http://dx.doi.org/10.1074/jbc.M009500200.
-
(2001)
J Biol Chem
, vol.276
, pp. 3696-3701
-
-
Krupp, R.1
Chan, C.2
Missiakas, D.3
-
50
-
-
0037018912
-
Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD
-
Goulding CW, Sawaya MR, Parseghian A, Lim V, Eisenberg D, Missiakas D. 2002. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD. Biochemistry 41:6920-6927. http://dx.doi.org/10.1021/bi016038l.
-
(2002)
Biochemistry
, vol.41
, pp. 6920-6927
-
-
Goulding, C.W.1
Sawaya, M.R.2
Parseghian, A.3
Lim, V.4
Eisenberg, D.5
Missiakas, D.6
-
51
-
-
0029822654
-
An in vivo pathway for disulfide bond isomerization in Escherichia coli
-
Rietsch A, Belin D, Martin N, Beckwith J. 1996. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci U S A 93:13048-13053. http://dx.doi.org/10.1073/pnas.93.23.13048.
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, pp. 13048-13053
-
-
Rietsch, A.1
Belin, D.2
Martin, N.3
Beckwith, J.4
-
52
-
-
0035794534
-
Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA
-
Bader MW, Hiniker A, Regeimbal J, Goldstone D, Haebel PW, Riemer J, Metcalf P, Bardwell JC. 2001. Turning a disulfide isomerase into an oxidase: DsbC mutants that imitate DsbA. EMBO J 20:1555-1562. http://dx.doi.org/10.1093/emboj/20.7.1555.
-
(2001)
EMBO J
, vol.20
, pp. 1555-1562
-
-
Bader, M.W.1
Hiniker, A.2
Regeimbal, J.3
Goldstone, D.4
Haebel, P.W.5
Riemer, J.6
Metcalf, P.7
Bardwell, J.C.8
-
53
-
-
40849141969
-
Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway
-
Pan JL, Sliskovic I, Bardwell JC. 2008. Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway. J Mol Biol 377:1433-1442. http://dx.doi.org/10.1016/j.jmb.2008.01.058.
-
(2008)
J Mol Biol
, vol.377
, pp. 1433-1442
-
-
Pan, J.L.1
Sliskovic, I.2
Bardwell, J.C.3
-
54
-
-
0033583239
-
In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG
-
Bessette PH, Cotto JJ, Gilbert HF, Georgiou G. 1999. In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J Biol Chem 274:7784-7792. http://dx.doi.org/10.1074/jbc.274.12.7784.
-
(1999)
J Biol Chem
, vol.274
, pp. 7784-7792
-
-
Bessette, P.H.1
Cotto, J.J.2
Gilbert, H.F.3
Georgiou, G.4
-
55
-
-
0035311005
-
The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly
-
Reid E, Cole J, Eaves DJ. 2001. The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem J 355:51-58. http://dx.doi.org/10.1042/0264-6021:3550051.
-
(2001)
Biochem J
, vol.355
, pp. 51-58
-
-
Reid, E.1
Cole, J.2
Eaves, D.J.3
-
56
-
-
84860534459
-
A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope
-
Cho SH, Parsonage D, Thurston C, Dutton RJ, Poole LB, Collet JF, Beckwith J. 2012. A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. mBio 3(2): e00291-11. http://dx.doi.org/10.1128/mBio.00291-11.
-
(2012)
mBio
, vol.3
, Issue.2
-
-
Cho, S.H.1
Parsonage, D.2
Thurston, C.3
Dutton, R.J.4
Poole, L.B.5
Collet, J.F.6
Beckwith, J.7
-
57
-
-
0031919407
-
The active-site cysteines of the periplasmic thioredoxin-like proteinCcmGof Escherichia coli are important but not essential for cytochrome c maturation in vivo
-
Fabianek RA, Hennecke H, Thöny-Meyer L. 1998. The active-site cysteines of the periplasmic thioredoxin-like proteinCcmGof Escherichia coli are important but not essential for cytochrome c maturation in vivo. J Bacteriol 180:1947-1950.
-
(1998)
J Bacteriol
, vol.180
, pp. 1947-1950
-
-
Fabianek, R.A.1
Hennecke, H.2
Thöny-Meyer, L.3
-
58
-
-
0035151833
-
Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli
-
Bessette PH, Qiu J, Bardwell JC, Swartz JR, Georgiou G. 2001. Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. J Bacteriol 183:980-988. http://dx.doi.org/10.1128/JB.183.3.980-988.2001.
-
(2001)
J Bacteriol
, vol.183
, pp. 980-988
-
-
Bessette, P.H.1
Qiu, J.2
Bardwell, J.C.3
Swartz, J.R.4
Georgiou, G.5
-
59
-
-
37349049610
-
The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner
-
Vertommen D, Depuydt M, Pan J, Leverrier P, Knoops L, Szikora JP, Messens J, Bardwell JC, Collet JF. 2008. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol Microbiol 67:336-349.
-
(2008)
Mol Microbiol
, vol.67
, pp. 336-349
-
-
Vertommen, D.1
Depuydt, M.2
Pan, J.3
Leverrier, P.4
Knoops, L.5
Szikora, J.P.6
Messens, J.7
Bardwell, J.C.8
Collet, J.F.9
-
60
-
-
0028979629
-
Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli
-
Missiakas D, Schwager F, Raina S. 1995. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J 14:3415-3424.
-
(1995)
EMBO J
, vol.14
, pp. 3415-3424
-
-
Missiakas, D.1
Schwager, F.2
Raina, S.3
-
61
-
-
60749109471
-
DSB proteins and bacterial pathogenicity
-
Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL. 2009. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 7:215-225. http://dx.doi.org/10.1038/nrmicro2087.
-
(2009)
Nat Rev Microbiol
, vol.7
, pp. 215-225
-
-
Heras, B.1
Shouldice, S.R.2
Totsika, M.3
Scanlon, M.J.4
Schembri, M.A.5
Martin, J.L.6
-
62
-
-
8844264456
-
Post-translocational folding of secretory proteins in Gram-positive bacteria
-
Sarvas M, Harwood CR, Bron S, van Dijl JM. 2004. Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochim Biophys Acta 1694:311-327.
-
(2004)
Biochim Biophys Acta
, vol.1694
, pp. 311-327
-
-
Sarvas, M.1
Harwood, C.R.2
Bron, S.3
van Dijl, J.M.4
-
63
-
-
0032167852
-
The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm
-
Debarbieux L, Beckwith J. 1998. The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm. Proc Natl Acad Sci U S A 95:10751-10756. http://dx.doi.org/10.1073/pnas.95.18.10751.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 10751-10756
-
-
Debarbieux, L.1
Beckwith, J.2
-
64
-
-
0028296940
-
The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation
-
Missiakas D, Georgopoulos C, Raina S. 1994. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 13:2013-2020.
-
(1994)
EMBO J
, vol.13
, pp. 2013-2020
-
-
Missiakas, D.1
Georgopoulos, C.2
Raina, S.3
-
65
-
-
0030830073
-
A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins
-
Andersen CL, Matthey-Dupraz A, Missiakas D, Raina S. 1997. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol Microbiol 26:121-132. http://dx.doi.org/10.1046/j.1365-2958.1997.5581925.x.
-
(1997)
Mol Microbiol
, vol.26
, pp. 121-132
-
-
Andersen, C.L.1
Matthey-Dupraz, A.2
Missiakas, D.3
Raina, S.4
-
66
-
-
42949135118
-
Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding
-
Heras B, Kurz M, Jarrott R, Shouldice SR, Frei P, Robin G, Cemazar M, Thony-Meyer L, Glockshuber R, Martin JL. 2008. Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J Biol Chem 283:4261-4271.
-
(2008)
J Biol Chem
, vol.283
, pp. 4261-4271
-
-
Heras, B.1
Kurz, M.2
Jarrott, R.3
Shouldice, S.R.4
Frei, P.5
Robin, G.6
Cemazar, M.7
Thony-Meyer, L.8
Glockshuber, R.9
Martin, J.L.10
-
67
-
-
84878763058
-
Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii
-
Davey L, Ng CK, Halperin SA, Lee SF. 2013. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii. J Biol Chem 288:16416-16429. http://dx.doi.org/10.1074/jbc.M113.464578.
-
(2013)
J Biol Chem
, vol.288
, pp. 16416-16429
-
-
Davey, L.1
Ng, C.K.2
Halperin, S.A.3
Lee, S.F.4
-
68
-
-
27144559128
-
Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity
-
Dumoulin A, Grauschopf U, Bischoff M, Thony-Meyer L, Berger-Bachi B. 2005. Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity. Arch Microbiol 184:117-128. http://dx.doi.org/10.1007/s00203-005-0024-1.
-
(2005)
Arch Microbiol
, vol.184
, pp. 117-128
-
-
Dumoulin, A.1
Grauschopf, U.2
Bischoff, M.3
Thony-Meyer, L.4
Berger-Bachi, B.5
-
69
-
-
84868335486
-
Requirement of signal peptidase ComC and thiol-disulfide oxidoreductase DsbA for optimal cell surface display of pseudopilinComGCin Staphylococcus aureus
-
van der Kooi-Pol MM, Reilman E, Sibbald MJ, Veenstra-Kyuchukova YK, Kouwen TR, Buist G, van Dijl JM. 2012. Requirement of signal peptidase ComC and thiol-disulfide oxidoreductase DsbA for optimal cell surface display of pseudopilinComGCin Staphylococcus aureus. Appl Environ Microbiol 78:7124-7127. http://dx.doi.org/10.1128/AEM.01565-12.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 7124-7127
-
-
van der Kooi-Pol, M.M.1
Reilman, E.2
Sibbald, M.J.3
Veenstra-Kyuchukova, Y.K.4
Kouwen, T.R.5
Buist, G.6
van Dijl, J.M.7
-
70
-
-
0037834629
-
Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily
-
Schroder E, Ponting CP. 1998. Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci 7:2465-2468. http://dx.doi.org/10.1002/pro.5560071125.
-
(1998)
Protein Sci
, vol.7
, pp. 2465-2468
-
-
Schroder, E.1
Ponting, C.P.2
-
71
-
-
79952821270
-
Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase
-
Wang X, Dutton RJ, Beckwith J, Boyd D. 2011. Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid Redox Signal 14:1413-1420. http://dx.doi.org/10.1089/ars.2010.3558.
-
(2011)
Antioxid Redox Signal
, vol.14
, pp. 1413-1420
-
-
Wang, X.1
Dutton, R.J.2
Beckwith, J.3
Boyd, D.4
-
72
-
-
84885462944
-
Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKORderived peptides and has atypical features of DsbA-like disulfide oxidases
-
Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. 2013. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKORderived peptides and has atypical features of DsbA-like disulfide oxidases. Acta Crystallogr D Biol Crystallogr 69:1981-1994. http://dx.doi.org/10.1107/S0907444913017800.
-
(2013)
Acta Crystallogr D Biol Crystallogr
, vol.69
, pp. 1981-1994
-
-
Premkumar, L.1
Heras, B.2
Duprez, W.3
Walden, P.4
Halili, M.5
Kurth, F.6
Fairlie, D.P.7
Martin, J.L.8
-
73
-
-
0028949156
-
Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli
-
Zapun A, Missiakas D, Raina S, Creighton TE. 1995. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34:5075-5089. http://dx.doi.org/10.1021/bi00015a019.
-
(1995)
Biochemistry
, vol.34
, pp. 5075-5089
-
-
Zapun, A.1
Missiakas, D.2
Raina, S.3
Creighton, T.E.4
-
74
-
-
79951816315
-
Architects at the bacterial surface-sortases and the assembly of pili with isopeptide bonds
-
Hendrickx AP, Budzik JM, Oh SY, Schneewind O. 2011. Architects at the bacterial surface-sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol 9:166-176. http://dx.doi.org/10.1038/nrmicro2520.
-
(2011)
Nat Rev Microbiol
, vol.9
, pp. 166-176
-
-
Hendrickx, A.P.1
Budzik, J.M.2
Oh, S.Y.3
Schneewind, O.4
-
75
-
-
70350133602
-
The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds
-
Kang HJ, Paterson NG, Gaspar AH, Ton-That H, Baker EN. 2009. The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds. Proc Natl Acad Sci U S A 106:16967-16971. http://dx.doi.org/10.1073/pnas.0906826106.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 16967-16971
-
-
Kang, H.J.1
Paterson, N.G.2
Gaspar, A.H.3
Ton-That, H.4
Baker, E.N.5
-
76
-
-
80051936406
-
Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development
-
Mishra A, Devarajan B, Reardon ME, Dwivedi P, Krishnan V, Cisar JO, Das A, Narayana SV, Ton-That H. 2011. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development. Mol Microbiol 81:1205-1220. http://dx.doi.org/10.1111/j.1365-2958.2011.07745.x.
-
(2011)
Mol Microbiol
, vol.81
, pp. 1205-1220
-
-
Mishra, A.1
Devarajan, B.2
Reardon, M.E.3
Dwivedi, P.4
Krishnan, V.5
Cisar, J.O.6
Das, A.7
Narayana, S.V.8
Ton-That, H.9
-
77
-
-
84868282959
-
The pilin protein FimP from Actinomyces oris: crystal structure and sequence analyses
-
Persson K, Esberg A, Claesson R, Stromberg N. 2012. The pilin protein FimP from Actinomyces oris: crystal structure and sequence analyses. PLoS One 7:e48364. http://dx.doi.org/10.1371/journal.pone.0048364.
-
(2012)
PLoS One
, vol.7
-
-
Persson, K.1
Esberg, A.2
Claesson, R.3
Stromberg, N.4
-
78
-
-
84900385997
-
A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly
-
Kang HJ, Paterson NG, Kim CU, Middleditch M, Chang C, Ton-That H, Baker EN. 2014. A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly. Acta Crystallogr D Biol Crystallogr 70:1190-1201. http://dx.doi.org/10.1107/S1399004714001400.
-
(2014)
Acta Crystallogr D Biol Crystallogr
, vol.70
, pp. 1190-1201
-
-
Kang, H.J.1
Paterson, N.G.2
Kim, C.U.3
Middleditch, M.4
Chang, C.5
Ton-That, H.6
Baker, E.N.7
-
79
-
-
23144460835
-
The bioinformatics resource for oral pathogens
-
Chen T, Abbey K, Deng WJ, Cheng MC. 2005. The bioinformatics resource for oral pathogens. Nucleic Acids Res 33:W734-W740. http://dx.doi.org/10.1093/nar/gki361.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. W734-W740
-
-
Chen, T.1
Abbey, K.2
Deng, W.J.3
Cheng, M.C.4
-
80
-
-
84895756372
-
Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions
-
Cava F, de Pedro MA. 2014. Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol 18:46-53. http://dx.doi.org/10.1016/j.mib.2014.01.004.
-
(2014)
Curr Opin Microbiol
, vol.18
, pp. 46-53
-
-
Cava, F.1
de Pedro, M.A.2
-
81
-
-
35448982428
-
Characterization of HMW-PBPs from the rod-shaped actinomycete Corynebacterium glutamicum: peptidoglycan synthesis in cells lacking actin-like cytoskeletal structures
-
Valbuena N, Letek M, Ordonez E, Ayala J, Daniel RA, Gil JA, Mateos LM. 2007. Characterization of HMW-PBPs from the rod-shaped actinomycete Corynebacterium glutamicum: peptidoglycan synthesis in cells lacking actin-like cytoskeletal structures. Mol Microbiol 66:643-657. http://dx.doi.org/10.1111/j.1365-2958.2007.05943.x.
-
(2007)
Mol Microbiol
, vol.66
, pp. 643-657
-
-
Valbuena, N.1
Letek, M.2
Ordonez, E.3
Ayala, J.4
Daniel, R.A.5
Gil, J.A.6
Mateos, L.M.7
-
82
-
-
0019798949
-
Murein synthesis and beta-lactam antibiotic susceptibility during rod-to-sphere transition in a pbpA(Ts) mutant of Escherichia coli
-
Botta GA, Buffa D. 1981. Murein synthesis and beta-lactam antibiotic susceptibility during rod-to-sphere transition in a pbpA(Ts) mutant of Escherichia coli. Antimicrob Agents Chemother 19:891-900. http://dx.doi.org/10.1128/AAC.19.5.891.
-
(1981)
Antimicrob Agents Chemother
, vol.19
, pp. 891-900
-
-
Botta, G.A.1
Buffa, D.2
-
83
-
-
0018338932
-
The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria
-
Tomasz A. 1979. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113-137. http://dx.doi.org/10.1146/annurev.mi.33.100179.000553.
-
(1979)
Annu Rev Microbiol
, vol.33
, pp. 113-137
-
-
Tomasz, A.1
-
84
-
-
36548999439
-
Shape determination in Bacillus subtilis
-
Carballido-López R, Formstone A. 2007. Shape determination in Bacillus subtilis. Curr Opin Microbiol 10:611-616. http://dx.doi.org/10.1016/j.mib.2007.09.008.
-
(2007)
Curr Opin Microbiol
, vol.10
, pp. 611-616
-
-
Carballido-López, R.1
Formstone, A.2
-
85
-
-
0345701347
-
Genes required for mycobacterial growth defined by high density mutagenesis
-
Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77-84. http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x.
-
(2003)
Mol Microbiol
, vol.48
, pp. 77-84
-
-
Sassetti, C.M.1
Boyd, D.H.2
Rubin, E.J.3
-
86
-
-
84892936567
-
Disarming Burkholderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo
-
Ireland PM, McMahon RM, Marshall LE, Halili M, Furlong E, Tay S, Martin JL, Sarkar-Tyson M. 2014. Disarming Burkholderia pseudomallei: structural and functional characterization of a disulfide oxidoreductase (DsbA) required for virulence in vivo. Antioxid Redox Signal 20:606-617. http://dx.doi.org/10.1089/ars.2013.5375.
-
(2014)
Antioxid Redox Signal
, vol.20
, pp. 606-617
-
-
Ireland, P.M.1
McMahon, R.M.2
Marshall, L.E.3
Halili, M.4
Furlong, E.5
Tay, S.6
Martin, J.L.7
Sarkar-Tyson, M.8
-
87
-
-
42149191555
-
The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis
-
Rosadini CV, Wong SM, Akerley BJ. 2008. The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis. Infect Immun 76:1498-1508. http://dx.doi.org/10.1128/IAI.01378-07.
-
(2008)
Infect Immun
, vol.76
, pp. 1498-1508
-
-
Rosadini, C.V.1
Wong, S.M.2
Akerley, B.J.3
-
88
-
-
84922450745
-
Application of fragment-based screening to the design of inhibitors of Escherichia coli DsbA
-
Adams LA, Sharma P, Mohanty B, Ilyichova OV, Mulcair MD, Williams ML, Gleeson EC, Totsika M, Doak BC, Caria S, Rimmer K, Horne J, Shouldice SR, Vazirani M, Headey SJ, Plumb BR, Martin JL, Heras B, Simpson JS, Scanlon MJ. 2015. Application of fragment-based screening to the design of inhibitors of Escherichia coli DsbA. Angew Chem Int Ed Engl 54:2179-2184. http://dx.doi.org/10.1002/anie.201410341.
-
(2015)
Angew Chem Int Ed Engl
, vol.54
, pp. 2179-2184
-
-
Adams, L.A.1
Sharma, P.2
Mohanty, B.3
Ilyichova, O.V.4
Mulcair, M.D.5
Williams, M.L.6
Gleeson, E.C.7
Totsika, M.8
Doak, B.C.9
Caria, S.10
Rimmer, K.11
Horne, J.12
Shouldice, S.R.13
Vazirani, M.14
Headey, S.J.15
Plumb, B.R.16
Martin, J.L.17
Heras, B.18
Simpson, J.S.19
Scanlon, M.J.20
more..
-
89
-
-
84921470541
-
Peptide inhibitors of the Escherichia coli DsbA oxidative machinery essential for bacterial virulence
-
Duprez W, Premkumar L, Halili MA, Lindahl F, Reid RC, Fairlie DP, Martin JL. 2015. Peptide inhibitors of the Escherichia coli DsbA oxidative machinery essential for bacterial virulence. J Med Chem 58:577-587. http://dx.doi.org/10.1021/jm500955s.
-
(2015)
J Med Chem
, vol.58
, pp. 577-587
-
-
Duprez, W.1
Premkumar, L.2
Halili, M.A.3
Lindahl, F.4
Reid, R.C.5
Fairlie, D.P.6
Martin, J.L.7
-
90
-
-
84939935179
-
Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria
-
Landeta C, Blazyk JL, Hatahet F, Meehan BM, Eser M, Myrick A, Bronstain L, Minami S, Arnold H, Ke N, Rubin EJ, Furie BC, Furie B, Beckwith J, Dutton R, Boyd D. 2015. Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nat Chem Biol 11:292-298. http://dx.doi.org/10.1038/nchembio.1752.
-
(2015)
Nat Chem Biol
, vol.11
, pp. 292-298
-
-
Landeta, C.1
Blazyk, J.L.2
Hatahet, F.3
Meehan, B.M.4
Eser, M.5
Myrick, A.6
Bronstain, L.7
Minami, S.8
Arnold, H.9
Ke, N.10
Rubin, E.J.11
Furie, B.C.12
Furie, B.13
Beckwith, J.14
Dutton, R.15
Boyd, D.16
-
91
-
-
84928479130
-
Small molecule inhibitors of disulfide bond formation by the bacterial DsbA-DsbB dual enzyme system
-
Halili MA, Bachu P, Lindahl F, Bechara C, Mohanty B, Reid RC, Scanlon MJ, Robinson CV, Fairlie DP, Martin JL. 2015. Small molecule inhibitors of disulfide bond formation by the bacterial DsbA-DsbB dual enzyme system. ACS Chem Biol 10:957-964. http://dx.doi.org/10.1021/cb500988r.
-
(2015)
ACS Chem Biol
, vol.10
, pp. 957-964
-
-
Halili, M.A.1
Bachu, P.2
Lindahl, F.3
Bechara, C.4
Mohanty, B.5
Reid, R.C.6
Scanlon, M.J.7
Robinson, C.V.8
Fairlie, D.P.9
Martin, J.L.10
-
92
-
-
84892635980
-
Mycolic acids: structures, biosynthesis, and beyond
-
Marrakchi H, Laneelle MA, Daffe M. 2014. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21:67-85. http://dx.doi.org/10.1016/j.chembiol.2013.11.011.
-
(2014)
Chem Biol
, vol.21
, pp. 67-85
-
-
Marrakchi, H.1
Laneelle, M.A.2
Daffe, M.3
-
93
-
-
0041429588
-
Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications
-
Bayan N, Houssin C, Chami M, Leblon G. 2003. Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104:55-67. http://dx.doi.org/10.1016/S0168-1656(03)00163-9.
-
(2003)
J Biotechnol
, vol.104
, pp. 55-67
-
-
Bayan, N.1
Houssin, C.2
Chami, M.3
Leblon, G.4
-
94
-
-
0034996154
-
Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane
-
Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M. 2001. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365-1382. http://dx.doi.org/10.1099/00221287-147-5-1365.
-
(2001)
Microbiology
, vol.147
, pp. 1365-1382
-
-
Puech, V.1
Chami, M.2
Lemassu, A.3
Laneelle, M.A.4
Schiffler, B.5
Gounon, P.6
Bayan, N.7
Benz, R.8
Daffe, M.9
-
95
-
-
0033757759
-
Oral microbial communities: biofilms, interactions, and genetic systems
-
Kolenbrander PE. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54:413-437. http://dx.doi.org/10.1146/annurev.micro.54.1.413.
-
(2000)
Annu Rev Microbiol
, vol.54
, pp. 413-437
-
-
Kolenbrander, P.E.1
-
96
-
-
33747870432
-
Bacterial interactions and successions during plaque development
-
Kolenbrander PE, Palmer RJ, Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. 2006. Bacterial interactions and successions during plaque development. Periodontol 2000 42:47-79. http://dx.doi.org/10.1111/j.1600-0757.2006.00187.x.
-
(2006)
Periodontol 2000
, vol.42
, pp. 47-79
-
-
Kolenbrander, P.E.1
Palmer, R.J.2
Rickard, A.H.3
Jakubovics, N.S.4
Chalmers, N.I.5
Diaz, P.I.6
-
97
-
-
69949103083
-
Acyl enzyme intermediates in sortasecatalyzed pilus morphogenesis in Gram-positive bacteria
-
Guttilla IK, Gaspar AH, Swierczynski A, Swaminathan A, Dwivedi P, Das A, Ton-That H. 2009. Acyl enzyme intermediates in sortasecatalyzed pilus morphogenesis in Gram-positive bacteria. J Bacteriol 191: 5603-5612. http://dx.doi.org/10.1128/JB.00627-09.
-
(2009)
J Bacteriol
, vol.191
, pp. 5603-5612
-
-
Guttilla, I.K.1
Gaspar, A.H.2
Swierczynski, A.3
Swaminathan, A.4
Dwivedi, P.5
Das, A.6
Ton-That, H.7
-
98
-
-
79951793148
-
Cell surface display of minor pilin adhesins in the form of a simple heterodimeric assembly in Corynebacterium diphtheriae
-
Chang C, Mandlik A, Das A, Ton-That H. 2011. Cell surface display of minor pilin adhesins in the form of a simple heterodimeric assembly in Corynebacterium diphtheriae. Mol Microbiol 79:1236-1247. http://dx.doi.org/10.1111/j.1365-2958.2010.07515.x.
-
(2011)
Mol Microbiol
, vol.79
, pp. 1236-1247
-
-
Chang, C.1
Mandlik, A.2
Das, A.3
Ton-That, H.4
-
99
-
-
52949117534
-
The molecular switch that activates the cell wall anchoring step of pilus assembly in Gram-positive bacteria
-
Mandlik A, Das A, Ton-That H. 2008. The molecular switch that activates the cell wall anchoring step of pilus assembly in Gram-positive bacteria. Proc Natl Acad Sci U S A 105:14147-14152. http://dx.doi.org/10.1073/pnas.0806350105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 14147-14152
-
-
Mandlik, A.1
Das, A.2
Ton-That, H.3
|