-
2
-
-
0026091179
-
Identification of a protein required for disulfide bond formation in vivo
-
Bardwell JC, McGovern K, Beckwith J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67:581-589.
-
(1991)
Cell
, vol.67
, pp. 581-589
-
-
Bardwell, J.C.1
McGovern, K.2
Beckwith, J.3
-
3
-
-
0027475212
-
A pathway for disulfide bond formation in vivo
-
Bardwell JC, et al. 1993. A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. U. S. A. 90:1038-1042.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A
, vol.90
, pp. 1038-1042
-
-
Bardwell, J.C.1
-
4
-
-
0028971218
-
Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA
-
Guilhot C, Jander G, Martin NL, Beckwith J. 1995. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc. Natl. Acad. Sci. U. S. A. 92:9895-9899.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A
, vol.92
, pp. 9895-9899
-
-
Guilhot, C.1
Jander, G.2
Martin, N.L.3
Beckwith, J.4
-
5
-
-
0033597878
-
Oxidative protein folding is driven by the electron transport system
-
Bader M, Muse W, Ballou DP, Gassner C, Bardwell JC. 1999. Oxidative protein folding is driven by the electron transport system. Cell 98: 217-227.
-
(1999)
Cell
, vol.98
, pp. 217-227
-
-
Bader, M.1
Muse, W.2
Ballou, D.P.3
Gassner, C.4
Bardwell, J.C.5
-
6
-
-
0028949156
-
Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli
-
Zapun A, Missiakas D, Raina S, Creighton TE. 1995. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34:5075-5089.
-
(1995)
Biochemistry
, vol.34
, pp. 5075-5089
-
-
Zapun, A.1
Missiakas, D.2
Raina, S.3
Creighton, T.E.4
-
8
-
-
0030787850
-
In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC
-
Joly JC, Swartz JR. 1997. In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Biochemistry 36: 10067-10072.
-
(1997)
Biochemistry
, vol.36
, pp. 10067-10072
-
-
Joly, J.C.1
Swartz, J.R.2
-
9
-
-
70450160847
-
A periplasmic reducing system protects single cysteine residues from oxidation
-
Depuydt M, et al. 2009. A periplasmic reducing system protects single cysteine residues from oxidation. Science 326:1109-1111.
-
(2009)
Science
, vol.326
, pp. 1109-1111
-
-
Depuydt, M.1
-
10
-
-
0028850245
-
An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12
-
Metheringham R, Griffiths L, Crooke H, Forsythe S, Cole J. 1995. An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12. Arch. Microbiol. 164:301-307.
-
(1995)
Arch. Microbiol
, vol.164
, pp. 301-307
-
-
Metheringham, R.1
Griffiths, L.2
Crooke, H.3
Forsythe, S.4
Cole, J.5
-
11
-
-
0031919407
-
The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo
-
Fabianek RA, Hennecke H, Thöny-Meyer L. 1998. The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo. J. Bacteriol. 180:1947-1950.
-
(1998)
J. Bacteriol
, vol.180
, pp. 1947-1950
-
-
Fabianek, R.A.1
Hennecke, H.2
Thöny-Meyer, L.3
-
12
-
-
0033230589
-
Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli
-
Stewart EJ, Katzen F, Beckwith J. 1999. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 18:5963-5971.
-
(1999)
EMBO J
, vol.18
, pp. 5963-5971
-
-
Stewart, E.J.1
Katzen, F.2
Beckwith, J.3
-
13
-
-
0036682611
-
Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD
-
Katzen F, Deshmukh M, Daldal F, Beckwith J. 2002. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J. 21:3960-3969.
-
(2002)
EMBO J
, vol.21
, pp. 3960-3969
-
-
Katzen, F.1
Deshmukh, M.2
Daldal, F.3
Beckwith, J.4
-
14
-
-
0033982955
-
Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes
-
Deshmukh M, Brasseur G, Daldal F. 2000. Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol. Microbiol. 35:123-138.
-
(2000)
Mol. Microbiol
, vol.35
, pp. 123-138
-
-
Deshmukh, M.1
Brasseur, G.2
Daldal, F.3
-
15
-
-
0034703766
-
Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade
-
Katzen F, Beckwith J. 2000. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103: 769-779.
-
(2000)
Cell
, vol.103
, pp. 769-779
-
-
Katzen, F.1
Beckwith, J.2
-
16
-
-
0037716929
-
Crystal structure of DsbDgamma reveals the mechanism of redox potential shift and substrate specificity
-
Kim JH, Kim SJ, Jeong DG, Son JH, Ryu SE. 2003. Crystal structure of DsbDgamma reveals the mechanism of redox potential shift and substrate specificity. FEBS Lett. 543:164-169.
-
(2003)
FEBS Lett
, vol.543
, pp. 164-169
-
-
Kim, J.H.1
Kim, S.J.2
Jeong, D.G.3
Son, J.H.4
Ryu, S.E.5
-
17
-
-
34547764270
-
Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility
-
Cho SH, Porat A, Ye J, Beckwith J. 2007. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J. 26:3509-3520.
-
(2007)
EMBO J
, vol.26
, pp. 3509-3520
-
-
Cho, S.H.1
Porat, A.2
Ye, J.3
Beckwith, J.4
-
18
-
-
66449134191
-
Two snapshots of electron transport across the membrane: Insights into the structure and function of DsbD
-
Cho SH, Beckwith J. 2009. Two snapshots of electron transport across the membrane: insights into the structure and function of DsbD. J. Biol. Chem. 284:11416-11424.
-
(2009)
J. Biol. Chem
, vol.284
, pp. 11416-11424
-
-
Cho, S.H.1
Beckwith, J.2
-
20
-
-
0037119945
-
The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: Crystal structure of the DsbC-DsbDalpha complex
-
Haebel PW, Goldstone D, Katzen F, Beckwith J, Metcalf P. 2002. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J. 21:4774-4784.
-
(2002)
EMBO J
, vol.21
, pp. 4774-4784
-
-
Haebel, P.W.1
Goldstone, D.2
Katzen, F.3
Beckwith, J.4
Metcalf, P.5
-
21
-
-
21744448514
-
Structural basis and kinetics of DsbDdependent cytochrome c maturation
-
Stirnimann CU, et al. 2005. Structural basis and kinetics of DsbDdependent cytochrome c maturation. Structure 13:985-993.
-
(2005)
Structure
, vol.13
, pp. 985-993
-
-
Stirnimann, C.U.1
-
22
-
-
0030857512
-
A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli
-
Gupta SD, Wu HC, Rick PD. 1997. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J. Bacteriol. 179:4977-4984.
-
(1997)
J. Bacteriol
, vol.179
, pp. 4977-4984
-
-
Gupta, S.D.1
Wu, H.C.2
Rick, P.D.3
-
23
-
-
4544258776
-
The unusual transmembrane electron transporter DsbD and its homologues: A bacterial family of disulfide reductases
-
Porat A, Cho SH, Beckwith J. 2004. The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases. Res. Microbiol. 155:617-622.
-
(2004)
Res. Microbiol
, vol.155
, pp. 617-622
-
-
Porat, A.1
Cho, S.H.2
Beckwith, J.3
-
24
-
-
0025183708
-
Basic local alignment search tool
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.
-
(1990)
J. Mol. Biol
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
25
-
-
0035209075
-
Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli
-
Seaver LC, Imlay JA. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183:7173-7181.
-
(2001)
J. Bacteriol
, vol.183
, pp. 7173-7181
-
-
Seaver, L.C.1
Imlay, J.A.2
-
26
-
-
0037222255
-
Structure, mechanism and regulation of peroxiredoxins
-
Wood ZA, Schröder E, Robin Harris J, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32-40.
-
(2003)
Trends Biochem. Sci
, vol.28
, pp. 32-40
-
-
Wood, Z.A.1
Schröder, E.2
Robin, H.J.3
Poole, L.B.4
-
27
-
-
0028845858
-
Thioredoxin-linked "thiol peroxidase" from periplasmic space of Escherichia coli
-
Cha MK, Kim HK, Kim IH. 1995. Thioredoxin-linked "thiol peroxidase" from periplasmic space of Escherichia coli. J. Biol. Chem. 270: 28635-28641.
-
(1995)
J. Biol. Chem
, vol.270
, pp. 28635-28641
-
-
Cha, M.K.1
Kim, H.K.2
Kim, I.H.3
-
28
-
-
54249104170
-
Subcellular localization and in vivo oxidation-reduction kinetics of thiol peroxidase in Escherichia coli
-
Tao K. 2008. Subcellular localization and in vivo oxidation-reduction kinetics of thiol peroxidase in Escherichia coli. FEMS Microbiol. Lett. 289: 41-45.
-
(2008)
FEMS Microbiol. Lett
, vol.289
, pp. 41-45
-
-
Tao, K.1
-
29
-
-
0030668672
-
Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin
-
Rietsch A, Bessette P, Georgiou G, Beckwith J. 1997. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol. 179:6602-6608.
-
(1997)
J. Bacteriol
, vol.179
, pp. 6602-6608
-
-
Rietsch, A.1
Bessette, P.2
Georgiou, G.3
Beckwith, J.4
-
30
-
-
36749049715
-
A comprehensive set of plasmids for vanillateand xylose-inducible gene expression in Caulobacter crescentus
-
Thanbichler M, Iniesta AA, Shapiro L. 2007. A comprehensive set of plasmids for vanillateand xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35:e137.
-
(2007)
Nucleic Acids Res
, vol.35
-
-
Thanbichler, M.1
Iniesta, A.A.2
Shapiro, L.3
-
31
-
-
0024211154
-
Mitochondria can import artificial precursor proteins containing a branched polypeptide chain or a carboxyterminal stilbene disulfonate
-
Vestweber D, Schatz G. 1988. Mitochondria can import artificial precursor proteins containing a branched polypeptide chain or a carboxyterminal stilbene disulfonate. J. Cell Biol. 107:2045-2049.
-
(1988)
J. Cell Biol
, vol.107
, pp. 2045-2049
-
-
Vestweber, D.1
Schatz, G.2
-
32
-
-
1542335652
-
Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth
-
Cha MK, Kim WC, Lim CJ, Kim K, Kim IH. 2004. Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J. Biol. Chem. 279:8769-8778.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 8769-8778
-
-
Cha, M.K.1
Kim, W.C.2
Lim, C.J.3
Kim, K.4
Kim, I.H.5
-
33
-
-
0037646517
-
Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61
-
Baker LM, Poole LB. 2003. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 278:9203-9211.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 9203-9211
-
-
Baker, L.M.1
Poole, L.B.2
-
34
-
-
0034723165
-
Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family
-
Jeong W, Cha MK, Kim IH. 2000. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275:2924-2930.
-
(2000)
J. Biol. Chem
, vol.275
, pp. 2924-2930
-
-
Jeong, W.1
Cha, M.K.2
Kim, I.H.3
-
35
-
-
79551493261
-
Analysis of the peroxiredoxin family: Using activesite structure and sequence information for global classification and residue analysis
-
Nelson KJ, et al. 2011. Analysis of the peroxiredoxin family: using activesite structure and sequence information for global classification and residue analysis. Proteins 79:947-964.
-
(2011)
Proteins
, vol.79
, pp. 947-964
-
-
Nelson, K.J.1
-
36
-
-
78651278810
-
PREX: Peroxiredoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family
-
Soito L, et al. 2011. PREX: peroxiredoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 39:D332-D337.
-
(2011)
Nucleic Acids Res
, vol.39
-
-
Soito, L.1
-
37
-
-
67649867930
-
Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures
-
Liao SJ, Yang CY, Chin KH, Wang AH, Chou SH. 2009. Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures. J. Mol. Biol. 390:951-966.
-
(2009)
J. Mol. Biol
, vol.390
, pp. 951-966
-
-
Liao, S.J.1
Yang, C.Y.2
Chin, K.H.3
Wang, A.H.4
Chou, S.H.5
-
39
-
-
0037018912
-
Thiol-disulfide exchange in an immunoglobulin-like fold: Structure of the N-terminal domain of DsbD
-
Goulding CW, et al. 2002. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD. Biochemistry 41:6920-6927.
-
(2002)
Biochemistry
, vol.41
, pp. 6920-6927
-
-
Goulding, C.W.1
-
40
-
-
0142151375
-
Oxidation of methionine residues of proteins: Biological consequences
-
Stadtman ER, Moskovitz J, Levine RL. 2003. Oxidation of methionine residues of proteins: biological consequences. Antioxid. Redox Signal. 5:577-582.
-
(2003)
Antioxid. Redox Signal
, vol.5
, pp. 577-582
-
-
Stadtman, E.R.1
Moskovitz, J.2
Levine, R.L.3
-
41
-
-
42749094495
-
Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis
-
Kurz M, et al. 2008. Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis. Protein Expr. Purif. 59:266-273.
-
(2008)
Protein Expr. Purif
, vol.59
, pp. 266-273
-
-
Kurz, M.1
-
42
-
-
22444432755
-
The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases
-
Sevier CS, et al. 2005. The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases. Protein Sci. 14:1630-1642.
-
(2005)
Protein Sci
, vol.14
, pp. 1630-1642
-
-
Sevier, C.S.1
-
43
-
-
77956515945
-
The proteindisulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD
-
Denoncin K, Vertommen D, Paek E, Collet JF. 2010. The proteindisulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD. J. Biol. Chem. 285:29425-29433.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 29425-29433
-
-
Denoncin, K.1
Vertommen, D.2
Paek, E.3
Collet, J.F.4
-
44
-
-
79955767087
-
Crystal structure of the outer membrane protein RCSF, a new substrate for the periplasmic protein disulfide isomerase DSBC
-
Leverrier P, et al. 2011. Crystal structure of the outer membrane protein RCSF, a new substrate for the periplasmic protein disulfide isomerase DSBC. J. Biol. Chem. 286:16734-16742.
-
(2011)
J. Biol. Chem
, vol.286
, pp. 16734-16742
-
-
Leverrier, P.1
-
45
-
-
1842477219
-
In vivo substrate specificity of periplasmic disulfide oxidoreductases
-
Hiniker A, Bardwell JC. 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279:12967-12973.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 12967-12973
-
-
Hiniker, A.1
Bardwell, J.C.2
-
46
-
-
15744375548
-
The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC
-
Berkmen M, Boyd D, Beckwith J. 2005. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J. Biol. Chem. 280:11387-11394.
-
(2005)
J. Biol. Chem
, vol.280
, pp. 11387-11394
-
-
Berkmen, M.1
Boyd, D.2
Beckwith, J.3
-
47
-
-
0037168501
-
Guanine binding site of the Nicotiana glutinosa ribonuclease NW revealed by X-ray crystallography
-
Kawano S, Kakuta Y, Kimura M. 2002. Guanine binding site of the Nicotiana glutinosa ribonuclease NW revealed by X-ray crystallography. Biochemistry 41:15195-15202.
-
(2002)
Biochemistry
, vol.41
, pp. 15195-15202
-
-
Kawano, S.1
Kakuta, Y.2
Kimura, M.3
-
48
-
-
0034725691
-
The N-terminal sequence (residues 165) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC
-
Sun XX, Wang CC. 2000. The N-terminal sequence (residues 165) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J. Biol. Chem. 275:22743-22749.
-
(2000)
J. Biol. Chem
, vol.275
, pp. 22743-22749
-
-
Sun, X.X.1
Wang, C.C.2
-
49
-
-
0242353305
-
Dimerization by domain hybridization bestows chaperone and isomerase activities
-
Zhao Z, Peng Y, Hao SF, Zeng ZH, Wang CC. 2003. Dimerization by domain hybridization bestows chaperone and isomerase activities. J. Biol. Chem. 278:43292-43298.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 43292-43298
-
-
Zhao, Z.1
Peng, Y.2
Hao, S.F.3
Zeng, Z.H.4
Wang, C.C.5
-
50
-
-
3042709650
-
Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways
-
Segatori L, Paukstelis PJ, Gilbert HF, Georgiou G. 2004. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: reconciling two competing pathways. Proc. Natl. Acad. Sci. U. S. A. 101:10018-10023.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A
, vol.101
, pp. 10018-10023
-
-
Segatori, L.1
Paukstelis, P.J.2
Gilbert, H.F.3
Georgiou, G.4
-
51
-
-
33845945906
-
The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases
-
Brot N, et al. 2006. The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. J. Biol. Chem. 281:32668-32675.
-
(2006)
J. Biol. Chem
, vol.281
, pp. 32668-32675
-
-
Brot, N.1
-
52
-
-
0037162478
-
The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species
-
Skaar EP, et al. 2002. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A. 99:10108-10113.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A
, vol.99
, pp. 10108-10113
-
-
Skaar, E.P.1
-
53
-
-
23244466487
-
Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
-
Parsonage D, et al. 2005. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44:10583-10592.
-
(2005)
Biochemistry
, vol.44
, pp. 10583-10592
-
-
Parsonage, D.1
-
54
-
-
77952396492
-
Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: Catalytic mechanism and high reactivity
-
Horta BB, de Oliveira MA, Discola KF, Cussiol JR, Netto LE. 2010. Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity. J. Biol. Chem. 285:16051-16065.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 16051-16065
-
-
Horta, B.B.1
de Oliveira, M.A.2
Discola, K.F.3
Cussiol, J.R.4
Netto, L.E.5
-
55
-
-
0027303321
-
Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis
-
Loferer H, Bott M, Hennecke H. 1993. Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis. EMBO J. 12: 3373-3383.
-
(1993)
EMBO J
, vol.12
, pp. 3373-3383
-
-
Loferer, H.1
Bott, M.2
Hennecke, H.3
-
56
-
-
80052415909
-
The essential genome of a bacterium
-
Christen B, et al. 2011. The essential genome of a bacterium. Mol. Syst. Biol. 7:528.
-
(2011)
Mol. Syst. Biol
, vol.7
, pp. 528
-
-
Christen, B.1
-
57
-
-
79952441869
-
Characterization of DsbD in Neisseria meningitidis
-
Kumar P, Sannigrahi S, Scoullar J, Kahler CM, Tzeng YL. 2011. Characterization of DsbD in Neisseria meningitidis. Mol. Microbiol. 79: 1557-1573.
-
(2011)
Mol. Microbiol
, vol.79
, pp. 1557-1573
-
-
Kumar, P.1
Sannigrahi, S.2
Scoullar, J.3
Kahler, C.M.4
Tzeng, Y.L.5
-
58
-
-
0025888266
-
Genetics of Caulobacter crescentus
-
Ely B. 1991. Genetics of Caulobacter crescentus. Methods Enzymol. 204: 372-384.
-
(1991)
Methods Enzymol
, vol.204
, pp. 372-384
-
-
Ely, B.1
-
59
-
-
77955495922
-
A cell-type-specific protein-protein interaction modulates transcriptional activity of a master regulator in Caulobacter crescentus
-
Gora KG, et al. 2010. A cell-type-specific protein-protein interaction modulates transcriptional activity of a master regulator in Caulobacter crescentus. Mol. Cell 39:455-467.
-
(2010)
Mol. Cell
, vol.39
, pp. 455-467
-
-
Gora, K.G.1
-
60
-
-
79957613599
-
MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
-
Tamura K, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.
-
(2011)
Mol. Biol. Evol
, vol.28
, pp. 2731-2739
-
-
Tamura, K.1
-
61
-
-
0030801002
-
Gapped BLAST and psi-blast: A new generation of protein database search programs
-
Altschul SF, et al. 1997. Gapped BLAST and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
-
62
-
-
23144444979
-
Protein structure prediction servers at university college London
-
Bryson K, et al. 2005. Protein structure prediction servers at university college London. Nucleic Acids Res. 33:W36-W38.
-
(2005)
Nucleic Acids Res
, vol.33
-
-
Bryson, K.1
-
64
-
-
0028233420
-
A versatile negative-staining ribonuclease zymogram
-
Bravo J, Fernández E, Ribó M, de Llorens R, Cuchillo CM. 1994. A versatile negative-staining ribonuclease zymogram. Anal. Biochem. 219: 82-86.
-
(1994)
Anal. Biochem
, vol.219
, pp. 82-86
-
-
Bravo, J.1
Fernández, E.2
Ribó, M.3
de Llorens, R.4
Cuchillo, C.M.5
|