메뉴 건너뛰기




Volumn 3, Issue 2, 2012, Pages

A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; PEROXIREDOXIN; PROTEIN PPRX; PROTEIN PRXL; PROTEIN SCSB; PROTEIN SCSC; PROTEIN TLPA; REACTIVE OXYGEN METABOLITE; UNCLASSIFIED DRUG;

EID: 84860534459     PISSN: None     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.00291-11     Document Type: Article
Times cited : (52)

References (64)
  • 1
    • 0042768090 scopus 로고    scopus 로고
    • Protein disulfide bond formation in prokaryotes
    • Kadokura H, Katzen F, Beckwith J. 2003. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72:111-135.
    • (2003) Annu. Rev. Biochem , vol.72 , pp. 111-135
    • Kadokura, H.1    Katzen, F.2    Beckwith, J.3
  • 2
    • 0026091179 scopus 로고
    • Identification of a protein required for disulfide bond formation in vivo
    • Bardwell JC, McGovern K, Beckwith J. 1991. Identification of a protein required for disulfide bond formation in vivo. Cell 67:581-589.
    • (1991) Cell , vol.67 , pp. 581-589
    • Bardwell, J.C.1    McGovern, K.2    Beckwith, J.3
  • 3
    • 0027475212 scopus 로고
    • A pathway for disulfide bond formation in vivo
    • Bardwell JC, et al. 1993. A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. U. S. A. 90:1038-1042.
    • (1993) Proc. Natl. Acad. Sci. U. S. A , vol.90 , pp. 1038-1042
    • Bardwell, J.C.1
  • 4
    • 0028971218 scopus 로고
    • Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA
    • Guilhot C, Jander G, Martin NL, Beckwith J. 1995. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc. Natl. Acad. Sci. U. S. A. 92:9895-9899.
    • (1995) Proc. Natl. Acad. Sci. U. S. A , vol.92 , pp. 9895-9899
    • Guilhot, C.1    Jander, G.2    Martin, N.L.3    Beckwith, J.4
  • 5
    • 0033597878 scopus 로고    scopus 로고
    • Oxidative protein folding is driven by the electron transport system
    • Bader M, Muse W, Ballou DP, Gassner C, Bardwell JC. 1999. Oxidative protein folding is driven by the electron transport system. Cell 98: 217-227.
    • (1999) Cell , vol.98 , pp. 217-227
    • Bader, M.1    Muse, W.2    Ballou, D.P.3    Gassner, C.4    Bardwell, J.C.5
  • 6
    • 0028949156 scopus 로고
    • Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli
    • Zapun A, Missiakas D, Raina S, Creighton TE. 1995. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34:5075-5089.
    • (1995) Biochemistry , vol.34 , pp. 5075-5089
    • Zapun, A.1    Missiakas, D.2    Raina, S.3    Creighton, T.E.4
  • 7
  • 8
    • 0030787850 scopus 로고    scopus 로고
    • In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC
    • Joly JC, Swartz JR. 1997. In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Biochemistry 36: 10067-10072.
    • (1997) Biochemistry , vol.36 , pp. 10067-10072
    • Joly, J.C.1    Swartz, J.R.2
  • 9
    • 70450160847 scopus 로고    scopus 로고
    • A periplasmic reducing system protects single cysteine residues from oxidation
    • Depuydt M, et al. 2009. A periplasmic reducing system protects single cysteine residues from oxidation. Science 326:1109-1111.
    • (2009) Science , vol.326 , pp. 1109-1111
    • Depuydt, M.1
  • 10
    • 0028850245 scopus 로고
    • An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12
    • Metheringham R, Griffiths L, Crooke H, Forsythe S, Cole J. 1995. An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12. Arch. Microbiol. 164:301-307.
    • (1995) Arch. Microbiol , vol.164 , pp. 301-307
    • Metheringham, R.1    Griffiths, L.2    Crooke, H.3    Forsythe, S.4    Cole, J.5
  • 11
    • 0031919407 scopus 로고    scopus 로고
    • The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo
    • Fabianek RA, Hennecke H, Thöny-Meyer L. 1998. The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo. J. Bacteriol. 180:1947-1950.
    • (1998) J. Bacteriol , vol.180 , pp. 1947-1950
    • Fabianek, R.A.1    Hennecke, H.2    Thöny-Meyer, L.3
  • 12
    • 0033230589 scopus 로고    scopus 로고
    • Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli
    • Stewart EJ, Katzen F, Beckwith J. 1999. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 18:5963-5971.
    • (1999) EMBO J , vol.18 , pp. 5963-5971
    • Stewart, E.J.1    Katzen, F.2    Beckwith, J.3
  • 13
    • 0036682611 scopus 로고    scopus 로고
    • Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD
    • Katzen F, Deshmukh M, Daldal F, Beckwith J. 2002. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J. 21:3960-3969.
    • (2002) EMBO J , vol.21 , pp. 3960-3969
    • Katzen, F.1    Deshmukh, M.2    Daldal, F.3    Beckwith, J.4
  • 14
    • 0033982955 scopus 로고    scopus 로고
    • Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes
    • Deshmukh M, Brasseur G, Daldal F. 2000. Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol. Microbiol. 35:123-138.
    • (2000) Mol. Microbiol , vol.35 , pp. 123-138
    • Deshmukh, M.1    Brasseur, G.2    Daldal, F.3
  • 15
    • 0034703766 scopus 로고    scopus 로고
    • Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade
    • Katzen F, Beckwith J. 2000. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103: 769-779.
    • (2000) Cell , vol.103 , pp. 769-779
    • Katzen, F.1    Beckwith, J.2
  • 16
    • 0037716929 scopus 로고    scopus 로고
    • Crystal structure of DsbDgamma reveals the mechanism of redox potential shift and substrate specificity
    • Kim JH, Kim SJ, Jeong DG, Son JH, Ryu SE. 2003. Crystal structure of DsbDgamma reveals the mechanism of redox potential shift and substrate specificity. FEBS Lett. 543:164-169.
    • (2003) FEBS Lett , vol.543 , pp. 164-169
    • Kim, J.H.1    Kim, S.J.2    Jeong, D.G.3    Son, J.H.4    Ryu, S.E.5
  • 17
    • 34547764270 scopus 로고    scopus 로고
    • Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility
    • Cho SH, Porat A, Ye J, Beckwith J. 2007. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J. 26:3509-3520.
    • (2007) EMBO J , vol.26 , pp. 3509-3520
    • Cho, S.H.1    Porat, A.2    Ye, J.3    Beckwith, J.4
  • 18
    • 66449134191 scopus 로고    scopus 로고
    • Two snapshots of electron transport across the membrane: Insights into the structure and function of DsbD
    • Cho SH, Beckwith J. 2009. Two snapshots of electron transport across the membrane: insights into the structure and function of DsbD. J. Biol. Chem. 284:11416-11424.
    • (2009) J. Biol. Chem , vol.284 , pp. 11416-11424
    • Cho, S.H.1    Beckwith, J.2
  • 20
    • 0037119945 scopus 로고    scopus 로고
    • The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: Crystal structure of the DsbC-DsbDalpha complex
    • Haebel PW, Goldstone D, Katzen F, Beckwith J, Metcalf P. 2002. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J. 21:4774-4784.
    • (2002) EMBO J , vol.21 , pp. 4774-4784
    • Haebel, P.W.1    Goldstone, D.2    Katzen, F.3    Beckwith, J.4    Metcalf, P.5
  • 21
    • 21744448514 scopus 로고    scopus 로고
    • Structural basis and kinetics of DsbDdependent cytochrome c maturation
    • Stirnimann CU, et al. 2005. Structural basis and kinetics of DsbDdependent cytochrome c maturation. Structure 13:985-993.
    • (2005) Structure , vol.13 , pp. 985-993
    • Stirnimann, C.U.1
  • 22
    • 0030857512 scopus 로고    scopus 로고
    • A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli
    • Gupta SD, Wu HC, Rick PD. 1997. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J. Bacteriol. 179:4977-4984.
    • (1997) J. Bacteriol , vol.179 , pp. 4977-4984
    • Gupta, S.D.1    Wu, H.C.2    Rick, P.D.3
  • 23
    • 4544258776 scopus 로고    scopus 로고
    • The unusual transmembrane electron transporter DsbD and its homologues: A bacterial family of disulfide reductases
    • Porat A, Cho SH, Beckwith J. 2004. The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases. Res. Microbiol. 155:617-622.
    • (2004) Res. Microbiol , vol.155 , pp. 617-622
    • Porat, A.1    Cho, S.H.2    Beckwith, J.3
  • 25
    • 0035209075 scopus 로고    scopus 로고
    • Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli
    • Seaver LC, Imlay JA. 2001. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183:7173-7181.
    • (2001) J. Bacteriol , vol.183 , pp. 7173-7181
    • Seaver, L.C.1    Imlay, J.A.2
  • 27
    • 0028845858 scopus 로고
    • Thioredoxin-linked "thiol peroxidase" from periplasmic space of Escherichia coli
    • Cha MK, Kim HK, Kim IH. 1995. Thioredoxin-linked "thiol peroxidase" from periplasmic space of Escherichia coli. J. Biol. Chem. 270: 28635-28641.
    • (1995) J. Biol. Chem , vol.270 , pp. 28635-28641
    • Cha, M.K.1    Kim, H.K.2    Kim, I.H.3
  • 28
    • 54249104170 scopus 로고    scopus 로고
    • Subcellular localization and in vivo oxidation-reduction kinetics of thiol peroxidase in Escherichia coli
    • Tao K. 2008. Subcellular localization and in vivo oxidation-reduction kinetics of thiol peroxidase in Escherichia coli. FEMS Microbiol. Lett. 289: 41-45.
    • (2008) FEMS Microbiol. Lett , vol.289 , pp. 41-45
    • Tao, K.1
  • 29
    • 0030668672 scopus 로고    scopus 로고
    • Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin
    • Rietsch A, Bessette P, Georgiou G, Beckwith J. 1997. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol. 179:6602-6608.
    • (1997) J. Bacteriol , vol.179 , pp. 6602-6608
    • Rietsch, A.1    Bessette, P.2    Georgiou, G.3    Beckwith, J.4
  • 30
    • 36749049715 scopus 로고    scopus 로고
    • A comprehensive set of plasmids for vanillateand xylose-inducible gene expression in Caulobacter crescentus
    • Thanbichler M, Iniesta AA, Shapiro L. 2007. A comprehensive set of plasmids for vanillateand xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35:e137.
    • (2007) Nucleic Acids Res , vol.35
    • Thanbichler, M.1    Iniesta, A.A.2    Shapiro, L.3
  • 31
    • 0024211154 scopus 로고
    • Mitochondria can import artificial precursor proteins containing a branched polypeptide chain or a carboxyterminal stilbene disulfonate
    • Vestweber D, Schatz G. 1988. Mitochondria can import artificial precursor proteins containing a branched polypeptide chain or a carboxyterminal stilbene disulfonate. J. Cell Biol. 107:2045-2049.
    • (1988) J. Cell Biol , vol.107 , pp. 2045-2049
    • Vestweber, D.1    Schatz, G.2
  • 32
    • 1542335652 scopus 로고    scopus 로고
    • Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth
    • Cha MK, Kim WC, Lim CJ, Kim K, Kim IH. 2004. Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J. Biol. Chem. 279:8769-8778.
    • (2004) J. Biol. Chem , vol.279 , pp. 8769-8778
    • Cha, M.K.1    Kim, W.C.2    Lim, C.J.3    Kim, K.4    Kim, I.H.5
  • 33
    • 0037646517 scopus 로고    scopus 로고
    • Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61
    • Baker LM, Poole LB. 2003. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 278:9203-9211.
    • (2003) J. Biol. Chem , vol.278 , pp. 9203-9211
    • Baker, L.M.1    Poole, L.B.2
  • 34
    • 0034723165 scopus 로고    scopus 로고
    • Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family
    • Jeong W, Cha MK, Kim IH. 2000. Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275:2924-2930.
    • (2000) J. Biol. Chem , vol.275 , pp. 2924-2930
    • Jeong, W.1    Cha, M.K.2    Kim, I.H.3
  • 35
    • 79551493261 scopus 로고    scopus 로고
    • Analysis of the peroxiredoxin family: Using activesite structure and sequence information for global classification and residue analysis
    • Nelson KJ, et al. 2011. Analysis of the peroxiredoxin family: using activesite structure and sequence information for global classification and residue analysis. Proteins 79:947-964.
    • (2011) Proteins , vol.79 , pp. 947-964
    • Nelson, K.J.1
  • 36
    • 78651278810 scopus 로고    scopus 로고
    • PREX: Peroxiredoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family
    • Soito L, et al. 2011. PREX: peroxiredoxin classification indEX, a database of subfamily assignments across the diverse peroxiredoxin family. Nucleic Acids Res. 39:D332-D337.
    • (2011) Nucleic Acids Res , vol.39
    • Soito, L.1
  • 37
    • 67649867930 scopus 로고    scopus 로고
    • Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures
    • Liao SJ, Yang CY, Chin KH, Wang AH, Chou SH. 2009. Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures. J. Mol. Biol. 390:951-966.
    • (2009) J. Mol. Biol , vol.390 , pp. 951-966
    • Liao, S.J.1    Yang, C.Y.2    Chin, K.H.3    Wang, A.H.4    Chou, S.H.5
  • 39
    • 0037018912 scopus 로고    scopus 로고
    • Thiol-disulfide exchange in an immunoglobulin-like fold: Structure of the N-terminal domain of DsbD
    • Goulding CW, et al. 2002. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD. Biochemistry 41:6920-6927.
    • (2002) Biochemistry , vol.41 , pp. 6920-6927
    • Goulding, C.W.1
  • 40
    • 0142151375 scopus 로고    scopus 로고
    • Oxidation of methionine residues of proteins: Biological consequences
    • Stadtman ER, Moskovitz J, Levine RL. 2003. Oxidation of methionine residues of proteins: biological consequences. Antioxid. Redox Signal. 5:577-582.
    • (2003) Antioxid. Redox Signal , vol.5 , pp. 577-582
    • Stadtman, E.R.1    Moskovitz, J.2    Levine, R.L.3
  • 41
    • 42749094495 scopus 로고    scopus 로고
    • Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis
    • Kurz M, et al. 2008. Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis. Protein Expr. Purif. 59:266-273.
    • (2008) Protein Expr. Purif , vol.59 , pp. 266-273
    • Kurz, M.1
  • 42
    • 22444432755 scopus 로고    scopus 로고
    • The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases
    • Sevier CS, et al. 2005. The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases. Protein Sci. 14:1630-1642.
    • (2005) Protein Sci , vol.14 , pp. 1630-1642
    • Sevier, C.S.1
  • 43
    • 77956515945 scopus 로고    scopus 로고
    • The proteindisulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD
    • Denoncin K, Vertommen D, Paek E, Collet JF. 2010. The proteindisulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD. J. Biol. Chem. 285:29425-29433.
    • (2010) J. Biol. Chem , vol.285 , pp. 29425-29433
    • Denoncin, K.1    Vertommen, D.2    Paek, E.3    Collet, J.F.4
  • 44
    • 79955767087 scopus 로고    scopus 로고
    • Crystal structure of the outer membrane protein RCSF, a new substrate for the periplasmic protein disulfide isomerase DSBC
    • Leverrier P, et al. 2011. Crystal structure of the outer membrane protein RCSF, a new substrate for the periplasmic protein disulfide isomerase DSBC. J. Biol. Chem. 286:16734-16742.
    • (2011) J. Biol. Chem , vol.286 , pp. 16734-16742
    • Leverrier, P.1
  • 45
    • 1842477219 scopus 로고    scopus 로고
    • In vivo substrate specificity of periplasmic disulfide oxidoreductases
    • Hiniker A, Bardwell JC. 2004. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279:12967-12973.
    • (2004) J. Biol. Chem , vol.279 , pp. 12967-12973
    • Hiniker, A.1    Bardwell, J.C.2
  • 46
    • 15744375548 scopus 로고    scopus 로고
    • The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC
    • Berkmen M, Boyd D, Beckwith J. 2005. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J. Biol. Chem. 280:11387-11394.
    • (2005) J. Biol. Chem , vol.280 , pp. 11387-11394
    • Berkmen, M.1    Boyd, D.2    Beckwith, J.3
  • 47
    • 0037168501 scopus 로고    scopus 로고
    • Guanine binding site of the Nicotiana glutinosa ribonuclease NW revealed by X-ray crystallography
    • Kawano S, Kakuta Y, Kimura M. 2002. Guanine binding site of the Nicotiana glutinosa ribonuclease NW revealed by X-ray crystallography. Biochemistry 41:15195-15202.
    • (2002) Biochemistry , vol.41 , pp. 15195-15202
    • Kawano, S.1    Kakuta, Y.2    Kimura, M.3
  • 48
    • 0034725691 scopus 로고    scopus 로고
    • The N-terminal sequence (residues 165) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC
    • Sun XX, Wang CC. 2000. The N-terminal sequence (residues 165) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J. Biol. Chem. 275:22743-22749.
    • (2000) J. Biol. Chem , vol.275 , pp. 22743-22749
    • Sun, X.X.1    Wang, C.C.2
  • 49
    • 0242353305 scopus 로고    scopus 로고
    • Dimerization by domain hybridization bestows chaperone and isomerase activities
    • Zhao Z, Peng Y, Hao SF, Zeng ZH, Wang CC. 2003. Dimerization by domain hybridization bestows chaperone and isomerase activities. J. Biol. Chem. 278:43292-43298.
    • (2003) J. Biol. Chem , vol.278 , pp. 43292-43298
    • Zhao, Z.1    Peng, Y.2    Hao, S.F.3    Zeng, Z.H.4    Wang, C.C.5
  • 50
    • 3042709650 scopus 로고    scopus 로고
    • Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways
    • Segatori L, Paukstelis PJ, Gilbert HF, Georgiou G. 2004. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: reconciling two competing pathways. Proc. Natl. Acad. Sci. U. S. A. 101:10018-10023.
    • (2004) Proc. Natl. Acad. Sci. U. S. A , vol.101 , pp. 10018-10023
    • Segatori, L.1    Paukstelis, P.J.2    Gilbert, H.F.3    Georgiou, G.4
  • 51
    • 33845945906 scopus 로고    scopus 로고
    • The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases
    • Brot N, et al. 2006. The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. J. Biol. Chem. 281:32668-32675.
    • (2006) J. Biol. Chem , vol.281 , pp. 32668-32675
    • Brot, N.1
  • 52
    • 0037162478 scopus 로고    scopus 로고
    • The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species
    • Skaar EP, et al. 2002. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A. 99:10108-10113.
    • (2002) Proc. Natl. Acad. Sci. U. S. A , vol.99 , pp. 10108-10113
    • Skaar, E.P.1
  • 53
    • 23244466487 scopus 로고    scopus 로고
    • Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin
    • Parsonage D, et al. 2005. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44:10583-10592.
    • (2005) Biochemistry , vol.44 , pp. 10583-10592
    • Parsonage, D.1
  • 54
    • 77952396492 scopus 로고    scopus 로고
    • Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: Catalytic mechanism and high reactivity
    • Horta BB, de Oliveira MA, Discola KF, Cussiol JR, Netto LE. 2010. Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity. J. Biol. Chem. 285:16051-16065.
    • (2010) J. Biol. Chem , vol.285 , pp. 16051-16065
    • Horta, B.B.1    de Oliveira, M.A.2    Discola, K.F.3    Cussiol, J.R.4    Netto, L.E.5
  • 55
    • 0027303321 scopus 로고
    • Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis
    • Loferer H, Bott M, Hennecke H. 1993. Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis. EMBO J. 12: 3373-3383.
    • (1993) EMBO J , vol.12 , pp. 3373-3383
    • Loferer, H.1    Bott, M.2    Hennecke, H.3
  • 56
    • 80052415909 scopus 로고    scopus 로고
    • The essential genome of a bacterium
    • Christen B, et al. 2011. The essential genome of a bacterium. Mol. Syst. Biol. 7:528.
    • (2011) Mol. Syst. Biol , vol.7 , pp. 528
    • Christen, B.1
  • 58
    • 0025888266 scopus 로고
    • Genetics of Caulobacter crescentus
    • Ely B. 1991. Genetics of Caulobacter crescentus. Methods Enzymol. 204: 372-384.
    • (1991) Methods Enzymol , vol.204 , pp. 372-384
    • Ely, B.1
  • 59
    • 77955495922 scopus 로고    scopus 로고
    • A cell-type-specific protein-protein interaction modulates transcriptional activity of a master regulator in Caulobacter crescentus
    • Gora KG, et al. 2010. A cell-type-specific protein-protein interaction modulates transcriptional activity of a master regulator in Caulobacter crescentus. Mol. Cell 39:455-467.
    • (2010) Mol. Cell , vol.39 , pp. 455-467
    • Gora, K.G.1
  • 60
    • 79957613599 scopus 로고    scopus 로고
    • MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
    • Tamura K, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.
    • (2011) Mol. Biol. Evol , vol.28 , pp. 2731-2739
    • Tamura, K.1
  • 61
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and psi-blast: A new generation of protein database search programs
    • Altschul SF, et al. 1997. Gapped BLAST and psi-blast: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
    • (1997) Nucleic Acids Res , vol.25 , pp. 3389-3402
    • Altschul, S.F.1
  • 62
    • 23144444979 scopus 로고    scopus 로고
    • Protein structure prediction servers at university college London
    • Bryson K, et al. 2005. Protein structure prediction servers at university college London. Nucleic Acids Res. 33:W36-W38.
    • (2005) Nucleic Acids Res , vol.33
    • Bryson, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.