-
2
-
-
1942517333
-
-
Brinker, K. (2003). Incorporating diversity in active learning with support vector machines. In International conference on machine learning
-
Brinker, K. (2003). Incorporating diversity in active learning with support vector machines. In International conference on machine learning.
-
-
-
-
3
-
-
84939934417
-
-
Campbell, C., Cristianini, N., & Smola, A. J. (2000). Query learning with large margin classifiers. In ICML
-
Campbell, C., Cristianini, N., & Smola, A. J. (2000). Query learning with large margin classifiers. In ICML.
-
-
-
-
4
-
-
84866039306
-
Batch mode active sampling based on marginal probability distribution matching
-
Chattopadhyay, R., Wang, Z., Fan, W., Davidson, I., Panchanathan, S., & Ye, J. (2012). Batch mode active sampling based on marginal probability distribution matching. In KDD (pp. 741–749).
-
(2012)
In KDD
, pp. 741-749
-
-
Chattopadhyay, R.1
Wang, Z.2
Fan, W.3
Davidson, I.4
Panchanathan, S.5
Ye, J.6
-
5
-
-
84939971698
-
-
Chen, M., & Hauptmann, A. (2009). Mosift: Recognizing human actions in surveillance videos. In Technical Report CMU-CS-09-161
-
Chen, M., & Hauptmann, A. (2009). Mosift: Recognizing human actions in surveillance videos. In Technical Report CMU-CS-09-161.
-
-
-
-
6
-
-
0029679131
-
Active learning with statistical models
-
Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statistical models. Journal of Artificial Intelligence Research (JAIR), 4, 129–145.
-
(1996)
Journal of Artificial Intelligence Research (JAIR)
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
7
-
-
17044378544
-
Global linear convergence of an augmented lagrangian algorithm to solve convex quadratic optimization problems
-
Delbos, F., & Gilbert, J. (2005). Global linear convergence of an augmented lagrangian algorithm to solve convex quadratic optimization problems. Journal of Convex Analysis, 12(1), 45–69.
-
(2005)
Journal of Convex Analysis
, vol.12
, Issue.1
, pp. 45-69
-
-
Delbos, F.1
Gilbert, J.2
-
9
-
-
84902291141
-
Learning kernels for unsupervised domain adaptation with applications to visual object recognition
-
Gong, B., Grauman, K., & Sha, F. (2014). Learning kernels for unsupervised domain adaptation with applications to visual object recognition. International Journal of Computer Vision, 109(1–2), 3–27.
-
(2014)
International Journal of Computer Vision
, vol.109
, Issue.1-2
, pp. 3-27
-
-
Gong, B.1
Grauman, K.2
Sha, F.3
-
10
-
-
84921514115
-
-
Zhou, X: Semi-supervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning System
-
Han, Y., Yang, Y., Yan, Y., Ma, Z., Sebe, N., & Zhou, X. (2014). Semi-supervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2014.2314123.
-
(2014)
-
-
Han, Y.1
Yang, Y.2
Yan, Y.3
Ma, Z.4
Sebe, N.5
-
11
-
-
36448966739
-
-
He, X., Min, W., Cai, D., & Zhou, K. (2007). Laplacian optimal design for image retrieval. In SIGIR
-
He, X., Min, W., Cai, D., & Zhou, K. (2007). Laplacian optimal design for image retrieval. In SIGIR.
-
-
-
-
12
-
-
51949109425
-
-
Hoi, S., Jin, R., Zhu, J., & Lyu, M. (2008). Semi-supervised SVM batch mode active learning for image retrieval. In CVPR
-
Hoi, S., Jin, R., Zhu, J., & Lyu, M. (2008). Semi-supervised SVM batch mode active learning for image retrieval. In CVPR.
-
-
-
-
13
-
-
68549086546
-
Semisupervised svm batch mode active learning with applications to image retrieval
-
Hoi, S., Jin, R., Zhu, J., & Lyu, M. (2009). Semisupervised svm batch mode active learning with applications to image retrieval. ACM Transactions on Information Systems, 27(3), 16:1–16:29.
-
(2009)
ACM Transactions on Information Systems, 27(3)
, vol.1-16
, Issue.29
, pp. 16
-
-
Hoi, S.1
Jin, R.2
Zhu, J.3
Lyu, M.4
-
14
-
-
24644458998
-
A semi-supervised active learning framework for image retrieval
-
Hoi, S., & Lyu, M. (2005). A semi-supervised active learning framework for image retrieval. CVPR, 2, 302–309.
-
(2005)
CVPR
, vol.2
, pp. 302-309
-
-
Hoi, S.1
Lyu, M.2
-
15
-
-
70450192673
-
-
Jain, P., & Kapoor, A. (2009). Active learning for large multi-class problems. In CVPR
-
Jain, P., & Kapoor, A. (2009). Active learning for large multi-class problems. In CVPR.
-
-
-
-
16
-
-
84900845459
-
An interactive approach to solving correspondence problems
-
Jegelka, S., Kapoor, A., & Horvitz, E. (2014). An interactive approach to solving correspondence problems. International Journal of Computer Vision, 108(1–2), 49–58.
-
(2014)
International Journal of Computer Vision
, vol.108
, Issue.1-2
, pp. 49-58
-
-
Jegelka, S.1
Kapoor, A.2
Horvitz, E.3
-
17
-
-
70450181250
-
-
Joshi, A., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In CVPR
-
Joshi, A., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In CVPR.
-
-
-
-
18
-
-
77951294698
-
Gaussian processes for object categorization
-
Kapoor, A., Grauman, K., Urtasun, R., & Darrell, T. (2010). Gaussian processes for object categorization. International Journal of Computer Vision, 88(2), 169–188.
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 169-188
-
-
Kapoor, A.1
Grauman, K.2
Urtasun, R.3
Darrell, T.4
-
19
-
-
80052905388
-
-
Kowdle, A., Chang, Y., Gallagher, A., & Chen, T. (2011). Active learning for piecewise planar 3D reconstruction. In CVPR
-
Kowdle, A., Chang, Y., Gallagher, A., & Chen, T. (2011). Active learning for piecewise planar 3D reconstruction. In CVPR.
-
-
-
-
20
-
-
84939975219
-
-
Laptev, I., Marszalek, M., Schmid, C., & Rozenfeld, B. (2008). Recognizing realistic actions from videos in the wild. In CVPR
-
Laptev, I., Marszalek, M., Schmid, C., & Rozenfeld, B. (2008). Recognizing realistic actions from videos in the wild. In CVPR.
-
-
-
-
21
-
-
33845572523
-
-
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR
-
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR.
-
-
-
-
22
-
-
78650966391
-
-
Li, H., Shi, Y., Chen, M., Hauptmann, A., & Xiong, Z. (2010). Hybrid active learning for cross-domain video concept detection. In ACM Multimedia
-
Li, H., Shi, Y., Chen, M., Hauptmann, A., & Xiong, Z. (2010). Hybrid active learning for cross-domain video concept detection. In ACM Multimedia.
-
-
-
-
23
-
-
33748126301
-
Confidence-based active learning
-
Li, M., & Sethi, I. K. (2006). Confidence-based active learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1251–1261.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.8
, pp. 1251-1261
-
-
Li, M.1
Sethi, I.K.2
-
24
-
-
20444497715
-
-
Li, X., Wang, L., & Sung, E. (2004). Multilabel SVM active learning for image classification. In ICIP
-
Li, X., Wang, L., & Sung, E. (2004). Multilabel SVM active learning for image classification. In ICIP.
-
-
-
-
25
-
-
1242352526
-
Selective sampling for nearest neighbor classifiers
-
Lindenbaum, M., Markovitch, S., & Rusakov, D. (2004). Selective sampling for nearest neighbor classifiers. Machine Learning, 54(2), 125–152.
-
(2004)
Machine Learning
, vol.54
, Issue.2
, pp. 125-152
-
-
Lindenbaum, M.1
Markovitch, S.2
Rusakov, D.3
-
26
-
-
70450203660
-
-
Liu, J., Luo, J., & Shah, M. (2009). Recognizing realistic actions from videos in the wild. In CVPR
-
Liu, J., Luo, J., & Shah, M. (2009). Recognizing realistic actions from videos in the wild. In CVPR.
-
-
-
-
27
-
-
84902258204
-
Harnessing lab knowledge for real-world action recognition
-
Ma, Z., Yang, Y., Nie, F., Sebe, N., Yan, S., & Hauptmann, A. (2014). Harnessing lab knowledge for real-world action recognition. International Journal of Computer Vision, 109(1–2), 60–73.
-
(2014)
International Journal of Computer Vision
, vol.109
, Issue.1-2
, pp. 60-73
-
-
Ma, Z.1
Yang, Y.2
Nie, F.3
Sebe, N.4
Yan, S.5
Hauptmann, A.6
-
28
-
-
84905573114
-
Knowledge adaptation with partiallyshared features for event detection using few exemplars
-
Ma, Z., Yang, Y., Sebe, N., & Hauptmann, A. (2014). Knowledge adaptation with partiallyshared features for event detection using few exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(9), 1789–1802.
-
(2014)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.36
, Issue.9
, pp. 1789-1802
-
-
Ma, Z.1
Yang, Y.2
Sebe, N.3
Hauptmann, A.4
-
30
-
-
10044233701
-
-
Schüldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A local SVM approach. In ICPR
-
Schüldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A local SVM approach. In ICPR.
-
-
-
-
31
-
-
84940003566
-
-
Shen, H., Yu, S.-I., Yang, Y., Meng, D., & Hauptmann, A. (2014). Unsupervised video adaptation for parsing human motion. In ECCV
-
Shen, H., Yu, S.-I., Yang, Y., Meng, D., & Hauptmann, A. (2014). Unsupervised video adaptation for parsing human motion. In ECCV.
-
-
-
-
32
-
-
4544280485
-
-
Spielman, D., & Teng, S.-H. (2004). Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In STOC
-
Spielman, D., & Teng, S.-H. (2004). Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In STOC.
-
-
-
-
33
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J., Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.1
Silva, V.2
Langford, J.C.3
-
34
-
-
0034792634
-
-
Tong, S., & Chang, E. (2001). Support vector machine active learning for image retrieval. In ACM Multimedia
-
Tong, S., & Chang, E. (2001). Support vector machine active learning for image retrieval. In ACM Multimedia.
-
-
-
-
35
-
-
85162539634
-
-
Vondrick, C., & Ramanan, D. (2011). Video annotation and tracking with active learning. In NIPS
-
Vondrick, C., & Ramanan, D. (2011). Video annotation and tracking with active learning. In NIPS.
-
-
-
-
36
-
-
17744409615
-
Bootstrapping SVM active learning by incorporating unlabelled images for image retrieval
-
Wang, L., Chan, K. L., & Zhang, Z. (2003). Bootstrapping SVM active learning by incorporating unlabelled images for image retrieval. In CVPR (pp. 629–634).
-
(2003)
In CVPR
, pp. 629-634
-
-
Wang, L.1
Chan, K.L.2
Zhang, Z.3
-
37
-
-
0344551862
-
-
Yan, R., Yang, J., & Hauptmann, A. (2003). Automatically labeling video data using multi-class active learning. In ICCV
-
Yan, R., Yang, J., & Hauptmann, A. (2003). Automatically labeling video data using multi-class active learning. In ICCV.
-
-
-
-
38
-
-
84897584116
-
Feature selection for multimedia analysis by sharing information among multiple tasks
-
Yang, Y., Ma, Z., Hauptmann, A., & Sebe, N. (2013). Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Transactions on Multimedia, 15(3), 661–669.
-
(2013)
IEEE Transactions on Multimedia
, vol.15
, Issue.3
, pp. 661-669
-
-
Yang, Y.1
Ma, Z.2
Hauptmann, A.3
Sebe, N.4
-
39
-
-
84898796947
-
-
Yang, Y., Ma, Z., Xu, Z., Yan, S., & Hauptmann, A. (2013). How related exemplars help complex event detection in web videos. In ICCV
-
Yang, Y., Ma, Z., Xu, Z., Yan, S., & Hauptmann, A. (2013). How related exemplars help complex event detection in web videos. In ICCV.
-
-
-
-
40
-
-
84863116061
-
A multimedia retrieval framework based on semi-supervised ranking and relevance feedback
-
Yang, Y., Nie, F., Xu, D., Luo, J., Zhuang, Y., & Pan, Y. (2012). A multimedia retrieval framework based on semi-supervised ranking and relevance feedback. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 723–742.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.4
, pp. 723-742
-
-
Yang, Y.1
Nie, F.2
Xu, D.3
Luo, J.4
Zhuang, Y.5
Pan, Y.6
-
41
-
-
33749265864
-
Active learning via transductive experimental design
-
Yu, K., Bi, J., & Tresp, V. (2006). Active learning via transductive experimental design. In ICML (pp. 1081–1088).
-
(2006)
In ICML
, pp. 1081-1088
-
-
Yu, K.1
Bi, J.2
Tresp, V.3
-
43
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
Zhu, X., Ghahramani, Z., & Lafferty, J.D. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (pp. 912–919).
-
(2003)
In ICML
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.D.3
|