메뉴 건너뛰기




Volumn 113, Issue 2, 2015, Pages 113-127

Multi-Class Active Learning by Uncertainty Sampling with Diversity Maximization

Author keywords

Active learning; Diversity maximization; Uncertainty sampling

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTER VISION; OBJECT RECOGNITION; PATTERN RECOGNITION;

EID: 84940005208     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-014-0781-x     Document Type: Article
Times cited : (470)

References (43)
  • 2
    • 1942517333 scopus 로고    scopus 로고
    • Brinker, K. (2003). Incorporating diversity in active learning with support vector machines. In International conference on machine learning
    • Brinker, K. (2003). Incorporating diversity in active learning with support vector machines. In International conference on machine learning.
  • 3
    • 84939934417 scopus 로고    scopus 로고
    • Campbell, C., Cristianini, N., & Smola, A. J. (2000). Query learning with large margin classifiers. In ICML
    • Campbell, C., Cristianini, N., & Smola, A. J. (2000). Query learning with large margin classifiers. In ICML.
  • 4
    • 84866039306 scopus 로고    scopus 로고
    • Batch mode active sampling based on marginal probability distribution matching
    • Chattopadhyay, R., Wang, Z., Fan, W., Davidson, I., Panchanathan, S., & Ye, J. (2012). Batch mode active sampling based on marginal probability distribution matching. In KDD (pp. 741–749).
    • (2012) In KDD , pp. 741-749
    • Chattopadhyay, R.1    Wang, Z.2    Fan, W.3    Davidson, I.4    Panchanathan, S.5    Ye, J.6
  • 5
    • 84939971698 scopus 로고    scopus 로고
    • Chen, M., & Hauptmann, A. (2009). Mosift: Recognizing human actions in surveillance videos. In Technical Report CMU-CS-09-161
    • Chen, M., & Hauptmann, A. (2009). Mosift: Recognizing human actions in surveillance videos. In Technical Report CMU-CS-09-161.
  • 7
    • 17044378544 scopus 로고    scopus 로고
    • Global linear convergence of an augmented lagrangian algorithm to solve convex quadratic optimization problems
    • Delbos, F., & Gilbert, J. (2005). Global linear convergence of an augmented lagrangian algorithm to solve convex quadratic optimization problems. Journal of Convex Analysis, 12(1), 45–69.
    • (2005) Journal of Convex Analysis , vol.12 , Issue.1 , pp. 45-69
    • Delbos, F.1    Gilbert, J.2
  • 9
    • 84902291141 scopus 로고    scopus 로고
    • Learning kernels for unsupervised domain adaptation with applications to visual object recognition
    • Gong, B., Grauman, K., & Sha, F. (2014). Learning kernels for unsupervised domain adaptation with applications to visual object recognition. International Journal of Computer Vision, 109(1–2), 3–27.
    • (2014) International Journal of Computer Vision , vol.109 , Issue.1-2 , pp. 3-27
    • Gong, B.1    Grauman, K.2    Sha, F.3
  • 10
    • 84921514115 scopus 로고    scopus 로고
    • Zhou, X: Semi-supervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning System
    • Han, Y., Yang, Y., Yan, Y., Ma, Z., Sebe, N., & Zhou, X. (2014). Semi-supervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning Systems. doi:10.1109/TNNLS.2014.2314123.
    • (2014)
    • Han, Y.1    Yang, Y.2    Yan, Y.3    Ma, Z.4    Sebe, N.5
  • 11
    • 36448966739 scopus 로고    scopus 로고
    • He, X., Min, W., Cai, D., & Zhou, K. (2007). Laplacian optimal design for image retrieval. In SIGIR
    • He, X., Min, W., Cai, D., & Zhou, K. (2007). Laplacian optimal design for image retrieval. In SIGIR.
  • 12
    • 51949109425 scopus 로고    scopus 로고
    • Hoi, S., Jin, R., Zhu, J., & Lyu, M. (2008). Semi-supervised SVM batch mode active learning for image retrieval. In CVPR
    • Hoi, S., Jin, R., Zhu, J., & Lyu, M. (2008). Semi-supervised SVM batch mode active learning for image retrieval. In CVPR.
  • 13
    • 68549086546 scopus 로고    scopus 로고
    • Semisupervised svm batch mode active learning with applications to image retrieval
    • Hoi, S., Jin, R., Zhu, J., & Lyu, M. (2009). Semisupervised svm batch mode active learning with applications to image retrieval. ACM Transactions on Information Systems, 27(3), 16:1–16:29.
    • (2009) ACM Transactions on Information Systems, 27(3) , vol.1-16 , Issue.29 , pp. 16
    • Hoi, S.1    Jin, R.2    Zhu, J.3    Lyu, M.4
  • 14
    • 24644458998 scopus 로고    scopus 로고
    • A semi-supervised active learning framework for image retrieval
    • Hoi, S., & Lyu, M. (2005). A semi-supervised active learning framework for image retrieval. CVPR, 2, 302–309.
    • (2005) CVPR , vol.2 , pp. 302-309
    • Hoi, S.1    Lyu, M.2
  • 15
    • 70450192673 scopus 로고    scopus 로고
    • Jain, P., & Kapoor, A. (2009). Active learning for large multi-class problems. In CVPR
    • Jain, P., & Kapoor, A. (2009). Active learning for large multi-class problems. In CVPR.
  • 17
    • 70450181250 scopus 로고    scopus 로고
    • Joshi, A., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In CVPR
    • Joshi, A., Porikli, F., & Papanikolopoulos, N. (2009). Multi-class active learning for image classification. In CVPR.
  • 19
    • 80052905388 scopus 로고    scopus 로고
    • Kowdle, A., Chang, Y., Gallagher, A., & Chen, T. (2011). Active learning for piecewise planar 3D reconstruction. In CVPR
    • Kowdle, A., Chang, Y., Gallagher, A., & Chen, T. (2011). Active learning for piecewise planar 3D reconstruction. In CVPR.
  • 20
    • 84939975219 scopus 로고    scopus 로고
    • Laptev, I., Marszalek, M., Schmid, C., & Rozenfeld, B. (2008). Recognizing realistic actions from videos in the wild. In CVPR
    • Laptev, I., Marszalek, M., Schmid, C., & Rozenfeld, B. (2008). Recognizing realistic actions from videos in the wild. In CVPR.
  • 21
    • 33845572523 scopus 로고    scopus 로고
    • Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR
    • Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR.
  • 22
    • 78650966391 scopus 로고    scopus 로고
    • Li, H., Shi, Y., Chen, M., Hauptmann, A., & Xiong, Z. (2010). Hybrid active learning for cross-domain video concept detection. In ACM Multimedia
    • Li, H., Shi, Y., Chen, M., Hauptmann, A., & Xiong, Z. (2010). Hybrid active learning for cross-domain video concept detection. In ACM Multimedia.
  • 24
    • 20444497715 scopus 로고    scopus 로고
    • Li, X., Wang, L., & Sung, E. (2004). Multilabel SVM active learning for image classification. In ICIP
    • Li, X., Wang, L., & Sung, E. (2004). Multilabel SVM active learning for image classification. In ICIP.
  • 25
    • 1242352526 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classifiers
    • Lindenbaum, M., Markovitch, S., & Rusakov, D. (2004). Selective sampling for nearest neighbor classifiers. Machine Learning, 54(2), 125–152.
    • (2004) Machine Learning , vol.54 , Issue.2 , pp. 125-152
    • Lindenbaum, M.1    Markovitch, S.2    Rusakov, D.3
  • 26
    • 70450203660 scopus 로고    scopus 로고
    • Liu, J., Luo, J., & Shah, M. (2009). Recognizing realistic actions from videos in the wild. In CVPR
    • Liu, J., Luo, J., & Shah, M. (2009). Recognizing realistic actions from videos in the wild. In CVPR.
  • 30
    • 10044233701 scopus 로고    scopus 로고
    • Schüldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A local SVM approach. In ICPR
    • Schüldt, C., Laptev, I., & Caputo, B. (2004). Recognizing human actions: A local SVM approach. In ICPR.
  • 31
    • 84940003566 scopus 로고    scopus 로고
    • Shen, H., Yu, S.-I., Yang, Y., Meng, D., & Hauptmann, A. (2014). Unsupervised video adaptation for parsing human motion. In ECCV
    • Shen, H., Yu, S.-I., Yang, Y., Meng, D., & Hauptmann, A. (2014). Unsupervised video adaptation for parsing human motion. In ECCV.
  • 32
    • 4544280485 scopus 로고    scopus 로고
    • Spielman, D., & Teng, S.-H. (2004). Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In STOC
    • Spielman, D., & Teng, S.-H. (2004). Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In STOC.
  • 33
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J., Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.C.3
  • 34
    • 0034792634 scopus 로고    scopus 로고
    • Tong, S., & Chang, E. (2001). Support vector machine active learning for image retrieval. In ACM Multimedia
    • Tong, S., & Chang, E. (2001). Support vector machine active learning for image retrieval. In ACM Multimedia.
  • 35
    • 85162539634 scopus 로고    scopus 로고
    • Vondrick, C., & Ramanan, D. (2011). Video annotation and tracking with active learning. In NIPS
    • Vondrick, C., & Ramanan, D. (2011). Video annotation and tracking with active learning. In NIPS.
  • 36
    • 17744409615 scopus 로고    scopus 로고
    • Bootstrapping SVM active learning by incorporating unlabelled images for image retrieval
    • Wang, L., Chan, K. L., & Zhang, Z. (2003). Bootstrapping SVM active learning by incorporating unlabelled images for image retrieval. In CVPR (pp. 629–634).
    • (2003) In CVPR , pp. 629-634
    • Wang, L.1    Chan, K.L.2    Zhang, Z.3
  • 37
    • 0344551862 scopus 로고    scopus 로고
    • Yan, R., Yang, J., & Hauptmann, A. (2003). Automatically labeling video data using multi-class active learning. In ICCV
    • Yan, R., Yang, J., & Hauptmann, A. (2003). Automatically labeling video data using multi-class active learning. In ICCV.
  • 38
    • 84897584116 scopus 로고    scopus 로고
    • Feature selection for multimedia analysis by sharing information among multiple tasks
    • Yang, Y., Ma, Z., Hauptmann, A., & Sebe, N. (2013). Feature selection for multimedia analysis by sharing information among multiple tasks. IEEE Transactions on Multimedia, 15(3), 661–669.
    • (2013) IEEE Transactions on Multimedia , vol.15 , Issue.3 , pp. 661-669
    • Yang, Y.1    Ma, Z.2    Hauptmann, A.3    Sebe, N.4
  • 39
    • 84898796947 scopus 로고    scopus 로고
    • Yang, Y., Ma, Z., Xu, Z., Yan, S., & Hauptmann, A. (2013). How related exemplars help complex event detection in web videos. In ICCV
    • Yang, Y., Ma, Z., Xu, Z., Yan, S., & Hauptmann, A. (2013). How related exemplars help complex event detection in web videos. In ICCV.
  • 41
    • 33749265864 scopus 로고    scopus 로고
    • Active learning via transductive experimental design
    • Yu, K., Bi, J., & Tresp, V. (2006). Active learning via transductive experimental design. In ICML (pp. 1081–1088).
    • (2006) In ICML , pp. 1081-1088
    • Yu, K.1    Bi, J.2    Tresp, V.3
  • 43
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • Zhu, X., Ghahramani, Z., & Lafferty, J.D. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (pp. 912–919).
    • (2003) In ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.