메뉴 건너뛰기




Volumn 41, Issue 3, 2016, Pages 231-244

Mechanisms and Dynamics of Protein Acetylation in Mitochondria

Author keywords

Acetylation; Acylation; Metabolic regulation; Mitochondria; Nonenzymatic; Stoichiometry

Indexed keywords

ACETATE COENZYME A LIGASE; HISTONE ACETYLTRANSFERASE; HISTONE DEACETYLASE; MITOCHONDRIAL PROTEIN; SIRTUIN 3; PROTEIN;

EID: 84959569586     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.12.006     Document Type: Review
Times cited : (244)

References (103)
  • 1
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
    • Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 2
    • 78651162036 scopus 로고
    • Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
    • Allfrey V.G., et al. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 1964, 51:786-794.
    • (1964) Proc. Natl. Acad. Sci. U.S.A. , vol.51 , pp. 786-794
    • Allfrey, V.G.1
  • 3
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
    • Brownell J.E., et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996, 84:843-851.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1
  • 4
    • 0029932598 scopus 로고    scopus 로고
    • A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
    • Taunton J., et al. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996, 272:408-411.
    • (1996) Science , vol.272 , pp. 408-411
    • Taunton, J.1
  • 5
    • 0034912742 scopus 로고    scopus 로고
    • Histone acetyltransferases
    • Roth S.Y., et al. Histone acetyltransferases. Annu. Rev. Biochem. 2001, 70:81-120.
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 81-120
    • Roth, S.Y.1
  • 6
    • 79958206937 scopus 로고    scopus 로고
    • Sirtuins, aging, and medicine
    • Guarente L. Sirtuins, aging, and medicine. N. Engl. J. Med. 2011, 364:2235-2244.
    • (2011) N. Engl. J. Med. , vol.364 , pp. 2235-2244
    • Guarente, L.1
  • 7
    • 57749170458 scopus 로고    scopus 로고
    • The many roles of histone deacetylases in development and physiology: implications for disease and therapy
    • Haberland M., et al. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009, 10:32-42.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 32-42
    • Haberland, M.1
  • 8
    • 32444434989 scopus 로고    scopus 로고
    • Histone H4-K16 acetylation controls chromatin structure and protein interactions
    • Shogren-Knaak M., et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006, 311:844-847.
    • (2006) Science , vol.311 , pp. 844-847
    • Shogren-Knaak, M.1
  • 9
    • 70349765673 scopus 로고    scopus 로고
    • A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation
    • Neumann H., et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 2009, 36:153-163.
    • (2009) Mol. Cell , vol.36 , pp. 153-163
    • Neumann, H.1
  • 10
    • 84859181036 scopus 로고    scopus 로고
    • Histone recognition and large-scale structural analysis of the human bromodomain family
    • Filippakopoulos P., et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149:214-231.
    • (2012) Cell , vol.149 , pp. 214-231
    • Filippakopoulos, P.1
  • 11
    • 0023293040 scopus 로고
    • Microtubules containing acetylated alpha-tubulin in mammalian cells in culture
    • Piperno G., et al. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 1987, 104:289-302.
    • (1987) J. Cell Biol. , vol.104 , pp. 289-302
    • Piperno, G.1
  • 12
    • 84926163974 scopus 로고    scopus 로고
    • 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond
    • Verdin E., Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 2015, 16:258-264.
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 258-264
    • Verdin, E.1    Ott, M.2
  • 13
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10230-10235.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10230-10235
    • Hallows, W.C.1
  • 14
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10224-10229.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10224-10229
    • Schwer, B.1
  • 15
    • 0347457075 scopus 로고    scopus 로고
    • Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
    • Starai V.J., et al. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002, 298:2390-2392.
    • (2002) Science , vol.298 , pp. 2390-2392
    • Starai, V.J.1
  • 16
    • 84891779165 scopus 로고    scopus 로고
    • CPLM: a database of protein lysine modifications
    • Liu Z., et al. CPLM: a database of protein lysine modifications. Nucleic Acids Res. 2014, 42:D531-D536.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D531-D536
    • Liu, Z.1
  • 17
    • 78651279978 scopus 로고    scopus 로고
    • CPLA 1.0: an integrated database of protein lysine acetylation
    • Liu Z., et al. CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res. 2011, 39:D1029-D1034.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D1029-D1034
    • Liu, Z.1
  • 18
    • 84979518589 scopus 로고    scopus 로고
    • MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins
    • Published online October 7, 2015
    • Calvo S.E., et al. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2015, Published online October 7, 2015. 10.1093/nar/gkv1003.
    • (2015) Nucleic Acids Res.
    • Calvo, S.E.1
  • 19
    • 40949099577 scopus 로고    scopus 로고
    • Genetically encoding Ne-acetyllysine in recombinant proteins
    • Neumann H., et al. Genetically encoding Ne-acetyllysine in recombinant proteins. Nat. Chem. Biol. 2008, 4:232-234.
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 232-234
    • Neumann, H.1
  • 20
    • 79960138904 scopus 로고    scopus 로고
    • Autoacetylation of the histone acetyltransferase Rtt109
    • Albaugh B.N., et al. Autoacetylation of the histone acetyltransferase Rtt109. J. Biol. Chem. 2011, 286:24694-24701.
    • (2011) J. Biol. Chem. , vol.286 , pp. 24694-24701
    • Albaugh, B.N.1
  • 21
    • 84888329025 scopus 로고    scopus 로고
    • Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
    • Bharathi S.S., et al. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 2013, 288:33837-33847.
    • (2013) J. Biol. Chem. , vol.288 , pp. 33837-33847
    • Bharathi, S.S.1
  • 22
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert A.S., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 2013, 49:186-199.
    • (2013) Mol. Cell , vol.49 , pp. 186-199
    • Hebert, A.S.1
  • 23
    • 84876217035 scopus 로고    scopus 로고
    • Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
    • Rardin M.J., et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:6601-6606.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 6601-6606
    • Rardin, M.J.1
  • 24
    • 84928386194 scopus 로고    scopus 로고
    • SIRT3 mediates multi-tissue coupling for metabolic fuel switching
    • Dittenhafer-Reed K.E., et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab. 2015, 21:637-646.
    • (2015) Cell Metab. , vol.21 , pp. 637-646
    • Dittenhafer-Reed, K.E.1
  • 25
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8807-8814
    • Lombard, D.B.1
  • 26
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman J.L., et al. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013, 288:31350-31356.
    • (2013) J. Biol. Chem. , vol.288 , pp. 31350-31356
    • Feldman, J.L.1
  • 27
    • 84919933749 scopus 로고    scopus 로고
    • Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
    • Mathias R.A., et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014, 159:1615-1625.
    • (2014) Cell , vol.159 , pp. 1615-1625
    • Mathias, R.A.1
  • 28
    • 84897565291 scopus 로고    scopus 로고
    • Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
    • Tan M., et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014, 19:605-617.
    • (2014) Cell Metab. , vol.19 , pp. 605-617
    • Tan, M.1
  • 29
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111.012658, 10. M111.012658
    • Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658.
    • (2011) Mol. Cell. Proteomics , vol.10
    • Peng, C.1
  • 30
    • 84880791239 scopus 로고    scopus 로고
    • SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
    • Park J., et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 2013, 50:919-930.
    • (2013) Mol. Cell , vol.50 , pp. 919-930
    • Park, J.1
  • 31
    • 84878891625 scopus 로고    scopus 로고
    • SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
    • Laurent G., et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 2013, 50:686-698.
    • (2013) Mol. Cell , vol.50 , pp. 686-698
    • Laurent, G.1
  • 32
    • 84885155285 scopus 로고    scopus 로고
    • Widespread and enzyme-independent Ne-acetylation and Ne-succinylation of proteins in the chemical conditions of the mitochondrial matrix
    • Wagner G.R., Payne R.M. Widespread and enzyme-independent Ne-acetylation and Ne-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 2013, 288:29036-29045.
    • (2013) J. Biol. Chem. , vol.288 , pp. 29036-29045
    • Wagner, G.R.1    Payne, R.M.2
  • 33
    • 84888604134 scopus 로고    scopus 로고
    • Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications
    • Ghanta S., et al. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 2013, 48:561-574.
    • (2013) Crit. Rev. Biochem. Mol. Biol. , vol.48 , pp. 561-574
    • Ghanta, S.1
  • 34
    • 84898012702 scopus 로고    scopus 로고
    • Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
    • Wagner G.R., Hirschey M.D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 2014, 54:5-16.
    • (2014) Mol. Cell , vol.54 , pp. 5-16
    • Wagner, G.R.1    Hirschey, M.D.2
  • 35
    • 0014937061 scopus 로고
    • Nonenzymatic acetylation of histones with acetyl-CoA
    • Paik W.K., et al. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 1970, 213:513-522.
    • (1970) Biochim. Biophys. Acta , vol.213 , pp. 513-522
    • Paik, W.K.1
  • 36
    • 84921405747 scopus 로고    scopus 로고
    • Site-specific reactivity of nonenzymatic lysine acetylation
    • Baeza J., et al. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 2015, 10:122-128.
    • (2015) ACS Chem. Biol. , vol.10 , pp. 122-128
    • Baeza, J.1
  • 37
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1
  • 38
    • 84870880080 scopus 로고    scopus 로고
    • Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3
    • Sol E.M., et al. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS ONE 2012, 7:e50545.
    • (2012) PLoS ONE , vol.7 , pp. e50545
    • Sol, E.M.1
  • 39
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • Gius D., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
    • (2010) Mol. Cell , vol.40 , pp. 893-904
    • Gius, D.1
  • 40
    • 79957979314 scopus 로고    scopus 로고
    • Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
    • Chen Y., et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011, 12:534-541.
    • (2011) EMBO Rep. , vol.12 , pp. 534-541
    • Chen, Y.1
  • 41
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • Verdin E., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
    • (2010) Cell Metab. , vol.12 , pp. 662-667
    • Verdin, E.1
  • 42
    • 84859951790 scopus 로고    scopus 로고
    • SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
    • Yu W., et al. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 2012, 287:14078-14086.
    • (2012) J. Biol. Chem. , vol.287 , pp. 14078-14086
    • Yu, W.1
  • 43
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • Schlicker C., et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
    • (2008) J. Mol. Biol. , vol.382 , pp. 790-801
    • Schlicker, C.1
  • 44
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1
  • 45
    • 79951906633 scopus 로고    scopus 로고
    • SIRT3 substrate specificity determined by peptide arrays and machine learning
    • Smith B.C., et al. SIRT3 substrate specificity determined by peptide arrays and machine learning. ACS Chem. Biol. 2011, 6:146-157.
    • (2011) ACS Chem. Biol. , vol.6 , pp. 146-157
    • Smith, B.C.1
  • 46
    • 84905378213 scopus 로고    scopus 로고
    • Stoichiometry of site-specific lysine acetylation in an entire proteome
    • Baeza J., et al. Stoichiometry of site-specific lysine acetylation in an entire proteome. J. Biol. Chem. 2014, 289:21326-21338.
    • (2014) J. Biol. Chem. , vol.289 , pp. 21326-21338
    • Baeza, J.1
  • 47
    • 84898012537 scopus 로고    scopus 로고
    • Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
    • Weinert B.T., et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 2014, 10:716.
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 716
    • Weinert, B.T.1
  • 48
    • 84946488466 scopus 로고    scopus 로고
    • Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions
    • Weinert B.T., et al. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. 2015, 34:2620-2632.
    • (2015) EMBO J. , vol.34 , pp. 2620-2632
    • Weinert, B.T.1
  • 49
    • 84880426255 scopus 로고    scopus 로고
    • Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli
    • Weinert B.T., et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell 2013, 51:265-272.
    • (2013) Mol. Cell , vol.51 , pp. 265-272
    • Weinert, B.T.1
  • 50
    • 84884473738 scopus 로고    scopus 로고
    • Ethanol metabolism modifies hepatic protein acylation in mice
    • Fritz K.S., et al. Ethanol metabolism modifies hepatic protein acylation in mice. PLoS ONE 2013, 8:e75868.
    • (2013) PLoS ONE , vol.8 , pp. e75868
    • Fritz, K.S.1
  • 51
    • 84893704306 scopus 로고    scopus 로고
    • Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism
    • Pougovkina O., et al. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism. J. Inherit. Metab. Dis. 2014, 37:709-714.
    • (2014) J. Inherit. Metab. Dis. , vol.37 , pp. 709-714
    • Pougovkina, O.1
  • 52
    • 84885155285 scopus 로고    scopus 로고
    • Widespread and enzyme-independent N-acetylation and N-succinylation of proteins in the chemical conditions of the mitochondrial matrix
    • Wagner G.R., Payne R.M. Widespread and enzyme-independent N-acetylation and N-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 2013, 288:29036-29045.
    • (2013) J. Biol. Chem. , vol.288 , pp. 29036-29045
    • Wagner, G.R.1    Payne, R.M.2
  • 53
    • 84883307077 scopus 로고    scopus 로고
    • Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation
    • Weinert B.T., et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013, 4:842-851.
    • (2013) Cell Rep. , vol.4 , pp. 842-851
    • Weinert, B.T.1
  • 54
    • 77957295549 scopus 로고    scopus 로고
    • Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation
    • Wacker S.A., et al. Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation. Protein Sci. 2010, 19:1820-1829.
    • (2010) Protein Sci. , vol.19 , pp. 1820-1829
    • Wacker, S.A.1
  • 55
    • 0019083376 scopus 로고
    • Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity
    • Alex S., Bell J.E. Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity. Biochem. J. 1980, 191:299-304.
    • (1980) Biochem. J. , vol.191 , pp. 299-304
    • Alex, S.1    Bell, J.E.2
  • 56
    • 0033565447 scopus 로고    scopus 로고
    • The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery
    • Peterson P.E., et al. The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure 1999, 7:769-782.
    • (1999) Structure , vol.7 , pp. 769-782
    • Peterson, P.E.1
  • 57
    • 84896713080 scopus 로고    scopus 로고
    • Regulation of autophagy by cytosolic acetyl-coenzyme A
    • Mariño G., et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 2014, 53:710-725.
    • (2014) Mol. Cell , vol.53 , pp. 710-725
    • Mariño, G.1
  • 58
    • 79959954965 scopus 로고    scopus 로고
    • IPath2.0: interactive pathway explorer
    • Yamada T., et al. iPath2.0: interactive pathway explorer. Nucleic Acids Res. 2011, 39:W412-W415.
    • (2011) Nucleic Acids Res. , vol.39 , pp. W412-W415
    • Yamada, T.1
  • 59
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
    • (2006) Mol. Cell , vol.23 , pp. 607-618
    • Kim, S.C.1
  • 60
    • 56649114286 scopus 로고    scopus 로고
    • The diversity of lysine-acetylated proteins in Escherichia coli
    • Yu B.J., et al. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol. 2008, 18:1529-1536.
    • (2008) J. Microbiol. Biotechnol. , vol.18 , pp. 1529-1536
    • Yu, B.J.1
  • 61
    • 61649089277 scopus 로고    scopus 로고
    • Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
    • Zhang J., et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteomics 2009, 8:215-225.
    • (2009) Mol. Cell. Proteomics , vol.8 , pp. 215-225
    • Zhang, J.1
  • 62
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1
  • 63
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1
  • 64
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
    • Wang Q., et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 327:1004-1007.
    • (2010) Science , vol.327 , pp. 1004-1007
    • Wang, Q.1
  • 65
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • Zhao S., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1
  • 66
    • 80052450371 scopus 로고    scopus 로고
    • The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching
    • Yang L., et al. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J. Proteome Res. 2011, 10:4134-4149.
    • (2011) J. Proteome Res. , vol.10 , pp. 4134-4149
    • Yang, L.1
  • 67
    • 79960797509 scopus 로고    scopus 로고
    • Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
    • Weinert B.T., et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci. Signal. 2011, 4:ra48.
    • (2011) Sci. Signal. , vol.4 , pp. ra48
    • Weinert, B.T.1
  • 68
    • 84863898161 scopus 로고    scopus 로고
    • Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice
    • Simon G.M., et al. Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11133-11138.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11133-11138
    • Simon, G.M.1
  • 69
    • 84869215170 scopus 로고    scopus 로고
    • Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae
    • Henriksen P., et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol. Cell. Proteomics 2012, 11:1510-1522.
    • (2012) Mol. Cell. Proteomics , vol.11 , pp. 1510-1522
    • Henriksen, P.1
  • 70
    • 84865726581 scopus 로고    scopus 로고
    • Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns
    • Lundby A., et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2012, 2:419-431.
    • (2012) Cell Rep. , vol.2 , pp. 419-431
    • Lundby, A.1
  • 71
    • 84879743246 scopus 로고    scopus 로고
    • The cardiac acetyl-lysine proteome
    • Foster D.B., et al. The cardiac acetyl-lysine proteome. PLoS ONE 2013, 8:e67513.
    • (2013) PLoS ONE , vol.8 , pp. e67513
    • Foster, D.B.1
  • 72
    • 84876921286 scopus 로고    scopus 로고
    • Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase
    • Zhang Q-F., et al. Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J. 2013, 280:1966-1979.
    • (2013) FEBS J. , vol.280 , pp. 1966-1979
    • Zhang, Q.-F.1
  • 73
    • 84883659304 scopus 로고    scopus 로고
    • Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation
    • Still A.J., et al. Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J. Biol. Chem. 2013, 288:26209-26219.
    • (2013) J. Biol. Chem. , vol.288 , pp. 26209-26219
    • Still, A.J.1
  • 74
    • 84937531951 scopus 로고    scopus 로고
    • A method to determine lysine acetylation stoichiometries
    • Nakayasu E.S., et al. A method to determine lysine acetylation stoichiometries. Int. J. Proteomics 2014, 2014:730725.
    • (2014) Int. J. Proteomics , vol.2014 , pp. 730725
    • Nakayasu, E.S.1
  • 75
    • 84899668522 scopus 로고    scopus 로고
    • Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation
    • Kuhn M.L., et al. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS ONE 2014, 9:e94816.
    • (2014) PLoS ONE , vol.9 , pp. e94816
    • Kuhn, M.L.1
  • 76
    • 84926614325 scopus 로고    scopus 로고
    • Acetylation site specificities of lysine deacetylase inhibitors in human cells
    • Schölz C., et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 2015, 33:415-423.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 415-423
    • Schölz, C.1
  • 77
    • 84940492346 scopus 로고    scopus 로고
    • Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow
    • Svinkina T., et al. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol. Cell. Proteomics 2015, 14:2429-2440.
    • (2015) Mol. Cell. Proteomics , vol.14 , pp. 2429-2440
    • Svinkina, T.1
  • 78
    • 84940897506 scopus 로고    scopus 로고
    • Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response
    • Elia A.E.H., et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 2015, 59:867-881.
    • (2015) Mol. Cell , vol.59 , pp. 867-881
    • Elia, A.E.H.1
  • 79
    • 84933575770 scopus 로고    scopus 로고
    • Lysine acetylation activates mitochondrial aconitase in the heart
    • Fernandes J., et al. Lysine acetylation activates mitochondrial aconitase in the heart. Biochemistry 2015, 54:4008-40018.
    • (2015) Biochemistry , vol.54 , pp. 4008-40018
    • Fernandes, J.1
  • 80
    • 84855757015 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation
    • Xue L., et al. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett. 2012, 586:137-142.
    • (2012) FEBS Lett. , vol.586 , pp. 137-142
    • Xue, L.1
  • 81
    • 77956173286 scopus 로고    scopus 로고
    • SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
    • Bao J., et al. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic. Biol. Med. 2010, 49:1230-1237.
    • (2010) Free Radic. Biol. Med. , vol.49 , pp. 1230-1237
    • Bao, J.1
  • 82
    • 84927698067 scopus 로고    scopus 로고
    • SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
    • Yang H., et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 2015, 34:1110-1125.
    • (2015) EMBO J. , vol.34 , pp. 1110-1125
    • Yang, H.1
  • 83
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
    • Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
    • (2010) Cell Metab. , vol.12 , pp. 654-661
    • Shimazu, T.1
  • 84
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Grueter C.A., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Grueter, C.A.1
  • 85
    • 77951235122 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 2010, 285:7417-7429.
    • (2010) J. Biol. Chem. , vol.285 , pp. 7417-7429
    • Tong, Q.1
  • 86
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn B-H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14447-14452.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 14447-14452
    • Ahn, B.-H.1
  • 87
    • 84881076472 scopus 로고    scopus 로고
    • Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress
    • Cheng Y., et al. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 2013, 4:e731.
    • (2013) Cell Death Dis. , vol.4 , pp. e731
    • Cheng, Y.1
  • 88
    • 84893819991 scopus 로고    scopus 로고
    • SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress
    • Samant S.A., et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol. 2014, 34:807-819.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 807-819
    • Samant, S.A.1
  • 89
    • 84868562852 scopus 로고    scopus 로고
    • Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA
    • Wu Y-T., et al. Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832:216-227.
    • (2013) Biochim. Biophys. Acta Mol. Basis Dis. , vol.1832 , pp. 216-227
    • Wu, Y.-T.1
  • 90
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
    • (2011) Mol. Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1
  • 91
    • 84862741341 scopus 로고    scopus 로고
    • Resveratrol stimulates cortisol biosynthesis by activating SIRT-dependent deacetylation of P450scc
    • Li D., et al. Resveratrol stimulates cortisol biosynthesis by activating SIRT-dependent deacetylation of P450scc. Endocrinology 2012, 153:3258-3268.
    • (2012) Endocrinology , vol.153 , pp. 3258-3268
    • Li, D.1
  • 92
    • 84891506172 scopus 로고    scopus 로고
    • Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
    • Jing E., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
    • (2013) Diabetes , vol.62 , pp. 3404-3417
    • Jing, E.1
  • 93
    • 77951176793 scopus 로고    scopus 로고
    • Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
    • Shulga N., et al. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J. Cell Sci. 2010, 123:894-902.
    • (2010) J. Cell Sci. , vol.123 , pp. 894-902
    • Shulga, N.1
  • 94
    • 84876900167 scopus 로고    scopus 로고
    • Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma
    • Wei L., et al. Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis. 2013, 4:e601.
    • (2013) Cell Death Dis. , vol.4 , pp. e601
    • Wei, L.1
  • 95
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • Cimen H., et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1
  • 96
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • Finley L.W.S., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 2011, 6:e23295.
    • (2011) PLoS ONE , vol.6 , pp. e23295
    • Finley, L.W.S.1
  • 97
    • 84863618431 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of Skp2 function
    • Inuzuka H., et al. Acetylation-dependent regulation of Skp2 function. Cell 2012, 150:179-193.
    • (2012) Cell , vol.150 , pp. 179-193
    • Inuzuka, H.1
  • 98
    • 84926182957 scopus 로고    scopus 로고
    • SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase
    • Zhang Y., et al. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS ONE 2015, 10:e0122297.
    • (2015) PLoS ONE , vol.10 , pp. e0122297
    • Zhang, Y.1
  • 99
    • 78650516004 scopus 로고    scopus 로고
    • Identification of lysine succinylation as a new post-translational modification
    • Zhang Z., et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 2011, 7:58-63.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 58-63
    • Zhang, Z.1
  • 100
    • 35648935529 scopus 로고    scopus 로고
    • N-lysine propionylation controls the activity of propionyl-CoA synthetase
    • Garrity J., et al. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 2007, 282:30239-30245.
    • (2007) J. Biol. Chem. , vol.282 , pp. 30239-30245
    • Garrity, J.1
  • 101
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen Y., et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 2007, 6:812-819.
    • (2007) Mol. Cell. Proteomics , vol.6 , pp. 812-819
    • Chen, Y.1
  • 102
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang H., et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496:110-113.
    • (2013) Nature , vol.496 , pp. 110-113
    • Jiang, H.1
  • 103
    • 80052942443 scopus 로고    scopus 로고
    • Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
    • Tan M., et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011, 146:1016-1028.
    • (2011) Cell , vol.146 , pp. 1016-1028
    • Tan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.