-
1
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
2
-
-
78651162036
-
Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis
-
Allfrey V.G., et al. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 1964, 51:786-794.
-
(1964)
Proc. Natl. Acad. Sci. U.S.A.
, vol.51
, pp. 786-794
-
-
Allfrey, V.G.1
-
3
-
-
0029984469
-
Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
-
Brownell J.E., et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996, 84:843-851.
-
(1996)
Cell
, vol.84
, pp. 843-851
-
-
Brownell, J.E.1
-
4
-
-
0029932598
-
A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
-
Taunton J., et al. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996, 272:408-411.
-
(1996)
Science
, vol.272
, pp. 408-411
-
-
Taunton, J.1
-
5
-
-
0034912742
-
Histone acetyltransferases
-
Roth S.Y., et al. Histone acetyltransferases. Annu. Rev. Biochem. 2001, 70:81-120.
-
(2001)
Annu. Rev. Biochem.
, vol.70
, pp. 81-120
-
-
Roth, S.Y.1
-
6
-
-
79958206937
-
Sirtuins, aging, and medicine
-
Guarente L. Sirtuins, aging, and medicine. N. Engl. J. Med. 2011, 364:2235-2244.
-
(2011)
N. Engl. J. Med.
, vol.364
, pp. 2235-2244
-
-
Guarente, L.1
-
7
-
-
57749170458
-
The many roles of histone deacetylases in development and physiology: implications for disease and therapy
-
Haberland M., et al. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009, 10:32-42.
-
(2009)
Nat. Rev. Genet.
, vol.10
, pp. 32-42
-
-
Haberland, M.1
-
8
-
-
32444434989
-
Histone H4-K16 acetylation controls chromatin structure and protein interactions
-
Shogren-Knaak M., et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 2006, 311:844-847.
-
(2006)
Science
, vol.311
, pp. 844-847
-
-
Shogren-Knaak, M.1
-
9
-
-
70349765673
-
A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation
-
Neumann H., et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 2009, 36:153-163.
-
(2009)
Mol. Cell
, vol.36
, pp. 153-163
-
-
Neumann, H.1
-
10
-
-
84859181036
-
Histone recognition and large-scale structural analysis of the human bromodomain family
-
Filippakopoulos P., et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149:214-231.
-
(2012)
Cell
, vol.149
, pp. 214-231
-
-
Filippakopoulos, P.1
-
11
-
-
0023293040
-
Microtubules containing acetylated alpha-tubulin in mammalian cells in culture
-
Piperno G., et al. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 1987, 104:289-302.
-
(1987)
J. Cell Biol.
, vol.104
, pp. 289-302
-
-
Piperno, G.1
-
12
-
-
84926163974
-
50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond
-
Verdin E., Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 2015, 16:258-264.
-
(2015)
Nat. Rev. Mol. Cell Biol.
, vol.16
, pp. 258-264
-
-
Verdin, E.1
Ott, M.2
-
13
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10230-10235.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10230-10235
-
-
Hallows, W.C.1
-
14
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10224-10229.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
-
15
-
-
0347457075
-
Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
-
Starai V.J., et al. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 2002, 298:2390-2392.
-
(2002)
Science
, vol.298
, pp. 2390-2392
-
-
Starai, V.J.1
-
16
-
-
84891779165
-
CPLM: a database of protein lysine modifications
-
Liu Z., et al. CPLM: a database of protein lysine modifications. Nucleic Acids Res. 2014, 42:D531-D536.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D531-D536
-
-
Liu, Z.1
-
17
-
-
78651279978
-
CPLA 1.0: an integrated database of protein lysine acetylation
-
Liu Z., et al. CPLA 1.0: an integrated database of protein lysine acetylation. Nucleic Acids Res. 2011, 39:D1029-D1034.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. D1029-D1034
-
-
Liu, Z.1
-
18
-
-
84979518589
-
MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins
-
Published online October 7, 2015
-
Calvo S.E., et al. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2015, Published online October 7, 2015. 10.1093/nar/gkv1003.
-
(2015)
Nucleic Acids Res.
-
-
Calvo, S.E.1
-
19
-
-
40949099577
-
Genetically encoding Ne-acetyllysine in recombinant proteins
-
Neumann H., et al. Genetically encoding Ne-acetyllysine in recombinant proteins. Nat. Chem. Biol. 2008, 4:232-234.
-
(2008)
Nat. Chem. Biol.
, vol.4
, pp. 232-234
-
-
Neumann, H.1
-
20
-
-
79960138904
-
Autoacetylation of the histone acetyltransferase Rtt109
-
Albaugh B.N., et al. Autoacetylation of the histone acetyltransferase Rtt109. J. Biol. Chem. 2011, 286:24694-24701.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 24694-24701
-
-
Albaugh, B.N.1
-
21
-
-
84888329025
-
Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site
-
Bharathi S.S., et al. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J. Biol. Chem. 2013, 288:33837-33847.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 33837-33847
-
-
Bharathi, S.S.1
-
22
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert A.S., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 2013, 49:186-199.
-
(2013)
Mol. Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
-
23
-
-
84876217035
-
Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways
-
Rardin M.J., et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:6601-6606.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 6601-6606
-
-
Rardin, M.J.1
-
24
-
-
84928386194
-
SIRT3 mediates multi-tissue coupling for metabolic fuel switching
-
Dittenhafer-Reed K.E., et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab. 2015, 21:637-646.
-
(2015)
Cell Metab.
, vol.21
, pp. 637-646
-
-
Dittenhafer-Reed, K.E.1
-
25
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
-
26
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
-
Feldman J.L., et al. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 2013, 288:31350-31356.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 31350-31356
-
-
Feldman, J.L.1
-
27
-
-
84919933749
-
Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
-
Mathias R.A., et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2014, 159:1615-1625.
-
(2014)
Cell
, vol.159
, pp. 1615-1625
-
-
Mathias, R.A.1
-
28
-
-
84897565291
-
Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
-
Tan M., et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014, 19:605-617.
-
(2014)
Cell Metab.
, vol.19
, pp. 605-617
-
-
Tan, M.1
-
29
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
M111.012658, 10. M111.012658
-
Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Peng, C.1
-
30
-
-
84880791239
-
SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
-
Park J., et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 2013, 50:919-930.
-
(2013)
Mol. Cell
, vol.50
, pp. 919-930
-
-
Park, J.1
-
31
-
-
84878891625
-
SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
-
Laurent G., et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 2013, 50:686-698.
-
(2013)
Mol. Cell
, vol.50
, pp. 686-698
-
-
Laurent, G.1
-
32
-
-
84885155285
-
Widespread and enzyme-independent Ne-acetylation and Ne-succinylation of proteins in the chemical conditions of the mitochondrial matrix
-
Wagner G.R., Payne R.M. Widespread and enzyme-independent Ne-acetylation and Ne-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 2013, 288:29036-29045.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 29036-29045
-
-
Wagner, G.R.1
Payne, R.M.2
-
33
-
-
84888604134
-
Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications
-
Ghanta S., et al. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 2013, 48:561-574.
-
(2013)
Crit. Rev. Biochem. Mol. Biol.
, vol.48
, pp. 561-574
-
-
Ghanta, S.1
-
34
-
-
84898012702
-
Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
-
Wagner G.R., Hirschey M.D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell 2014, 54:5-16.
-
(2014)
Mol. Cell
, vol.54
, pp. 5-16
-
-
Wagner, G.R.1
Hirschey, M.D.2
-
35
-
-
0014937061
-
Nonenzymatic acetylation of histones with acetyl-CoA
-
Paik W.K., et al. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 1970, 213:513-522.
-
(1970)
Biochim. Biophys. Acta
, vol.213
, pp. 513-522
-
-
Paik, W.K.1
-
36
-
-
84921405747
-
Site-specific reactivity of nonenzymatic lysine acetylation
-
Baeza J., et al. Site-specific reactivity of nonenzymatic lysine acetylation. ACS Chem. Biol. 2015, 10:122-128.
-
(2015)
ACS Chem. Biol.
, vol.10
, pp. 122-128
-
-
Baeza, J.1
-
37
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
-
38
-
-
84870880080
-
Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3
-
Sol E.M., et al. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. PLoS ONE 2012, 7:e50545.
-
(2012)
PLoS ONE
, vol.7
, pp. e50545
-
-
Sol, E.M.1
-
39
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
Gius D., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
-
(2010)
Mol. Cell
, vol.40
, pp. 893-904
-
-
Gius, D.1
-
40
-
-
79957979314
-
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
-
Chen Y., et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011, 12:534-541.
-
(2011)
EMBO Rep.
, vol.12
, pp. 534-541
-
-
Chen, Y.1
-
41
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Verdin E., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
-
(2010)
Cell Metab.
, vol.12
, pp. 662-667
-
-
Verdin, E.1
-
42
-
-
84859951790
-
SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status
-
Yu W., et al. SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and regulates mitochondrial redox status. J. Biol. Chem. 2012, 287:14078-14086.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 14078-14086
-
-
Yu, W.1
-
43
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
Schlicker C., et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
-
44
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
-
45
-
-
79951906633
-
SIRT3 substrate specificity determined by peptide arrays and machine learning
-
Smith B.C., et al. SIRT3 substrate specificity determined by peptide arrays and machine learning. ACS Chem. Biol. 2011, 6:146-157.
-
(2011)
ACS Chem. Biol.
, vol.6
, pp. 146-157
-
-
Smith, B.C.1
-
46
-
-
84905378213
-
Stoichiometry of site-specific lysine acetylation in an entire proteome
-
Baeza J., et al. Stoichiometry of site-specific lysine acetylation in an entire proteome. J. Biol. Chem. 2014, 289:21326-21338.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 21326-21338
-
-
Baeza, J.1
-
47
-
-
84898012537
-
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
-
Weinert B.T., et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 2014, 10:716.
-
(2014)
Mol. Syst. Biol.
, vol.10
, pp. 716
-
-
Weinert, B.T.1
-
48
-
-
84946488466
-
Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions
-
Weinert B.T., et al. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. 2015, 34:2620-2632.
-
(2015)
EMBO J.
, vol.34
, pp. 2620-2632
-
-
Weinert, B.T.1
-
49
-
-
84880426255
-
Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli
-
Weinert B.T., et al. Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli. Mol. Cell 2013, 51:265-272.
-
(2013)
Mol. Cell
, vol.51
, pp. 265-272
-
-
Weinert, B.T.1
-
50
-
-
84884473738
-
Ethanol metabolism modifies hepatic protein acylation in mice
-
Fritz K.S., et al. Ethanol metabolism modifies hepatic protein acylation in mice. PLoS ONE 2013, 8:e75868.
-
(2013)
PLoS ONE
, vol.8
, pp. e75868
-
-
Fritz, K.S.1
-
51
-
-
84893704306
-
Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism
-
Pougovkina O., et al. Aberrant protein acylation is a common observation in inborn errors of acyl-CoA metabolism. J. Inherit. Metab. Dis. 2014, 37:709-714.
-
(2014)
J. Inherit. Metab. Dis.
, vol.37
, pp. 709-714
-
-
Pougovkina, O.1
-
52
-
-
84885155285
-
Widespread and enzyme-independent N-acetylation and N-succinylation of proteins in the chemical conditions of the mitochondrial matrix
-
Wagner G.R., Payne R.M. Widespread and enzyme-independent N-acetylation and N-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 2013, 288:29036-29045.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 29036-29045
-
-
Wagner, G.R.1
Payne, R.M.2
-
53
-
-
84883307077
-
Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation
-
Weinert B.T., et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013, 4:842-851.
-
(2013)
Cell Rep.
, vol.4
, pp. 842-851
-
-
Weinert, B.T.1
-
54
-
-
77957295549
-
Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation
-
Wacker S.A., et al. Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation. Protein Sci. 2010, 19:1820-1829.
-
(2010)
Protein Sci.
, vol.19
, pp. 1820-1829
-
-
Wacker, S.A.1
-
55
-
-
0019083376
-
Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity
-
Alex S., Bell J.E. Dual nucleotide specificity of bovine glutamate dehydrogenase. The role of negative co-operativity. Biochem. J. 1980, 191:299-304.
-
(1980)
Biochem. J.
, vol.191
, pp. 299-304
-
-
Alex, S.1
Bell, J.E.2
-
56
-
-
0033565447
-
The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery
-
Peterson P.E., et al. The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure 1999, 7:769-782.
-
(1999)
Structure
, vol.7
, pp. 769-782
-
-
Peterson, P.E.1
-
57
-
-
84896713080
-
Regulation of autophagy by cytosolic acetyl-coenzyme A
-
Mariño G., et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol. Cell 2014, 53:710-725.
-
(2014)
Mol. Cell
, vol.53
, pp. 710-725
-
-
Mariño, G.1
-
58
-
-
79959954965
-
IPath2.0: interactive pathway explorer
-
Yamada T., et al. iPath2.0: interactive pathway explorer. Nucleic Acids Res. 2011, 39:W412-W415.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. W412-W415
-
-
Yamada, T.1
-
59
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
-
(2006)
Mol. Cell
, vol.23
, pp. 607-618
-
-
Kim, S.C.1
-
60
-
-
56649114286
-
The diversity of lysine-acetylated proteins in Escherichia coli
-
Yu B.J., et al. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol. 2008, 18:1529-1536.
-
(2008)
J. Microbiol. Biotechnol.
, vol.18
, pp. 1529-1536
-
-
Yu, B.J.1
-
61
-
-
61649089277
-
Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli
-
Zhang J., et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteomics 2009, 8:215-225.
-
(2009)
Mol. Cell. Proteomics
, vol.8
, pp. 215-225
-
-
Zhang, J.1
-
62
-
-
73949123433
-
Calorie restriction alters mitochondrial protein acetylation
-
Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
-
(2009)
Aging Cell
, vol.8
, pp. 604-606
-
-
Schwer, B.1
-
63
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
-
64
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
-
Wang Q., et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 327:1004-1007.
-
(2010)
Science
, vol.327
, pp. 1004-1007
-
-
Wang, Q.1
-
65
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao S., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
-
66
-
-
80052450371
-
The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching
-
Yang L., et al. The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J. Proteome Res. 2011, 10:4134-4149.
-
(2011)
J. Proteome Res.
, vol.10
, pp. 4134-4149
-
-
Yang, L.1
-
67
-
-
79960797509
-
Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
-
Weinert B.T., et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci. Signal. 2011, 4:ra48.
-
(2011)
Sci. Signal.
, vol.4
, pp. ra48
-
-
Weinert, B.T.1
-
68
-
-
84863898161
-
Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice
-
Simon G.M., et al. Quantitative assessment of the impact of the gut microbiota on lysine epsilon-acetylation of host proteins using gnotobiotic mice. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11133-11138.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11133-11138
-
-
Simon, G.M.1
-
69
-
-
84869215170
-
Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae
-
Henriksen P., et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol. Cell. Proteomics 2012, 11:1510-1522.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 1510-1522
-
-
Henriksen, P.1
-
70
-
-
84865726581
-
Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns
-
Lundby A., et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep. 2012, 2:419-431.
-
(2012)
Cell Rep.
, vol.2
, pp. 419-431
-
-
Lundby, A.1
-
71
-
-
84879743246
-
The cardiac acetyl-lysine proteome
-
Foster D.B., et al. The cardiac acetyl-lysine proteome. PLoS ONE 2013, 8:e67513.
-
(2013)
PLoS ONE
, vol.8
, pp. e67513
-
-
Foster, D.B.1
-
72
-
-
84876921286
-
Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase
-
Zhang Q-F., et al. Reversibly acetylated lysine residues play important roles in the enzymatic activity of Escherichia coli N-hydroxyarylamine O-acetyltransferase. FEBS J. 2013, 280:1966-1979.
-
(2013)
FEBS J.
, vol.280
, pp. 1966-1979
-
-
Zhang, Q.-F.1
-
73
-
-
84883659304
-
Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation
-
Still A.J., et al. Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J. Biol. Chem. 2013, 288:26209-26219.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 26209-26219
-
-
Still, A.J.1
-
74
-
-
84937531951
-
A method to determine lysine acetylation stoichiometries
-
Nakayasu E.S., et al. A method to determine lysine acetylation stoichiometries. Int. J. Proteomics 2014, 2014:730725.
-
(2014)
Int. J. Proteomics
, vol.2014
, pp. 730725
-
-
Nakayasu, E.S.1
-
75
-
-
84899668522
-
Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation
-
Kuhn M.L., et al. Structural, kinetic and proteomic characterization of acetyl phosphate-dependent bacterial protein acetylation. PLoS ONE 2014, 9:e94816.
-
(2014)
PLoS ONE
, vol.9
, pp. e94816
-
-
Kuhn, M.L.1
-
76
-
-
84926614325
-
Acetylation site specificities of lysine deacetylase inhibitors in human cells
-
Schölz C., et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 2015, 33:415-423.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 415-423
-
-
Schölz, C.1
-
77
-
-
84940492346
-
Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow
-
Svinkina T., et al. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol. Cell. Proteomics 2015, 14:2429-2440.
-
(2015)
Mol. Cell. Proteomics
, vol.14
, pp. 2429-2440
-
-
Svinkina, T.1
-
78
-
-
84940897506
-
Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response
-
Elia A.E.H., et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 2015, 59:867-881.
-
(2015)
Mol. Cell
, vol.59
, pp. 867-881
-
-
Elia, A.E.H.1
-
79
-
-
84933575770
-
Lysine acetylation activates mitochondrial aconitase in the heart
-
Fernandes J., et al. Lysine acetylation activates mitochondrial aconitase in the heart. Biochemistry 2015, 54:4008-40018.
-
(2015)
Biochemistry
, vol.54
, pp. 4008-40018
-
-
Fernandes, J.1
-
80
-
-
84855757015
-
Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation
-
Xue L., et al. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett. 2012, 586:137-142.
-
(2012)
FEBS Lett.
, vol.586
, pp. 137-142
-
-
Xue, L.1
-
81
-
-
77956173286
-
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
-
Bao J., et al. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic. Biol. Med. 2010, 49:1230-1237.
-
(2010)
Free Radic. Biol. Med.
, vol.49
, pp. 1230-1237
-
-
Bao, J.1
-
82
-
-
84927698067
-
SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth
-
Yang H., et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 2015, 34:1110-1125.
-
(2015)
EMBO J.
, vol.34
, pp. 1110-1125
-
-
Yang, H.1
-
83
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
-
(2010)
Cell Metab.
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
-
84
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Grueter C.A., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Grueter, C.A.1
-
85
-
-
77951235122
-
+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
-
+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 2010, 285:7417-7429.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7417-7429
-
-
Tong, Q.1
-
86
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn B-H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14447-14452.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.-H.1
-
87
-
-
84881076472
-
Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress
-
Cheng Y., et al. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis. 2013, 4:e731.
-
(2013)
Cell Death Dis.
, vol.4
, pp. e731
-
-
Cheng, Y.1
-
88
-
-
84893819991
-
SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress
-
Samant S.A., et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol. 2014, 34:807-819.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 807-819
-
-
Samant, S.A.1
-
89
-
-
84868562852
-
Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA
-
Wu Y-T., et al. Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832:216-227.
-
(2013)
Biochim. Biophys. Acta Mol. Basis Dis.
, vol.1832
, pp. 216-227
-
-
Wu, Y.-T.1
-
90
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
-
91
-
-
84862741341
-
Resveratrol stimulates cortisol biosynthesis by activating SIRT-dependent deacetylation of P450scc
-
Li D., et al. Resveratrol stimulates cortisol biosynthesis by activating SIRT-dependent deacetylation of P450scc. Endocrinology 2012, 153:3258-3268.
-
(2012)
Endocrinology
, vol.153
, pp. 3258-3268
-
-
Li, D.1
-
92
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
Jing E., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 2013, 62:3404-3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
-
93
-
-
77951176793
-
Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
-
Shulga N., et al. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J. Cell Sci. 2010, 123:894-902.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 894-902
-
-
Shulga, N.1
-
94
-
-
84876900167
-
Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma
-
Wei L., et al. Oroxylin A induces dissociation of hexokinase II from the mitochondria and inhibits glycolysis by SIRT3-mediated deacetylation of cyclophilin D in breast carcinoma. Cell Death Dis. 2013, 4:e601.
-
(2013)
Cell Death Dis.
, vol.4
, pp. e601
-
-
Wei, L.1
-
95
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen H., et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
-
96
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
Finley L.W.S., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 2011, 6:e23295.
-
(2011)
PLoS ONE
, vol.6
, pp. e23295
-
-
Finley, L.W.S.1
-
97
-
-
84863618431
-
Acetylation-dependent regulation of Skp2 function
-
Inuzuka H., et al. Acetylation-dependent regulation of Skp2 function. Cell 2012, 150:179-193.
-
(2012)
Cell
, vol.150
, pp. 179-193
-
-
Inuzuka, H.1
-
98
-
-
84926182957
-
SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase
-
Zhang Y., et al. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS ONE 2015, 10:e0122297.
-
(2015)
PLoS ONE
, vol.10
, pp. e0122297
-
-
Zhang, Y.1
-
99
-
-
78650516004
-
Identification of lysine succinylation as a new post-translational modification
-
Zhang Z., et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 2011, 7:58-63.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 58-63
-
-
Zhang, Z.1
-
100
-
-
35648935529
-
N-lysine propionylation controls the activity of propionyl-CoA synthetase
-
Garrity J., et al. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 2007, 282:30239-30245.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 30239-30245
-
-
Garrity, J.1
-
101
-
-
34248640428
-
Lysine propionylation and butyrylation are novel post-translational modifications in histones
-
Chen Y., et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 2007, 6:812-819.
-
(2007)
Mol. Cell. Proteomics
, vol.6
, pp. 812-819
-
-
Chen, Y.1
-
102
-
-
84875881601
-
SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine
-
Jiang H., et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013, 496:110-113.
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Jiang, H.1
-
103
-
-
80052942443
-
Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
-
Tan M., et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011, 146:1016-1028.
-
(2011)
Cell
, vol.146
, pp. 1016-1028
-
-
Tan, M.1
|