메뉴 건너뛰기




Volumn 120, Issue 1, 2016, Pages 14-27

Learning Mutual Visibility Relationship for Pedestrian Detection with a Deep Model

Author keywords

Deep learning; Deep model; Object detection; Pedestrian detection

Indexed keywords

OBJECT DETECTION; OBJECT RECOGNITION; VISIBILITY;

EID: 84959553080     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-016-0890-9     Document Type: Article
Times cited : (54)

References (78)
  • 1
    • 84991937919 scopus 로고    scopus 로고
    • Part-based feature synthesis for human detection
    • Bar-Hillel, A., Levi, D., Krupka. E., & Goldberg, C., New York: Springer
    • Bar-Hillel, A., Levi, D., Krupka. E., & Goldberg, C. (2010). Part-based feature synthesis for human detection. In Proceedings of ECCV. New York: Springer.
    • (2010) In Proceedings of ECCV
  • 2
    • 84866719946 scopus 로고    scopus 로고
    • Pedestrian detection at 100 frames per second
    • Benenson, R., Mathias, M., Timofte, R., & Gool, L. V., Berlin: IEEE Press
    • Benenson, R., Mathias, M., Timofte, R., & Gool, L. V. (2012). Pedestrian detection at 100 frames per second. In CVPR. Berlin: IEEE Press.
    • (2012) In CVPR
  • 3
    • 84887357542 scopus 로고    scopus 로고
    • Seeking the strongest rigid detector
    • Benenson, R., Mathias, M., Tuytelaars, & T., Van Gool, L., New York
    • Benenson, R., Mathias, M., Tuytelaars, & T., Van Gool, L. (2013). Seeking the strongest rigid detector. In Proceedings of CVPR, New York.
    • (2013) In Proceedings of CVPR
  • 6
    • 84887357644 scopus 로고    scopus 로고
    • Detection evolution with multi-order contextual co-occurrence
    • Chen, G., Ding, Y., Xiao, J., & Han, T. X., Boca Raton
    • Chen, G., Ding, Y., Xiao, J., & Han, T. X. (2013). Detection evolution with multi-order contextual co-occurrence. In Proceedings of CVPR, Boca Raton.
    • (2013) In Proceedings of CVPR
  • 7
    • 35148849153 scopus 로고    scopus 로고
    • Detector ensemble
    • Dai, S., Yang, M., Wu, Y., & Katsaggelos, A.,. Heidelberg: Springer
    • Dai, S., Yang, M., Wu, Y., & Katsaggelos, A. (2007). Detector ensemble. In IEEE Conference on CVPR. Heidelberg: Springer.
    • (2007) In IEEE Conference on CVPR
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Dalal, N., & Triggs, B., New York: IEEE
    • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE conference on CVPR. New York: IEEE.
    • (2005) In IEEE conference on CVPR
  • 9
    • 84887378604 scopus 로고    scopus 로고
    • Fast, accurate detection of 100,000 object classes on a single machine
    • Dean, T., Ruzon, M.A., Segal, M., Shlens, J., Vijayanarasimhan, S., & Yagnik, J.,, New York
    • Dean, T., Ruzon, M.A., Segal, M., Shlens, J., Vijayanarasimhan, S., & Yagnik, J. (2013). Fast, accurate detection of 100,000 object classes on a single machine. In Proceedings of the IEEE conference on CVPR, New York.
    • (2013) In Proceedings of the IEEE conference on CVPR
  • 10
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L., New York: Springer
    • Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In IEEE conference on CVPR. New York: Springer.
    • (2009) In IEEE conference on CVPR
  • 11
    • 84991922611 scopus 로고    scopus 로고
    • Detecting actions, poses, and objects with relational phraselets
    • Desai, C., & Ramanan, D., Heidelberg: Springer
    • Desai, C., & Ramanan, D. (2012). Detecting actions, poses, and objects with relational phraselets. In IEEE international conference on ECCV. Heidelberg: Springer.
    • (2012) In IEEE international conference on ECCV
  • 12
    • 77953180995 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • Desai, C., Ramanan, D., & Fowlkes, C.,. New York: Springer
    • Desai, C., Ramanan, D., & Fowlkes, C. (2009). Discriminative models for multi-class object layout. In ICCV. New York: Springer.
    • (2009) In ICCV
  • 13
    • 84866724839 scopus 로고    scopus 로고
    • Contextual boost for pedestrian detection
    • Ding, Y., & Xiao, J., Berlin
    • Ding, Y., & Xiao, J. (2012). Contextual boost for pedestrian detection. In CVPR, Berlin.
    • (2012) In CVPR
  • 15
    • 84898842272 scopus 로고    scopus 로고
    • Integral channel features
    • Dollár, P., Tu, Z., Perona, P., & Belongie, S
    • Dollár, P., Tu, Z., Perona, P., & Belongie, S. (2009). Integral channel features. In BMVC, Beijing.
    • (2009) In BMVC, Beijing
  • 16
    • 84898465753 scopus 로고    scopus 로고
    • The fastest pedestrian detector in the west
    • Dollár, P., Belongie, S., & Perona, P
    • Dollár, P., Belongie, S., & Perona, P. (2010).The fastest pedestrian detector in the west. In BMVC, Heidelberg.
    • (2010) In BMVC, Heidelberg
  • 17
    • 85052188052 scopus 로고    scopus 로고
    • Crosstalk cascades for frame-rate pedestrian detection
    • Dollár, P., Appel, R., & Kienzle, W
    • Dollár, P., Appel, R., & Kienzle, W. (2012a.) Crosstalk cascades for frame-rate pedestrian detection. In ECCV.
    • (2012) In ECCV
  • 21
    • 77955998866 scopus 로고    scopus 로고
    • Multi-cue pedestrian classification with partial occlusion handling
    • Enzweiler, M., Eigenstetter, A., Schiele, B., & Gavrila, D. M
    • Enzweiler, M., Eigenstetter, A., Schiele, B., & Gavrila, D. M. (2010). Multi-cue pedestrian classification with partial occlusion handling. In CVPR.
    • (2010) In CVPR
  • 23
    • 50249083612 scopus 로고    scopus 로고
    • Depth and appearance for mobile scene analysis
    • Ess, A., Leibe, B., & Gool, L. V
    • Ess, A., Leibe, B., & Gool, L. V. (2007). Depth and appearance for mobile scene analysis. In ICCV.
    • (2007) In ICCV
  • 26
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771–1800.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 27
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 28
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 29
    • 84911459575 scopus 로고    scopus 로고
    • Discriminative deep metric learning for face verification in the wild
    • Hu, J., Lu, J., & Tan, Y. P
    • Hu, J., Lu, J., & Tan, Y. P. (2014). Discriminative deep metric learning for face verification in the wild. In CVPR.
    • (2014) In CVPR
  • 30
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? In CVPR.
    • (2009) In CVPR
  • 32
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I.,&Hinton, G
    • Krizhevsky, A., Sutskever, I.,&Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In NIPS.
    • (2012) In NIPS
  • 33
    • 84867135575 scopus 로고    scopus 로고
    • Building high-level features using large scale unsupervised learning
    • Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G. S., & Dean, J, Ng. A. Y
    • Le, Q. V., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G. S., & Dean, J, Ng. A. Y. (2012). Building high-level features using large scale unsupervised learning. In ICML.
    • (2012) In ICML
  • 34
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y
    • Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML.
    • (2009) In ICML
  • 35
    • 33744792263 scopus 로고    scopus 로고
    • Pedestrian detection in crowded scenes
    • Leibe, B., Seemann, E., & Schiele, B
    • Leibe, B., Seemann, E., & Schiele, B. (2005). Pedestrian detection in crowded scenes. In CVPR.
    • (2005) In CVPR
  • 36
    • 84863018717 scopus 로고    scopus 로고
    • Extracting adaptive contextual cues from unlabeled regions
    • Li, C., Parikh, D., & Chen, T
    • Li, C., Parikh, D., & Chen, T. (2011). Extracting adaptive contextual cues from unlabeled regions. In ICCV.
    • (2011) In ICCV
  • 37
    • 50649104325 scopus 로고    scopus 로고
    • Hierarchical part-template matching for human detection and segmentation
    • Lin, Z., Davis, L. S., Doermann, D., & DeMenthon, D
    • Lin, Z., Davis, L. S., Doermann, D., & DeMenthon, D. (2007). Hierarchical part-template matching for human detection and segmentation. In ICCV.
    • (2007) In ICCV
  • 38
    • 84911384987 scopus 로고    scopus 로고
    • Facial expression recognition via a boosted deep belief network
    • Liu, P., Jan, S., Meng, Z., & Tong, Y
    • Liu, P., Jan, S., Meng, Z., & Tong, Y. (2014). Facial expression recognition via a boosted deep belief network. In CVPR.
    • (2014) In CVPR
  • 39
    • 84866665255 scopus 로고    scopus 로고
    • Hierarchical face parsing via deep learning
    • Luo, P., Wang, X., & Tang, X
    • Luo, P., Wang, X., & Tang, X. (2012). Hierarchical face parsing via deep learning. In CVPR.
    • (2012) In CVPR
  • 40
    • 84898810007 scopus 로고    scopus 로고
    • Random forests of local experts for pedestrian detection
    • Marın, J., Vázquez, D., López, A. M., Amores, J., & Leibe, B
    • Marın, J., Vázquez, D., López, A. M., Amores, J., & Leibe, B. (2013). Random forests of local experts for pedestrian detection. In CVPR.
    • (2013) In CVPR
  • 41
    • 84898776600 scopus 로고    scopus 로고
    • Handling occlusions with franken-classifiers
    • Mathias, M., Benenson, R., Timofte, R., & Van Gool, L
    • Mathias, M., Benenson, R., Timofte, R., & Van Gool, L. (2013). Handling occlusions with franken-classifiers. In CVPR.
    • (2013) In CVPR
  • 42
    • 84856627241 scopus 로고    scopus 로고
    • Improving object localization using macrofeature layout selection
    • Nam, W., Han, B., & Han, J. H, (pp 1801–1808). Berlin: IEEE Press
    • Nam, W., Han, B., & Han, J. H. (2011). Improving object localization using macrofeature layout selection. In ICCV workshop, (pp 1801–1808). Berlin: IEEE Press.
    • (2011) In ICCV workshop
  • 43
    • 70450159350 scopus 로고    scopus 로고
    • Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning
    • Norouzi, M., Ranjbar, M., & Mori, G
    • Norouzi, M., Ranjbar, M., & Mori, G. (2009). Stacks of convolutional restricted boltzmann machines for shift-invariant feature learning. In CVPR.
    • (2009) In CVPR
  • 44
    • 84866696906 scopus 로고    scopus 로고
    • A discriminative deep model for pedestrian detection with occlusion handling
    • Ouyang, W., & Wang, X. (2012). A discriminative deep model for pedestrian detection with occlusion handling. In CVPR.
    • (2012) In CVPR
    • Ouyang, W.1    Wang, X.2
  • 45
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • Ouyang, W., & Wang, X. (2013a). Joint deep learning for pedestrian detection. In ICCV.
    • (2013) In ICCV
    • Ouyang, W.1    Wang, X.2
  • 47
    • 84887380448 scopus 로고    scopus 로고
    • Modeling mutual visibility relationship in pedestrian detection
    • Ouyang, W., Zeng, X., & Wang, X
    • Ouyang, W., Zeng, X., & Wang, X. (2013). Modeling mutual visibility relationship in pedestrian detection. In CVPR.
    • (2013) In CVPR
  • 50
    • 84898819016 scopus 로고    scopus 로고
    • Efficient pedestrian detection by directly optimize the partial area under the roc curve
    • Paisitkriangkrai, S., Shen, C., & Van Den Hengel, A
    • Paisitkriangkrai, S., Shen, C., & Van Den Hengel, A. (2013). Efficient pedestrian detection by directly optimize the partial area under the roc curve. In ICCV.
    • (2013) In ICCV
  • 51
    • 84991960239 scopus 로고    scopus 로고
    • Multiresolution models for object detection
    • Park, D., Ramanan, D., & Fowlkes, C
    • Park, D., Ramanan, D., & Fowlkes, C. (2010). Multiresolution models for object detection. In ECCV.
    • (2010) In ECCV
  • 52
    • 84887328711 scopus 로고    scopus 로고
    • Exploring weak stabilization for motion feature extraction
    • Park, D., Zitnick, C. L., Ramanan, D., & Dollár, P
    • Park, D., Zitnick, C. L., Ramanan, D., & Dollár, P. (2013). Exploring weak stabilization for motion feature extraction. In CVPR.
    • (2013) In CVPR
  • 53
    • 84887391806 scopus 로고    scopus 로고
    • Occlusion patterns for object class detection
    • Pepikj, B., Stark, M., Gehler, P., & Schiele, B., (pp. 3286–3293). New York: IEEE Press
    • Pepikj, B., Stark, M., Gehler, P., & Schiele, B.(2013). Occlusion patterns for object class detection. In CVPR (pp. 3286–3293). New York: IEEE Press.
    • (2013) In CVPR
  • 54
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • Ranzato, M., Susskind, J., Mnih, V., & Hinton, G
    • Ranzato, M., Susskind, J., Mnih, V., & Hinton, G. (2011). On deep generative models with applications to recognition. In CVPR.
    • (2011) In CVPR
  • 55
    • 80052889458 scopus 로고    scopus 로고
    • Recognition using visual phrases
    • Sadeghi, M. A., & Farhadi, A., (pp. 1745–1752). Urbana: IEEE
    • Sadeghi, M. A., & Farhadi, A. (2011). Recognition using visual phrases. In CVPR, (pp. 1745–1752). Urbana: IEEE.
    • (2011) In CVPR
  • 56
    • 85015879350 scopus 로고    scopus 로고
    • Human detection using partial least squares analysis
    • Schwartz, W., Kembhavi, A., Harwood, D., & Davis, L
    • Schwartz, W., Kembhavi, A., Harwood, D., & Davis, L. (2009). Human detection using partial least squares analysis. In ICCV.
    • (2009) In ICCV
  • 58
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised and multi-stage feature learning
    • Sermanet, P., Kavukcuoglu, K., Chintala, S., & Lecun, Y
    • Sermanet, P., Kavukcuoglu, K., Chintala, S., & Lecun, Y. (2013b). Pedestrian detection with unsupervised and multi-stage feature learning. In CVPR.
    • (2013) In CVPR
  • 59
    • 84878738279 scopus 로고    scopus 로고
    • Training effective node classifiers for cascade classification
    • Shen, C., Wang, P., Paisitkriangkrai, S., & van den Hengel, A. (2013). Training effective node classifiers for cascade classification. IJCV, 103(3), 326–347.
    • (2013) IJCV , vol.103 , Issue.3 , pp. 326-347
    • Shen, C.1    Wang, P.2    Paisitkriangkrai, S.3    van den Hengel, A.4
  • 60
    • 34948865764 scopus 로고    scopus 로고
    • Bilattice-based logical reasoning for human detection
    • Shet, V. D., Neumann, J., Ramesh, V., & Davis, L. S
    • Shet, V. D., Neumann, J., Ramesh, V., & Davis, L. S. (2007). Bilattice-based logical reasoning for human detection. In CVPR.
    • (2007) In CVPR
  • 61
    • 84911395416 scopus 로고    scopus 로고
    • Deeply-learned slow feature analysis for action recognition
    • Sun, L., Jia, K., Chan, T. H., Fang, Y., & Yan, S
    • Sun, L., Jia, K., Chan, T. H., Fang, Y., & Yan, S. (2014). Deeply-learned slow feature analysis for action recognition. In CVPR.
    • (2014) In CVPR
  • 62
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10,000 classes
    • Sun, Y., Wang, X., & Tang, X
    • Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In CVPR.
    • (2014) In CVPR
  • 63
    • 84898407532 scopus 로고    scopus 로고
    • Detection and tracking of occluded people
    • Tang, S., Andriluka, M., & Schiele, B
    • Tang, S., Andriluka, M., & Schiele, B. (2012). Detection and tracking of occluded people. In BMVC, Surrey.
    • (2012) In BMVC, Surrey
  • 64
    • 84898831724 scopus 로고    scopus 로고
    • Learning people detectors for tracking in crowded scenes
    • Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., & Schiele, B
    • Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., & Schiele, B. (2013). Learning people detectors for tracking in crowded scenes. In Proceedings of ICCV.
    • (2013) In Proceedings of ICCV
  • 65
    • 17444367737 scopus 로고    scopus 로고
    • Detecting pedestrians using patterns of motion and appearance
    • Viola, P., Jones, M. J., & Snow, D. (2005). Detecting pedestrians using patterns of motion and appearance. IJCV, 63(2), 153–161.
    • (2005) IJCV , vol.63 , Issue.2 , pp. 153-161
    • Viola, P.1    Jones, M.J.2    Snow, D.3
  • 66
    • 77956007891 scopus 로고    scopus 로고
    • New features and insights for pedestrian detection
    • Walk, S., Majer, N., Schindler, K., & Schiele, B
    • Walk, S., Majer, N., Schindler, K., & Schiele, B. (2010). New features and insights for pedestrian detection. In CVPR.
    • (2010) In CVPR
  • 67
    • 84991948310 scopus 로고    scopus 로고
    • An hog-lbp human detector with partial occlusion handling
    • Wang, X., Han, X., & Yan, S
    • Wang, X., Han, X., & Yan, S. (2009). An hog-lbp human detector with partial occlusion handling. In CVPR.
    • (2009) In CVPR
  • 68
    • 84992008789 scopus 로고    scopus 로고
    • A performance evaluation of single and multi-feature people detection
    • Wojek, C., & Schiele, B
    • Wojek, C., & Schiele, B. (2008). A performance evaluation of single and multi-feature people detection. In DAGM.
    • (2008) In DAGM
  • 69
    • 33745943636 scopus 로고    scopus 로고
    • Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors
    • Wu, B., & Nevatia, R
    • Wu, B., & Nevatia, R. (2005). Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In ICCV.
    • (2005) In ICCV
  • 70
    • 60349101894 scopus 로고    scopus 로고
    • Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses
    • Wu, B., & Nevatia, R. (2009). Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses. IJCV, 82(2), 185–204.
    • (2009) IJCV , vol.82 , Issue.2 , pp. 185-204
    • Wu, B.1    Nevatia, R.2
  • 71
    • 77954860497 scopus 로고    scopus 로고
    • A numeric study of the bottom-up and top-down inference processes in and-or graphs
    • Wu, T., & Zhu, S. (2011). A numeric study of the bottom-up and top-down inference processes in and-or graphs. IJCV, 93(2), 226–252.
    • (2011) IJCV , vol.93 , Issue.2 , pp. 226-252
    • Wu, T.1    Zhu, S.2
  • 72
    • 84866696913 scopus 로고    scopus 로고
    • Multi-pedestrian detection in crowded scenes: A global view
    • Yan, J., Lei, Z., Yi, D., & Li, S. Z
    • Yan, J., Lei, Z., Yi, D., & Li, S. Z. (2012). Multi-pedestrian detection in crowded scenes: A global view. In CVPR.
    • (2012) In CVPR
  • 73
    • 84887356865 scopus 로고    scopus 로고
    • Robust multi-resolution pedestrian detection in traffic scenes
    • Yan, J., Zhang, X., Lei, Z., Liao, S., & Li, S. Z
    • Yan, J., Zhang, X., Lei, Z., Liao, S., & Li, S. Z. (2013). Robust multi-resolution pedestrian detection in traffic scenes. In CVPR.
    • (2013) In CVPR
  • 74
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • Yang, Y., & Ramanan, D
    • Yang, Y., & Ramanan, D. (2011). Articulated pose estimation with flexible mixtures-of-parts. In CVPR.
    • (2011) In CVPR
  • 75
    • 84866704901 scopus 로고    scopus 로고
    • Recognizing proxemics in personal photos
    • Yang, Y., Baker, S., Kannan, A., & Ramanan, D
    • Yang, Y., Baker, S., Kannan, A., & Ramanan, D. (2012). Recognizing proxemics in personal photos. In CVPR.
    • (2012) In CVPR
  • 76
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • Yao, B., & Fei-Fei, L
    • Yao, B., & Fei-Fei, L. (2010). Modeling mutual context of object and human pose in human-object interaction activities. In CVPR.
    • (2010) In CVPR
  • 77
    • 84898828144 scopus 로고    scopus 로고
    • Multi-stage contextual deep learning for pedestrian detection
    • Zeng, X., Ouyang, W., & Wang, X
    • Zeng, X., Ouyang, W., & Wang, X. (2013). Multi-stage contextual deep learning for pedestrian detection. In ICCV.
    • (2013) In ICCV
  • 78
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • Zhu, L., Chen, Y., Yuille, A., & Freeman, W
    • Zhu, L., Chen, Y., Yuille, A., & Freeman, W. (2010). Latent hierarchical structural learning for object detection. In CVPR.
    • (2010) In CVPR


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.