메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3198-3205

Single-pedestrian detection aided by multi-pedestrian detection

Author keywords

deformable model; human detection; object detection; part based model; Pedestrian Detection

Indexed keywords

DEFORMABLE MODELING; HUMAN DETECTION; OBJECT DETECTION; PART-BASED MODELS; PEDESTRIAN DETECTION;

EID: 84887365811     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.411     Document Type: Conference Paper
Times cited : (146)

References (43)
  • 2
    • 77955987097 scopus 로고    scopus 로고
    • On detection of multiple object instances using hough transforms
    • 1, 2
    • O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object instances using hough transforms. In CVPR, 2010. 1, 2
    • (2010) CVPR
    • Barinova, O.1    Lempitsky, V.2    Kohli, P.3
  • 3
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • 2
    • L. Bourdev and J. Malik. Poselets: body part detectors trained using 3D human pose annotations. In ICCV, 2009. 2
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 4
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1, 2, 6, 8
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1, 2, 6, 8
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 5
    • 77953180995 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • 2
    • C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. In ICCV, 2009. 2
    • (2009) ICCV
    • Desai, C.1    Ramanan, D.2    Fowlkes, C.3
  • 6
    • 84866724839 scopus 로고    scopus 로고
    • Contextual boost for pedestrian detection
    • 2, 7
    • Y. Ding and J. Xiao. Contextual boost for pedestrian detection. In CVPR, 2012. 2, 7
    • (2012) CVPR
    • Ding, Y.1    Xiao, J.2
  • 8
    • 84898465753 scopus 로고    scopus 로고
    • The fastest pedestrian detector in the west
    • 6
    • P. Dollár, S. Belongie, and P. Perona. The fastest pedestrian detector in the west. In BMVC, 2010. 6
    • (2010) BMVC
    • Dollár, P.1    Belongie, S.2    Perona, P.3
  • 11
    • 79960822863 scopus 로고    scopus 로고
    • A multilevel mixture-ofexperts framework for pedestrian classification
    • 2
    • M. Enzweiler and D. M. Gavrila. A multilevel mixture-ofexperts framework for pedestrian classification. IEEE Trans. Image Process., 20(10):2967-2979, 2011. 2
    • (2011) IEEE Trans. Image Process , vol.20 , Issue.10 , pp. 2967-2979
    • Enzweiler, M.1    Gavrila, D.M.2
  • 12
    • 50249083612 scopus 로고    scopus 로고
    • Depth and appearance for mobile scene analysis
    • 2, 6
    • A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile scene analysis. In ICCV, 2007. 2, 6
    • (2007) ICCV
    • Ess, A.1    Leibe, B.2    Gool, L.V.3
  • 15
    • 77956001253 scopus 로고    scopus 로고
    • Multi-class object localization by combining local contextual interactions
    • 2
    • C. Galleguillosy, B. McFeey, S. Belongiey, and G. Lanckriet. Multi-class object localization by combining local contextual interactions. In CVPR, 2010. 2
    • (2010) CVPR
    • Galleguillosy, C.1    McFeey, B.2    Belongiey, S.3    Lanckriet, G.4
  • 18
    • 51949099868 scopus 로고    scopus 로고
    • Beyond sliding windows: Object localization by efficient subwindow search
    • 2
    • C. Lampert, M. Blaschko, and T. Hofmann. Beyond sliding windows: object localization by efficient subwindow search. In CVPR, 2008. 2
    • (2008) CVPR
    • Lampert, C.1    Blaschko, M.2    Hofmann, T.3
  • 19
    • 84863018717 scopus 로고    scopus 로고
    • Extracting adaptive contextual cues from unlabeled regions
    • 2
    • C. Li, D. Parikh, and T. Chen. Extracting adaptive contextual cues from unlabeled regions. In ICCV, pages 511-518. IEEE, 2011. 2
    • (2011) ICCV IEEE , pp. 511-518
    • Li, C.1    Parikh, D.2    Chen, T.3
  • 20
    • 70450162383 scopus 로고    scopus 로고
    • A pose-invariant descriptor for human detection and segmentation
    • 6
    • Z. Lin and L. Davis. A pose-invariant descriptor for human detection and segmentation. In ECCV, 2008. 6
    • (2008) ECCV
    • Lin, Z.1    Davis, L.2
  • 21
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • 2, 6
    • S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. In CVPR, 2008. 2, 6
    • (2008) CVPR
    • Maji, S.1    Berg, A.C.2    Malik, J.3
  • 22
    • 77956323937 scopus 로고    scopus 로고
    • The walking behaviour of pedestrian social groups and its impact on crowd dynamics
    • 1, 3
    • M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz. The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE, 5(4):e10047, 2010. 1, 3
    • (2010) PLoS ONE , vol.5 , Issue.4
    • Moussaid, M.1    Perozo, N.2    Garnier, S.3    Helbing, D.4    Theraulaz, G.5
  • 23
    • 84866696906 scopus 로고    scopus 로고
    • A discriminative deep model for pedestrian detection with occlusion handling
    • 2
    • W. Ouyang and X. Wang. A discriminative deep model for pedestrian detection with occlusion handling. In CVPR, 2012. 2
    • (2012) CVPR
    • Ouyang, W.1    Wang, X.2
  • 24
    • 84887380448 scopus 로고    scopus 로고
    • Modeling mutual visibility relationship in pedestrian detection
    • 2
    • W. Ouyang, X. Zeng, and X. Wang. Modeling mutual visibility relationship in pedestrian detection. In CVPR, 2013. 2
    • (2013) CVPR
    • Ouyang, W.1    Zeng, X.2    Wang, X.3
  • 25
    • 79960215740 scopus 로고    scopus 로고
    • Multiresolution models for object detection
    • 2, 6, 7
    • D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection. In ECCV, 2010. 2, 6, 7
    • (2010) ECCV
    • Park, D.1    Ramanan, D.2    Fowlkes, C.3
  • 26
    • 33744958383 scopus 로고    scopus 로고
    • Integral histogram: A fast way to extract histograms in cartesian spaces
    • 2
    • F. Porikli. Integral histogram: a fast way to extract histograms in cartesian spaces. In CVPR, 2005. 2
    • (2005) CVPR
    • Porikli, F.1
  • 27
    • 34948834722 scopus 로고    scopus 로고
    • Detecting pedestrians by learning shapelet features
    • 2, 6
    • P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet features. In CVPR, 2007. 2, 6
    • (2007) CVPR
    • Sabzmeydani, P.1    Mori, G.2
  • 28
    • 85015879350 scopus 로고    scopus 로고
    • Human detection using partial least squares analysis
    • 2, 6
    • W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis. Human detection using partial least squares analysis. In ICCV, 2009. 2, 6
    • (2009) ICCV
    • Schwartz, W.1    Kembhavi, A.2    Harwood, D.3    Davis, L.4
  • 29
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • 2
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011. 2
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 30
    • 84898407532 scopus 로고    scopus 로고
    • Detection and tracking of occluded people
    • 2, Surrey, UK
    • S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of occluded people. In BMVC, Surrey, UK, 2012. 2
    • (2012) BMVC
    • Tang, S.1    Andriluka, M.2    Schiele, B.3
  • 31
    • 50249124717 scopus 로고    scopus 로고
    • Pedestrian detection via classification on riemannian manifolds
    • Oct. 1, 2
    • O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell., 30(10):1713-1727, Oct. 2008. 1, 2
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.10 , pp. 1713-1727
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 32
    • 17444367737 scopus 로고    scopus 로고
    • Detecting pedestrians using patterns of motion and appearance
    • 2, 6
    • P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. Int'l J. Computer Vision, 63(2):153-161, 2005. 2, 6
    • (2005) Int'l J. Computer Vision , vol.63 , Issue.2 , pp. 153-161
    • Viola, P.1    Jones, M.J.2    Snow, D.3
  • 33
    • 77956007891 scopus 로고    scopus 로고
    • New features and insights for pedestrian detection
    • 2, 6, 7
    • S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for pedestrian detection. In CVPR, 2010. 2, 6, 7
    • (2010) CVPR
    • Walk, S.1    Majer, N.2    Schindler, K.3    Schiele, B.4
  • 34
    • 77956000059 scopus 로고    scopus 로고
    • An hog-lbp human detector with partial occlusion handling
    • 1, 2, 6
    • X. Wang, X. Han, and S. Yan. An hog-lbp human detector with partial occlusion handling. In CVPR, 2009. 1, 2, 6
    • (2009) CVPR
    • Wang, X.1    Han, X.2    Yan, S.3
  • 35
    • 70449617510 scopus 로고    scopus 로고
    • A performance evaluation of single and multi-feature people detection
    • 6
    • C. Wojek and B. Schiele. A performance evaluation of single and multi-feature people detection. In DAGM, 2008. 6
    • (2008) DAGM
    • Wojek, C.1    Schiele, B.2
  • 36
    • 70450162128 scopus 로고    scopus 로고
    • Multi-cue onboard pedestrian detection
    • 6
    • C. Wojek, S. Walk, and B. Schiele. Multi-cue onboard pedestrian detection. In CVPR, 2009. 6
    • (2009) CVPR
    • Wojek, C.1    Walk, S.2    Schiele, B.3
  • 37
    • 33745943636 scopus 로고    scopus 로고
    • Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors
    • 2
    • B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In ICCV, 2005. 2
    • (2005) ICCV
    • Wu, B.1    Nevatia, R.2
  • 38
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors
    • 2
    • B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. Int'l J. Computer Vision, 75(2):247-266, 2007. 2
    • (2007) Int'l J. Computer Vision , vol.75 , Issue.2 , pp. 247-266
    • Wu, B.1    Nevatia, R.2
  • 39
    • 84866696913 scopus 로고    scopus 로고
    • Multi-pedestrian detection in crowded scenes: A global view
    • 2
    • J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multi-pedestrian detection in crowded scenes: A global view. In CVPR, 2012. 2
    • (2012) CVPR
    • Yan, J.1    Lei, Z.2    Yi, D.3    Li, S.Z.4
  • 40
    • 84866704901 scopus 로고    scopus 로고
    • Recognizing proxemics in personal photos
    • 2
    • Y. Yang, S. Baker, A. Kannan, and D. Ramanan. Recognizing proxemics in personal photos. In CVPR, 2012. 2
    • (2012) CVPR
    • Yang, Y.1    Baker, S.2    Kannan, A.3    Ramanan, D.4
  • 41
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • 2
    • Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR, 2011. 2
    • (2011) CVPR
    • Yang, Y.1    Ramanan, D.2
  • 42
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • 2
    • B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object interaction activities. In CVPR, 2010. 2
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 43
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • 2
    • L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010. 2
    • (2010) CVPR
    • Zhu, L.1    Chen, Y.2    Yuille, A.3    Freeman, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.