메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2895-2902

Contextual boost for pedestrian detection

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; CALTECH; COLOR SPACE; CONTEXT CONSTRAINT; CONTEXTUAL CUE; CONVENTIONAL METHODS; DESCRIPTORS; ERROR RATE; FALSE POSITIVE; GLOBAL CONSTRAINTS; IMAGE FEATURES; ITERATIVE CLASSIFICATION ALGORITHMS; LOCAL FEATURE; LOCAL REGION; MISS-RATE; MULTIPLE IMAGE; MULTISCALES; NUMBER OF ITERATIONS; PEDESTRIAN DETECTION; TRAINING PROCESS;

EID: 84866724839     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248016     Document Type: Conference Paper
Times cited : (71)

References (50)
  • 1
    • 12844249589 scopus 로고    scopus 로고
    • Learning to detect objects in images via a sparse, part-based representation
    • 1
    • S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse, part-based representation. TPAMI, 2004. 1
    • (2004) TPAMI
    • Agarwal, S.1    Awan, A.2    Roth, D.3
  • 2
    • 35148884633 scopus 로고    scopus 로고
    • Spatialboost: Adding spatial reasoning to adaboost
    • 1, 2, 3
    • S. Avidan. Spatialboost: Adding spatial reasoning to adaboost. In ECCV, 2006. 1, 2, 3
    • (2006) ECCV
    • Avidan, S.1
  • 3
    • 78149329127 scopus 로고    scopus 로고
    • Part-based feature synthesis for human detection
    • 7
    • A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-based feature synthesis for human detection. In ECCV, pages 127-142, 2010. 7
    • (2010) ECCV , pp. 127-142
    • Bar-Hillel, A.1    Levi, D.2    Krupka, E.3    Goldberg, C.4
  • 4
    • 24144486461 scopus 로고    scopus 로고
    • A statistical model for general contextual object recognition
    • 1, 2
    • P. Carbonetto, N. de Freitas, and K. Barnard. A Statistical Model for General Contextual Object Recognition. In ECCV, 2004. 1, 2
    • (2004) ECCV
    • Carbonetto, P.1    De Freitas, N.2    Barnard, K.3
  • 6
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • 1, 2, 6, 7
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. 1, 2, 6, 7
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 8
    • 84898465753 scopus 로고    scopus 로고
    • The fastest pedestrian detector in the west
    • 7
    • P. Dollar, S. Belongie, and P. Perona. The fastest pedestrian detector in the west. In BMVC, 2010. 7
    • (2010) BMVC
    • Dollar, P.1    Belongie, S.2    Perona, P.3
  • 10
    • 34948852777 scopus 로고    scopus 로고
    • Feature mining for image classification
    • 1, 7
    • P. Dollar, Z. Tu, H. Tao, and S. Belongie. Feature mining for image classification. CVPR, 2007. 1, 7
    • (2007) CVPR
    • Dollar, P.1    Tu, Z.2    Tao, H.3    Belongie, S.4
  • 11
    • 84862144388 scopus 로고    scopus 로고
    • Pedestrian detection: An evaluation of the state of the art
    • 1, 2, 5, 6, 7
    • P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evaluation of the state of the art. TPAMI, 2011. 1, 2, 5, 6, 7
    • (2011) TPAMI
    • Dollar, P.1    Wojek, C.2    Schiele, B.3    Perona, P.4
  • 12
    • 77955998866 scopus 로고    scopus 로고
    • Multi-cue pedestrian classification with partial occlusion handling
    • 3
    • M. Enzweiler, A. Eigenstetter, B. Schiele, and D. M. Gavrila. Multi-cue pedestrian classification with partial occlusion handling. CVPR, 2010. 3
    • (2010) CVPR
    • Enzweiler, M.1    Eigenstetter, A.2    Schiele, B.3    Gavrila, D.M.4
  • 13
    • 51949098114 scopus 로고    scopus 로고
    • A mixed generative-discriminative framework for pedestrian classification
    • 1
    • M. Enzweiler and D. M. Gavrila. A mixed generative-discriminative framework for pedestrian classification. CVPR, 2008. 1
    • (2008) CVPR
    • Enzweiler, M.1    Gavrila, D.M.2
  • 14
    • 85068245127 scopus 로고    scopus 로고
    • Pedestrian registration on static images with unconstrained background
    • 1
    • L. Fan, K.-K. Sung, and T.-K. Ng. Pedestrian registration on static images with unconstrained background. Pattern Recognition, '03. 1
    • Pattern Recognition, '03
    • Fan, L.1    Sung, K.-K.2    Ng, T.-K.3
  • 15
    • 51949101231 scopus 로고    scopus 로고
    • A discriminatively trained, multiscale, deformable part model
    • 1, 2
    • P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. CVPR, 2008. 1, 2
    • (2008) CVPR
    • Felzenszwalb, P.1    McAllester, D.2    Ramanan, D.3
  • 16
    • 77955999401 scopus 로고    scopus 로고
    • Cascade object detection with deformable part models
    • 7
    • P. F. Felzenszwalb, R. B. Girshick, and D. Mcallester. D.m.: Cascade object detection with deformable part models. In CVPR, 2010. 7
    • (2010) CVPR
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3
  • 18
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised Scale-Invariant learning
    • 1
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised Scale-Invariant learning. In CVPR, 2003. 1
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 19
    • 84898966570 scopus 로고    scopus 로고
    • Mutual boosting for contextual inference
    • 1
    • M. Fink and P. Perona. Mutual boosting for contextual inference. In NIPS, 2004. 1
    • (2004) NIPS
    • Fink, M.1    Perona, P.2
  • 20
    • 0035371148 scopus 로고    scopus 로고
    • An adaptive version of the boost by majority algorithm
    • 1, 6
    • Y. Freund. An adaptive version of the boost by majority algorithm. Machine Learning, 2001. 1, 6
    • (2001) Machine Learning
    • Freund, Y.1
  • 21
    • 51949110976 scopus 로고    scopus 로고
    • Object categorization using co-occurrence, location and appearance
    • 1
    • C. Galleguillos, A. Rabinovich, and S. Belongie. Object categorization using co-occurrence, location and appearance. CVPR, 2008. 1
    • (2008) CVPR
    • Galleguillos, C.1    Rabinovich, A.2    Belongie, S.3
  • 22
    • 34447258877 scopus 로고    scopus 로고
    • A Bayesian, Exemplar-Based approach to hierarchical shape matching
    • 1
    • D. M. Gavrila. A bayesian, Exemplar-Based approach to hierarchical shape matching. TPAMI, 2007. 1
    • (2007) TPAMI
    • Gavrila, D.M.1
  • 23
    • 77952647953 scopus 로고    scopus 로고
    • Survey of pedestrian detection for advanced driver assistance systems
    • 1, 7
    • D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf. Survey of pedestrian detection for advanced driver assistance systems. TPAMI, 2010. 1, 7
    • (2010) TPAMI
    • Geronimo, D.1    Lopez, A.M.2    Sappa, A.D.3    Graf, T.4
  • 24
    • 70449582001 scopus 로고    scopus 로고
    • Learning spatial context: Using stuff to find things
    • 1
    • G. Heitz and D. Koller. Learning spatial context: Using stuff to find things. In ECCV, 2008. 1
    • (2008) ECCV
    • Heitz, G.1    Koller, D.2
  • 25
    • 33845563923 scopus 로고    scopus 로고
    • Putting objects in perspective
    • 1
    • D. Hoiem, A. A. Efros, andM. Hebert. Putting objects in perspective. In CVPR, 2006. 1
    • (2006) CVPR
    • Hoiem, D.1    Efros, A.A.2    Hebert, M.3
  • 26
    • 0032132170 scopus 로고    scopus 로고
    • Multidimensional morphable models: A framework for representing and matching object classes
    • 1
    • M. J. Jones and T. Poggio. Multidimensional morphable models: A framework for representing and matching object classes. IJCV, '98. 1
    • IJCV, '98
    • Jones, M.J.1    Poggio, T.2
  • 27
    • 56749178327 scopus 로고    scopus 로고
    • A pose-invariant descriptor for human detection and segmentation
    • 1, 7
    • Z. Lin and L. S. Davis. A pose-invariant descriptor for human detection and segmentation. In ECCV, pages 423-436, 2008. 1, 7
    • (2008) ECCV , pp. 423-436
    • Lin, Z.1    Davis, L.S.2
  • 28
    • 51949098112 scopus 로고    scopus 로고
    • Classification using intersection kernel support vector machines is efficient
    • 1, 7
    • S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel support vector machines is efficient. CVPR, 2008. 1, 7
    • (2008) CVPR
    • Maji, S.1    Berg, A.C.2    Malik, J.3
  • 29
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • 3
    • T. Ojala, M. Pietikinen, and D. Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996. 3
    • (1996) Pattern Recognition
    • Ojala, T.1    Pietikinen, M.2    Harwood, D.3
  • 30
    • 79960215740 scopus 로고    scopus 로고
    • Multiresolution models for object detection
    • 1, 2, 3, 7
    • D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection. In ECCV, 2010. 1, 2, 3, 7
    • (2010) ECCV
    • Park, D.1    Ramanan, D.2    Fowlkes, C.3
  • 31
    • 34948876368 scopus 로고    scopus 로고
    • Human detection via classification on riemannian manifolds
    • 1
    • F. Porikli, P. Meer, O. Tuzel, and O. Tuzel. Human detection via classification on riemannian manifolds. In CVPR, 2007. 1
    • (2007) CVPR
    • Porikli, F.1    Meer, P.2    Tuzel, O.3    Tuzel, O.4
  • 32
    • 34948910140 scopus 로고    scopus 로고
    • Using segmentation to verify object hypotheses
    • 1
    • D. Ramanan. Using segmentation to verify object hypotheses. CVPR, 2007. 1
    • (2007) CVPR
    • Ramanan, D.1
  • 34
    • 34948834722 scopus 로고    scopus 로고
    • Detecting pedestrians by learning shapelet features
    • 1, 7
    • P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet features. CVPR, 2007. 1, 7
    • (2007) CVPR
    • Sabzmeydani, P.1    Mori, G.2
  • 36
    • 34948907324 scopus 로고    scopus 로고
    • Towards robust pedestrian detection in crowded image sequences
    • 1
    • E. Seemann, M. Fritz, and B. Schiele. Towards robust pedestrian detection in crowded image sequences. CVPR, 2007. 1
    • (2007) CVPR
    • Seemann, E.1    Fritz, M.2    Schiele, B.3
  • 37
    • 33745824267 scopus 로고    scopus 로고
    • TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • 1
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation. In ECCV, 2006. 1
    • (2006) ECCV
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 38
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • 8
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. CVPR, 2011. 8
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 39
    • 0037500818 scopus 로고    scopus 로고
    • Contextual priming for object detection
    • 1
    • A. Torralba. Contextual priming for object detection. IJCV, 2003. 1
    • (2003) IJCV
    • Torralba, A.1
  • 40
    • 33745888873 scopus 로고    scopus 로고
    • Contextual models for object detection using boosted random fields
    • 1, 2
    • A. Torralba, K. Murphy, and W. Freeman. Contextual models for object detection using boosted random fields. NIPS, 2004. 1, 2
    • (2004) NIPS
    • Torralba, A.1    Murphy, K.2    Freeman, W.3
  • 41
    • 77956051102 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks and 3d brain image segmentation
    • 2, 3
    • Z. Tu and X. Bai. Auto-context and its application to high-level vision tasks and 3d brain image segmentation. TPAMI, 2010. 2, 3
    • (2010) TPAMI
    • Tu, Z.1    Bai, X.2
  • 42
    • 3042532614 scopus 로고    scopus 로고
    • Robust real-time object detection
    • 1, 7
    • P. Viola and M. Jones. Robust real-time object detection. IJCV, '02. 1, 7
    • IJCV, '02
    • Viola, P.1    Jones, M.2
  • 43
    • 77956007891 scopus 로고    scopus 로고
    • New features and insights for pedestrian detection
    • 7
    • S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and insights for pedestrian detection. CVPR, pages 1030-1037, 2010. 7
    • (2010) CVPR , pp. 1030-1037
    • Walk, S.1    Majer, N.2    Schindler, K.3    Schiele, B.4
  • 44
    • 85020603202 scopus 로고    scopus 로고
    • An hog-LBP human detector with partial occlusion handling
    • 1, 6, 7
    • X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector with partial occlusion handling. In ICCV, pages 32-39, 2009. 1, 6, 7
    • (2009) ICCV , pp. 32-39
    • Wang, X.1    Han, T.X.2    Yan, S.3
  • 46
    • 33744510605 scopus 로고    scopus 로고
    • A critical view of context
    • 1, 2
    • L. Wolf and S. Bileschi. A critical view of context. IJCV, 2006. 1, 2
    • (2006) IJCV
    • Wolf, L.1    Bileschi, S.2
  • 47
    • 33745943636 scopus 로고    scopus 로고
    • Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors
    • 1
    • B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single image by bayesian combination of edgelet part detectors. In ICCV'05. 1
    • ICCV'05
    • Wu, B.1    Nevatia, R.2
  • 48
    • 70450219009 scopus 로고    scopus 로고
    • Contextual flow
    • 1, 2
    • Y. Wu and J. Fan. Contextual flow. In CVPR, 2009. 1, 2
    • (2009) CVPR
    • Wu, Y.1    Fan, J.2
  • 49
    • 33745934480 scopus 로고    scopus 로고
    • Bayesian body localization using mixture of nonlinear shape models
    • 1
    • J. Zhang, R. Collins, and Y. Liu. Bayesian body localization using mixture of nonlinear shape models. ICCV, 2005. 1
    • (2005) ICCV
    • Zhang, J.1    Collins, R.2    Liu, Y.3
  • 50
    • 84857428624 scopus 로고    scopus 로고
    • Quantifying and transferring contextual information in object detection
    • 8
    • W.-S. Zheng, S. Gong, and T. Xiang. Quantifying and transferring contextual information in object detection. TPAMI, 2012. 8
    • (2012) TPAMI
    • Zheng, W.-S.1    Gong, S.2    Xiang, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.