-
1
-
-
33646117239
-
Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks
-
Bekker-Jensen, S., C. Lukas, R. Kitagawa, F. Melander, M.B. Kastan, J. Bartek, and J. Lukas. 2006. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173:195-206. http://dx.doi.org/10.1083/jcb.200510130
-
(2006)
J. Cell Biol.
, vol.173
, pp. 195-206
-
-
Bekker-Jensen, S.1
Lukas, C.2
Kitagawa, R.3
Melander, F.4
Kastan, M.B.5
Bartek, J.6
Lukas, J.7
-
2
-
-
17244375049
-
Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADPribose) polymerase
-
Bryant, H.E., N. Schultz, H.D. Thomas, K.M. Parker, D. Flower, E. Lopez, S. Kyle, M. Meuth, N.J. Curtin, and T. Helleday. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADPribose) polymerase. Nature. 434:913-917. http://dx.doi.org/10.1038/nature03443
-
(2005)
Nature.
, vol.434
, pp. 913-917
-
-
Bryant, H.E.1
Schultz, N.2
Thomas, H.D.3
Parker, K.M.4
Flower, D.5
Lopez, E.6
Kyle, S.7
Meuth, M.8
Curtin, N.J.9
Helleday, T.10
-
3
-
-
79960978444
-
Tracking genome engineering outcome at individual DNA breakpoints
-
Certo, M.T., B.Y. Ryu, J.E. Annis, M. Garibov, J. Jarjour, D.J. Rawlings, and A.M. Scharenberg. 2011. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods. 8:671-676. http://dx.doi.org/10.1038/nmeth.1648
-
(2011)
Nat. Methods.
, vol.8
, pp. 671-676
-
-
Certo, M.T.1
Ryu, B.Y.2
Annis, J.E.3
Garibov, M.4
Jarjour, J.5
Rawlings, D.J.6
Scharenberg, A.M.7
-
4
-
-
78149284014
-
TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint
-
Cescutti, R., S. Negrini, M. Kohzaki, and T.D. Halazonetis. 2010. TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO J. 29:3723-3732. http://dx.doi.org/10.1038/emboj.2010.238
-
(2010)
EMBO J.
, vol.29
, pp. 3723-3732
-
-
Cescutti, R.1
Negrini, S.2
Kohzaki, M.3
Halazonetis, T.D.4
-
5
-
-
0032159062
-
Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells
-
Chen, J., D.P. Silver, D. Walpita, S.B. Cantor, A.F. Gazdar, G. Tomlinson, F.J. Couch, B.L. Weber, T. Ashley, D.M. Livingston, and R. Scully. 1998. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell. 2:317-328. http://dx.doi.org/10.1016/S1097-2765(00)80276-2
-
(1998)
Mol. Cell.
, vol.2
, pp. 317-328
-
-
Chen, J.1
Silver, D.P.2
Walpita, D.3
Cantor, S.B.4
Gazdar, A.F.5
Tomlinson, G.6
Couch, F.J.7
Weber, B.L.8
Ashley, T.9
Livingston, D.M.10
Scully, R.11
-
6
-
-
84923295067
-
Targeting TopBP1 at a convergent point of multiple oncogenic pathways for cancer therapy
-
Chowdhury, P., G.E. Lin, K. Liu, Y. Song, F.T. Lin, and W.C. Lin. 2014. Targeting TopBP1 at a convergent point of multiple oncogenic pathways for cancer therapy. Nat. Commun. 5:5476. http://dx.doi.org/10.1038/ncomms6476
-
(2014)
Nat. Commun.
, vol.5
, pp. 5476
-
-
Chowdhury, P.1
Lin, G.E.2
Liu, K.3
Song, Y.4
Lin, F.T.5
Lin, W.C.6
-
7
-
-
17244373777
-
Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
-
Farmer, H., N. McCabe, C.J. Lord, A.N. Tutt, D.A. Johnson, T.B. Richardson, M. Santarosa, K.J. Dillon, I. Hickson, C. Knights, et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917-921. http://dx.doi.org/10.1038/nature03445
-
(2005)
Nature.
, vol.434
, pp. 917-921
-
-
Farmer, H.1
McCabe, N.2
Lord, C.J.3
Tutt, A.N.4
Johnson, D.A.5
Richardson, T.B.6
Santarosa, M.7
Dillon, K.J.8
Hickson, I.9
Knights, C.10
-
8
-
-
84929643068
-
Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity
-
Frankum, J., P. Moudry, R. Brough, Z. Hodny, A. Ashworth, J. Bartek, and C.J. Lord. 2015. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget. 6:10746-10758. http://dx.doi.org/10.18632/oncotarget.3628
-
(2015)
Oncotarget.
, vol.6
, pp. 10746-10758
-
-
Frankum, J.1
Moudry, P.2
Brough, R.3
Hodny, Z.4
Ashworth, A.5
Bartek, J.6
Lord, C.J.7
-
9
-
-
33847254374
-
Aberrant expression of TopBP1 in breast cancer
-
Going, J.J., C. Nixon, E.S. Dornan, W. Boner, M.M. Donaldson, and I.M. Morgan. 2007. Aberrant expression of TopBP1 in breast cancer. Histopathology. 50:418-424. http://dx.doi.org/10.1111/j.1365-2559.2007.02622.x
-
(2007)
Histopathology.
, vol.50
, pp. 418-424
-
-
Going, J.J.1
Nixon, C.2
Dornan, E.S.3
Boner, W.4
Donaldson, M.M.5
Morgan, I.M.6
-
10
-
-
84938747485
-
PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2
-
Hanafusa, H., S. Kedashiro, M. Tezuka, M. Funatsu, S. Usami, F. Toyoshima, and K. Matsumoto. 2015. PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Nat. Cell Biol. 17:1024-1035. http://dx.doi.org/10.1038/ncb3204
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1024-1035
-
-
Hanafusa, H.1
Kedashiro, S.2
Tezuka, M.3
Funatsu, M.4
Usami, S.5
Toyoshima, F.6
Matsumoto, K.7
-
11
-
-
70350504453
-
The DNA-damage response in human biology and disease
-
Jackson, S.P., and J. Bartek. 2009. The DNA-damage response in human biology and disease. Nature. 461:1071-1078. http://dx.doi.org/10.1038/nature08467
-
(2009)
Nature.
, vol.461
, pp. 1071-1078
-
-
Jackson, S.P.1
Bartek, J.2
-
12
-
-
33644757806
-
TopBP1 activates the ATR-ATR IP complex
-
Kumagai, A., J. Lee, H.Y. Yoo, and W.G. Dunphy. 2006. TopBP1 activates the ATR-ATR IP complex. Cell. 124:943-955. http://dx.doi.org/10.1016/j.cell.2005.12.041
-
(2006)
Cell.
, vol.124
, pp. 943-955
-
-
Kumagai, A.1
Lee, J.2
Yoo, H.Y.3
Dunphy, W.G.4
-
13
-
-
66349134798
-
Regulation of p53 by TopBP1: a potential mechanism for p53 inactivation in cancer
-
Liu, K., N. Bellam, H.Y. Lin, B. Wang, C.R. Stockard, W.E. Grizzle, and W.C. Lin. 2009. Regulation of p53 by TopBP1: a potential mechanism for p53 inactivation in cancer. Mol. Cell. Biol. 29:2673-2693. http://dx.doi.org/10.1128/MCB.01140-08
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 2673-2693
-
-
Liu, K.1
Bellam, N.2
Lin, H.Y.3
Wang, B.4
Stockard, C.R.5
Grizzle, W.E.6
Lin, W.C.7
-
14
-
-
84891709489
-
Akt switches TopBP1 function from checkpoint activation to transcriptional regulation through phosphoserine binding-mediated oligomerization
-
Liu, K., J.D. Graves, J.D. Scott, R. Li, and W.C. Lin. 2013. Akt switches TopBP1 function from checkpoint activation to transcriptional regulation through phosphoserine binding-mediated oligomerization. Mol. Cell. Biol. 33:4685-4700. http://dx.doi.org/10.1128/MCB.00373-13
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 4685-4700
-
-
Liu, K.1
Graves, J.D.2
Scott, J.D.3
Li, R.4
Lin, W.C.5
-
15
-
-
84921367731
-
Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors
-
Lord, C.J., A.N. Tutt, and A. Ashworth. 2015. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu. Rev. Med. 66:455-470. http://dx.doi.org/10.1146/annurev-med-050913-022545
-
(2015)
Annu. Rev. Med.
, vol.66
, pp. 455-470
-
-
Lord, C.J.1
Tutt, A.N.2
Ashworth, A.3
-
16
-
-
84857891632
-
On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1
-
Luo, X., and W.L. Kraus. 2012. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 26:417-432. http://dx.doi.org/10.1101/gad.183509.111
-
(2012)
Genes Dev.
, vol.26
, pp. 417-432
-
-
Luo, X.1
Kraus, W.L.2
-
17
-
-
84891855786
-
Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia
-
Martins, L.R., P. Lúcio, A. Melão, I. Antunes, B.A. Cardoso, R. Stansfield, M.T. Bertilaccio, P. Ghia, D. Drygin, M.G. Silva, and J.T. Barata. 2014. Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia. Leukemia. 28:179-182. http://dx.doi.org/10.1038/leu.2013.232
-
(2014)
Leukemia.
, vol.28
, pp. 179-182
-
-
Martins, L.R.1
Lúcio, P.2
Melão, A.3
Antunes, I.4
Cardoso, B.A.5
Stansfield, R.6
Bertilaccio, M.T.7
Ghia, P.8
Drygin, D.9
Silva, M.G.10
Barata, J.T.11
-
18
-
-
44849093460
-
TopBP1 activates ATR through ATR IP and a PIKK regulatory domain
-
Mordes, D.A., G.G. Glick, R. Zhao, and D. Cortez. 2008. TopBP1 activates ATR through ATR IP and a PIKK regulatory domain. Genes Dev. 22:1478-1489. http://dx.doi.org/10.1101/gad.1666208
-
(2008)
Genes Dev.
, vol.22
, pp. 1478-1489
-
-
Mordes, D.A.1
Glick, G.G.2
Zhao, R.3
Cortez, D.4
-
19
-
-
34548591001
-
TopBP1 associates with NBS1 and is involved in homologous recombination repair
-
Morishima, K., S. Sakamoto, J. Kobayashi, H. Izumi, T. Suda, Y. Matsumoto, H. Tauchi, H. Ide, K. Komatsu, and S. Matsuura. 2007. TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochem. Biophys. Res. Commun. 362:872-879. http://dx.doi.org/10.1016/j.bbrc.2007.08.086
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.362
, pp. 872-879
-
-
Morishima, K.1
Sakamoto, S.2
Kobayashi, J.3
Izumi, H.4
Suda, T.5
Matsumoto, Y.6
Tauchi, H.7
Ide, H.8
Komatsu, K.9
Matsuura, S.10
-
20
-
-
84868221110
-
Trapping of PARP1 and PARP2 by clinical PARP inhibitors
-
Murai, J., S.Y. Huang, B.B. Das, A. Renaud, Y. Zhang, J.H. Doroshow, J. Ji, S. Takeda, and Y. Pommier. 2012. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72:5588-5599. http://dx.doi.org/10.1158/0008-5472.CAN-12-2753
-
(2012)
Cancer Res.
, vol.72
, pp. 5588-5599
-
-
Murai, J.1
Huang, S.Y.2
Das, B.B.3
Renaud, A.4
Zhang, Y.5
Doroshow, J.H.6
Ji, J.7
Takeda, S.8
Pommier, Y.9
-
21
-
-
78651321775
-
Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1
-
Rappas, M., A.W. Oliver, and L.H. Pearl. 2011. Structure and function of the Rad9-binding region of the DNA-damage checkpoint adaptor TopBP1. Nucleic Acids Res. 39:313-324. http://dx.doi.org/10.1093/nar/gkq743
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 313-324
-
-
Rappas, M.1
Oliver, A.W.2
Pearl, L.H.3
-
22
-
-
84919968901
-
BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells
-
Reuter, M., A. Zelensky, I. Smal, E. Meijering, W.A. van Cappellen, H.M. de Gruiter, G.J. van Belle, M.E. van Royen, A.B. Houtsmuller, J. Essers, et al. 2014. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. J. Cell Biol. 207:599-613. http://dx.doi.org/10.1083/jcb.201405014
-
(2014)
J. Cell Biol.
, vol.207
, pp. 599-613
-
-
Reuter, M.1
Zelensky, A.2
Smal, I.3
Meijering, E.4
van Cappellen, W.A.5
de Gruiter, H.M.6
van Belle, G.J.7
van Royen, M.E.8
Houtsmuller, A.B.9
Essers, J.10
-
23
-
-
84908044967
-
Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor
-
Shahid, T., J. Soroka, E.H. Kong, L. Malivert, M.J. McIlwraith, T. Pape, S.C. West, and X. Zhang. 2014. Structure and mechanism of action of the BRCA2 breast cancer tumor suppressor. Nat. Struct. Mol. Biol. 21:962-968. http://dx.doi.org/10.1038/nsmb.2899
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 962-968
-
-
Shahid, T.1
Soroka, J.2
Kong, E.H.3
Malivert, L.4
McIlwraith, M.J.5
Pape, T.6
West, S.C.7
Zhang, X.8
-
24
-
-
77952980297
-
Function of TopBP1 in genome stability
-
Sokka, M., S. Parkkinen, H. Pospiech, and J.E. Syväoja. 2010. Function of TopBP1 in genome stability. Subcell. Biochem. 50:119-141. http://dx.doi.org/10.1007/978-90-481-3471-7_7
-
(2010)
Subcell. Biochem.
, vol.50
, pp. 119-141
-
-
Sokka, M.1
Parkkinen, S.2
Pospiech, H.3
Syväoja, J.E.4
-
25
-
-
66349096607
-
PALB2 is an integral component of the BRCA complex required for homologous recombination repair
-
Sy, S.M., M.S. Huen, and J. Chen. 2009. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl. Acad. Sci. USA. 106:7155-7160. http://dx.doi.org/10.1073/pnas.0811159106
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 7155-7160
-
-
Sy, S.M.1
Huen, M.S.2
Chen, J.3
-
26
-
-
38949124412
-
ATR signaling can drive cells into senescence in the absence of DNA breaks
-
Toledo, L.I., M. Murga, P. Gutierrez-Martinez, R. Soria, and O. Fernandez-Capetillo. 2008. ATR signaling can drive cells into senescence in the absence of DNA breaks. Genes Dev. 22:297-302. http://dx.doi.org/10.1101/gad.452308
-
(2008)
Genes Dev.
, vol.22
, pp. 297-302
-
-
Toledo, L.I.1
Murga, M.2
Gutierrez-Martinez, P.3
Soria, R.4
Fernandez-Capetillo, O.5
-
27
-
-
0031574247
-
A DNA-topoisomerase-IIbinding protein with eight repeating regions similar to DNA-repair enzymes and to a cell-cycle regulator
-
Yamane, K., M. Kawabata, and T. Tsuruo. 1997. A DNA-topoisomerase-IIbinding protein with eight repeating regions similar to DNA-repair enzymes and to a cell-cycle regulator. Eur. J. Biochem. 250:794-799. http://dx.doi.org/10.1111/j.1432-1033.1997.00794.x
-
(1997)
Eur. J. Biochem.
, vol.250
, pp. 794-799
-
-
Yamane, K.1
Kawabata, M.2
Tsuruo, T.3
-
28
-
-
84856776536
-
Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair
-
Yata, K., J. Lloyd, S. Maslen, J.Y. Bleuyard, M. Skehel, S.J. Smerdon, and F. Esashi. 2012. Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol. Cell. 45:371-383. http://dx.doi.org/10.1016/j.molcel.2011.12.028
-
(2012)
Mol. Cell.
, vol.45
, pp. 371-383
-
-
Yata, K.1
Lloyd, J.2
Maslen, S.3
Bleuyard, J.Y.4
Skehel, M.5
Smerdon, S.J.6
Esashi, F.7
-
29
-
-
84902315945
-
BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability
-
Yata, K., J.Y. Bleuyard, R. Nakato, C. Ralf, Y. Katou, R.A. Schwab, W. Niedzwiedz, K. Shirahige, and F. Esashi. 2014. BRCA2 coordinates the activities of cell-cycle kinases to promote genome stability. Cell Reports. 7:1547-1559. http://dx.doi.org/10.1016/j.celrep.2014.04.023
-
(2014)
Cell Reports.
, vol.7
, pp. 1547-1559
-
-
Yata, K.1
Bleuyard, J.Y.2
Nakato, R.3
Ralf, C.4
Katou, Y.5
Schwab, R.A.6
Niedzwiedz, W.7
Shirahige, K.8
Esashi, F.9
-
30
-
-
0033179235
-
BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo
-
Yuan, S.S., S.Y. Lee, G. Chen, M. Song, G.E. Tomlinson, and E.Y. Lee. 1999. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 59:3547-3551.
-
(1999)
Cancer Res.
, vol.59
, pp. 3547-3551
-
-
Yuan, S.S.1
Lee, S.Y.2
Chen, G.3
Song, M.4
Tomlinson, G.E.5
Lee, E.Y.6
|