메뉴 건너뛰기




Volumn 348, Issue , 2016, Pages 243-271

A multi-step outlier-based anomaly detection approach to network-wide traffic

Author keywords

Anomaly detection; Clustering; Network wide traffic; Outlier score; Reference point

Indexed keywords

DATA MINING; DIAGNOSIS; INFORMATION MANAGEMENT; NETWORK MANAGEMENT; SIGNAL DETECTION; STATISTICS;

EID: 84959432825     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.02.023     Document Type: Article
Times cited : (100)

References (60)
  • 2
    • 79956097533 scopus 로고    scopus 로고
    • Mutual information-based feature selection for intrusion detection systems
    • F. Amiri, M.M.R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani Mutual information-based feature selection for intrusion detection systems J. Netw. Comput. Appl. 34 4 2011 1184 1199
    • (2011) J. Netw. Comput. Appl. , vol.34 , Issue.4 , pp. 1184-1199
    • Amiri, F.1    Yousefi, M.M.R.2    Lucas, C.3    Shakery, A.4    Yazdani, N.5
  • 4
    • 33244494218 scopus 로고    scopus 로고
    • Distance-based detection and prediction of outliers
    • F. Angiulli, S. Basta, and C. Pizzuti Distance-based detection and prediction of outliers IEEE Trans. Knowl. Data Eng. 18 2 2006 145 160
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.2 , pp. 145-160
    • Angiulli, F.1    Basta, S.2    Pizzuti, C.3
  • 9
    • 79952952185 scopus 로고    scopus 로고
    • Critical study of supervised learning techniques in predicting attacks
    • R. Beghdad Critical study of supervised learning techniques in predicting attacks Inf. Secur. J. A Glob. Perspect. 19 1 2010 22 35
    • (2010) Inf. Secur. J. A Glob. Perspect. , vol.19 , Issue.1 , pp. 22-35
    • Beghdad, R.1
  • 10
    • 0021583718 scopus 로고
    • FCM: the fuzzy c-means clustering algorithm
    • J.C. Bezdek, R. Ehrlich, and W. Full FCM: the fuzzy c-means clustering algorithm Comput. Geosci. 10 2-3 1984 191 203
    • (1984) Comput. Geosci. , vol.10 , Issue.2-3 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 12
    • 80053510589 scopus 로고    scopus 로고
    • Surveying port scans and their detection methodologies
    • M.H. Bhuyan, D. Bhattacharyya, and J. Kalita Surveying port scans and their detection methodologies Comput. J. 54 10 2011 1565 1581
    • (2011) Comput. J. , vol.54 , Issue.10 , pp. 1565-1581
    • Bhuyan, M.H.1    Bhattacharyya, D.2    Kalita, J.3
  • 14
    • 84944264514 scopus 로고    scopus 로고
    • Towards generating real-life datasets for network intrusion detection
    • M.H. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita Towards generating real-life datasets for network intrusion detection Int. J. Netw. Secur. 17 6 2015 675 693
    • (2015) Int. J. Netw. Secur. , vol.17 , Issue.6 , pp. 675-693
    • Bhuyan, M.H.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 16
    • 84928269589 scopus 로고    scopus 로고
    • Improving network intrusion detection system performance through quality of service configuration and parallel technology
    • W. Bul'ajoul, A. James, and M. Pannu Improving network intrusion detection system performance through quality of service configuration and parallel technology J. Comput. Syst. Sci. 81 6 2015 981 999
    • (2015) J. Comput. Syst. Sci. , vol.81 , Issue.6 , pp. 981-999
    • Bul'ajoul, W.1    James, A.2    Pannu, M.3
  • 17
    • 84858698273 scopus 로고    scopus 로고
    • Unsupervised network intrusion detection systems: detecting the unknown without knowledge
    • P. Casas, J. Mazel, and P. Owezarski Unsupervised network intrusion detection systems: detecting the unknown without knowledge Comput. Commun. 35 7 2012 772 783
    • (2012) Comput. Commun. , vol.35 , Issue.7 , pp. 772-783
    • Casas, P.1    Mazel, J.2    Owezarski, P.3
  • 18
    • 84961288567 scopus 로고    scopus 로고
    • A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks
    • K.A.P. Costa, L.A.M. Pereira, R.Y.M. Nakamura, C.R. Pereira, J.P. Papa, and A.X. Falcão A nature-inspired approach to speed up optimum-path forest clustering and its application to intrusion detection in computer networks Inf. Sci. 294 2015 95 108
    • (2015) Inf. Sci. , vol.294 , pp. 95-108
    • Costa, K.A.P.1    Pereira, L.A.M.2    Nakamura, R.Y.M.3    Pereira, C.R.4    Papa, J.P.5    Falcão, A.X.6
  • 19
    • 84939142748 scopus 로고    scopus 로고
    • An uncertainty-managing batch relevance-based approach to network anomaly detection
    • G. D'angelo, F. Palmieri, M. Ficco, and S. Rampone An uncertainty-managing batch relevance-based approach to network anomaly detection Appl. Soft. Comput. 36 2015 408 418
    • (2015) Appl. Soft. Comput. , vol.36 , pp. 408-418
    • D'Angelo, G.1    Palmieri, F.2    Ficco, M.3    Rampone, S.4
  • 22
    • 84931269284 scopus 로고    scopus 로고
    • Autonomous profile-based anomaly detection system using principal component analysis and flow analysis
    • G. Fernandes, J.J. Rodrigues, and M.L. Proença Autonomous profile-based anomaly detection system using principal component analysis and flow analysis Appl. Soft. Comput. 34 2015 513 525
    • (2015) Appl. Soft. Comput. , vol.34 , pp. 513-525
    • Fernandes, G.1    Rodrigues, J.J.2    Proença, M.L.3
  • 24
    • 84921784324 scopus 로고    scopus 로고
    • An evaluation of classifier-specific filter measure performance for feature selection
    • C. Freeman, D. Kulic, and O. Basir An evaluation of classifier-specific filter measure performance for feature selection Pattern Recognit. 48 5 2015 1812 1826
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1812-1826
    • Freeman, C.1    Kulic, D.2    Basir, O.3
  • 25
    • 84940702275 scopus 로고    scopus 로고
    • A precise ranking method for outlier detection
    • J. Ha, S. Seok, and J.S. Lee A precise ranking method for outlier detection Inf. Sci. 324 2015 88 107
    • (2015) Inf. Sci. , vol.324 , pp. 88-107
    • Ha, J.1    Seok, S.2    Lee, J.S.3
  • 27
    • 77956613687 scopus 로고    scopus 로고
    • A novel intrusion detection system based on hierarchical clustering and support vector machines
    • S.J. Horng, M.Y. Su, Y.H. Chen, T.W. Kao, R.J. Chen, J.L. Lai, and C.D. Perkasa A novel intrusion detection system based on hierarchical clustering and support vector machines Expert Syst. Appl. 38 1 2011 306 313
    • (2011) Expert Syst. Appl. , vol.38 , Issue.1 , pp. 306-313
    • Horng, S.J.1    Su, M.Y.2    Chen, Y.H.3    Kao, T.W.4    Chen, R.J.5    Lai, J.L.6    Perkasa, C.D.7
  • 29
    • 84954140791 scopus 로고    scopus 로고
    • A multi-level intrusion detection method for abnormal network behaviors
    • S.Y. Ji, B.K. Jeong, S. Choi, and D.H. Jeong A multi-level intrusion detection method for abnormal network behaviors J. Netw. Comput. Appl. 62 2016 9 17
    • (2016) J. Netw. Comput. Appl. , vol.62 , pp. 9-17
    • Ji, S.Y.1    Jeong, B.K.2    Choi, S.3    Jeong, D.H.4
  • 30
    • 33644860127 scopus 로고    scopus 로고
    • A clustering-based method for unsupervised intrusion detections
    • S. Jiang, X. Song, H. Wang, J.-J. Han, and Q.-H. Li A clustering-based method for unsupervised intrusion detections Pattern Recognit. Lett. 27 7 2006 802 810
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.7 , pp. 802-810
    • Jiang, S.1    Song, X.2    Wang, H.3    Han, J.-J.4    Li, Q.-H.5
  • 33
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: algorithms and applications
    • E.M. Knorr, R.T. Ng, and V. Tucakov Distance-based outliers: algorithms and applications VLDB J. 8 3-4 2000 237 253
    • (2000) VLDB J. , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 34
    • 77649275031 scopus 로고    scopus 로고
    • A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes
    • A. Koufakou, and M. Georgiopoulos A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes Data Mining Knowl. Discov. 20 2 2010 259 289
    • (2010) Data Mining Knowl. Discov. , vol.20 , Issue.2 , pp. 259-289
    • Koufakou, A.1    Georgiopoulos, M.2
  • 36
    • 84925846662 scopus 로고    scopus 로고
    • Novel heuristic dual-ant clustering algorithm for network intrusion outliers detection
    • T. Li, and N.F. Xiao Novel heuristic dual-ant clustering algorithm for network intrusion outliers detection Optik - Int. J. Light Electron Optics 126 4 2015 494 497
    • (2015) Optik - Int. J. Light Electron Optics , vol.126 , Issue.4 , pp. 494-497
    • Li, T.1    Xiao, N.F.2
  • 37
    • 84933183260 scopus 로고    scopus 로고
    • CANN: an intrusion detection system based on combining cluster centers and nearest neighbors
    • W.C. Lin, S.W. Ke, and C.F. Tsai CANN: an intrusion detection system based on combining cluster centers and nearest neighbors Knowl. Based Syst. 78 2015 13 21
    • (2015) Knowl. Based Syst. , vol.78 , pp. 13-21
    • Lin, W.C.1    Ke, S.W.2    Tsai, C.F.3
  • 38
    • 2442589699 scopus 로고    scopus 로고
    • On-line outlier detection and data cleaning
    • H. Liu, S. Shah, and W. Jiang On-line outlier detection and data cleaning Comput. Chem. Eng. 28 9 2004 1635 1647
    • (2004) Comput. Chem. Eng. , vol.28 , Issue.9 , pp. 1635-1647
    • Liu, H.1    Shah, S.2    Jiang, W.3
  • 39
    • 84937818655 scopus 로고    scopus 로고
    • A class-oriented feature selection approach for multi-class imbalanced network traffic datasets based on local and global metrics fusion
    • Z. Liu, R. Wang, M. Tao, and X. Cai A class-oriented feature selection approach for multi-class imbalanced network traffic datasets based on local and global metrics fusion Neurocomputing 168 2015 365 381
    • (2015) Neurocomputing , vol.168 , pp. 365-381
    • Liu, Z.1    Wang, R.2    Tao, M.3    Cai, X.4
  • 41
    • 43949105851 scopus 로고    scopus 로고
    • OutRank: a graph-based outlier detection framework using random walk
    • H.D.K. Moonesinghe, and P.N. Tan OutRank: a graph-based outlier detection framework using random walk Int. J. Artif. Intell. Tools 17 1 2008 19 36
    • (2008) Int. J. Artif. Intell. Tools , vol.17 , Issue.1 , pp. 19-36
    • Moonesinghe, H.D.K.1    Tan, P.N.2
  • 43
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: a method for clustering objects for spatial data mining
    • R.T. Ng, and J. Han CLARANS: a method for clustering objects for spatial data mining IEEE Trans. Knowl. Data Eng. 14 5 2002 1003 1016
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 45
    • 84915781942 scopus 로고    scopus 로고
    • Deceiving entropy based DoS detection
    • L. Ozçelik, and R.R. Brooks Deceiving entropy based DoS detection Comput. Secur. 48 2015 234 245
    • (2015) Comput. Secur. , vol.48 , pp. 234-245
    • Ozçelik, L.1    Brooks, R.R.2
  • 46
    • 84959343020 scopus 로고    scopus 로고
    • Local outlier factor use for the network flow anomaly detection
    • N. Paulauskas, and A.F. Bagdonas Local outlier factor use for the network flow anomaly detection Secur. Commun. Netw. 8 18 2015 4203 4212
    • (2015) Secur. Commun. Netw. , vol.8 , Issue.18 , pp. 4203-4212
    • Paulauskas, N.1    Bagdonas, A.F.2
  • 50
    • 65449165244 scopus 로고    scopus 로고
    • Outlier detection based on rough sets theory
    • F. Shaari, A.A. Bakar, and A.R. Hamdan Outlier detection based on rough sets theory Intell. Data Anal. 13 2 2009 191 206
    • (2009) Intell. Data Anal. , vol.13 , Issue.2 , pp. 191-206
    • Shaari, F.1    Bakar, A.A.2    Hamdan, A.R.3
  • 51
    • 84874114774 scopus 로고    scopus 로고
    • Toward a more practical unsupervised anomaly detection system
    • J. Song, H. Takakura, Y. Okabe, and K. Nakao Toward a more practical unsupervised anomaly detection system Inf. Sci. 231 0 2013 4 14
    • (2013) Inf. Sci. , vol.231 , pp. 4-14
    • Song, J.1    Takakura, H.2    Okabe, Y.3    Nakao, K.4
  • 52
    • 84863822611 scopus 로고    scopus 로고
    • Rényi entropy, mutual information, and fluctuation properties of fermi liquids
    • B. Swingle Rényi entropy, mutual information, and fluctuation properties of fermi liquids Phys. Rev. B 86 2012 045109
    • (2012) Phys. Rev. B , vol.86 , pp. 045109
    • Swingle, B.1
  • 53
    • 77953169019 scopus 로고    scopus 로고
    • Mining outliers with faster cutoff update and space utilization
    • C.C. Szeto, and E. Hung Mining outliers with faster cutoff update and space utilization Pattern Recognit. Lett. 31 11 2010 1292 1301
    • (2010) Pattern Recognit. Lett. , vol.31 , Issue.11 , pp. 1292-1301
    • Szeto, C.C.1    Hung, E.2
  • 54
    • 0043166339 scopus 로고    scopus 로고
    • Anomaly detection in IP networks
    • M. Thottan, and C. Ji Anomaly detection in IP networks IEEE Trans. Signal Process. 51 8 2003 2191 2204
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.8 , pp. 2191-2204
    • Thottan, M.1    Ji, C.2
  • 55
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbors approach to intrusion detection
    • C.F. Tsai, and C.Y. Lin A triangle area based nearest neighbors approach to intrusion detection Pattern Recognit. 43 1 2010 222 229
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 222-229
    • Tsai, C.F.1    Lin, C.Y.2
  • 56
    • 84924871671 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure
    • Z. Wang, M. Li, and J. Li A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure Inf. Sci. 307 2015 73 88
    • (2015) Inf. Sci. , vol.307 , pp. 73-88
    • Wang, Z.1    Li, M.2    Li, J.3
  • 57
    • 85028222318 scopus 로고    scopus 로고
    • Detecting anomalies from big network traffic data using an adaptive detection approach
    • J. Zhang, H. Li, Q. Gao, H. Wang, and Y. Luo Detecting anomalies from big network traffic data using an adaptive detection approach Inf. Sci. 318 2015 91 110
    • (2015) Inf. Sci. , vol.318 , pp. 91-110
    • Zhang, J.1    Li, H.2    Gao, Q.3    Wang, H.4    Luo, Y.5
  • 59
    • 40849120409 scopus 로고    scopus 로고
    • LDBOD: a novel local distribution based outlier detector
    • Y. Zhang, S. Yang, and Y. Wang LDBOD: a novel local distribution based outlier detector Pattern Recognit. Lett. 29 7 2008 967 976
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.7 , pp. 967-976
    • Zhang, Y.1    Yang, S.2    Wang, Y.3
  • 60
    • 85018214986 scopus 로고    scopus 로고
    • Global and local structure preserving sparse subspace learning: an iterative approach to unsupervised feature selection
    • N. Zhou, Y. Xu, H. Cheng, J. Fang, and W. Pedrycz Global and local structure preserving sparse subspace learning: an iterative approach to unsupervised feature selection Pattern Recognit. 53 2016 87 101
    • (2016) Pattern Recognit. , vol.53 , pp. 87-101
    • Zhou, N.1    Xu, Y.2    Cheng, H.3    Fang, J.4    Pedrycz, W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.