메뉴 건너뛰기




Volumn 78, Issue 1, 2015, Pages 13-21

CANN: An intrusion detection system based on combining cluster centers and nearest neighbors

Author keywords

Anomaly detection; Cluster center; Feature representation; Intrusion detection; Nearest neighbor

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL EFFICIENCY; COMPUTER CRIME; COMPUTER NETWORKS; COMPUTER SYSTEM FIREWALLS; FEATURE EXTRACTION; LEARNING ALGORITHMS; LEARNING SYSTEMS; ONE DIMENSIONAL; SECURITY OF DATA;

EID: 84933183260     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2015.01.009     Document Type: Article
Times cited : (448)

References (39)
  • 1
    • 35548992415 scopus 로고    scopus 로고
    • A parallel genetic local search algorithm for intrusion detection in computer networks
    • M.S. Abadeh, J. Habibi, Z. Barzegar, M. Sergi, A parallel genetic local search algorithm for intrusion detection in computer networks, Eng. Appl. Artif. Intell. 20 (8) (2007) 1058-1069.
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , Issue.8 , pp. 1058-1069
    • Abadeh, M.S.1    Habibi, J.2    Barzegar, Z.3    Sergi, M.4
  • 2
    • 84878107136 scopus 로고    scopus 로고
    • GMDH-based networks for intelligent intrusion detection
    • Z.A. Baig, S.M. Sait, A. Shaheen, GMDH-based networks for intelligent intrusion detection, Eng. Appl. Artif. Intell. 26 (7) (2013) 1731-1740.
    • (2013) Eng. Appl. Artif. Intell. , vol.26 , Issue.7 , pp. 1731-1740
    • Baig, Z.A.1    Sait, S.M.2    Shaheen, A.3
  • 3
    • 33947581868 scopus 로고    scopus 로고
    • Hybrid flexible neural-tree-based intrusion detection systems
    • Y. Chen, A. Abraham, B. Yang, Hybrid flexible neural-tree-based intrusion detection systems, Int. J. Intell. Syst. 22 (2007) 337-352.
    • (2007) Int. J. Intell. Syst. , vol.22 , pp. 337-352
    • Chen, Y.1    Abraham, A.2    Yang, B.3
  • 4
    • 84908054655 scopus 로고    scopus 로고
    • Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps
    • E. de la Hoz, E. de la Hoz, A. Ortiz, J. Ortega, A. Martinez-Alvarez, Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps, Knowl.-Based Syst. 71 (2014) 322-338.
    • (2014) Knowl.-Based Syst. , vol.71 , pp. 322-338
    • De La Hoz, E.1    De La Hoz, E.2    Ortiz, A.3    Ortega, J.4    Martinez-Alvarez, A.5
  • 5
    • 84901626460 scopus 로고    scopus 로고
    • Mining network data for intrusion detection through combining SVMs with ant colony networks
    • W. Feng, Q. Zhang, G. Hu, J.X. Huang, Mining network data for intrusion detection through combining SVMs with ant colony networks, Future Gener. Comput. Syst. 37 (2014) 127-140.
    • (2014) Future Gener. Comput. Syst. , vol.37 , pp. 127-140
    • Feng, W.1    Zhang, Q.2    Hu, G.3    Huang, J.X.4
  • 6
    • 84919327055 scopus 로고    scopus 로고
    • A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems
    • A.S. Eesa, Z. Orman, A.M.A. Brifcani, A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems, Expert Syst. Appl. 42 (5) (2015) 2670-2679.
    • (2015) Expert Syst. Appl. , vol.42 , Issue.5 , pp. 2670-2679
    • Eesa, A.S.1    Orman, Z.2    Brifcani, A.M.A.3
  • 8
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • G. Giacinto, R. Perdisci, M. Del Rio, F. Roli, Intrusion detection in computer networks by a modular ensemble of one-class classifiers, Inf. Fusion 9 (2008) 69-82.
    • (2008) Inf. Fusion , vol.9 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 11
    • 34547798962 scopus 로고    scopus 로고
    • Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection
    • J.V. Hansen, P.B. Lowry, R.D. Meservy, D.M. McDonald, Genetic programming for prevention of cyberterrorism through dynamic and evolving intrusion detection, Decis. Support Syst. 43 (2007) 1362-1374.
    • (2007) Decis. Support Syst. , vol.43 , pp. 1362-1374
    • Hansen, J.V.1    Lowry, P.B.2    Meservy, R.D.3    McDonald, D.M.4
  • 16
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • L. Khan, M. Awad, B. Thuraisingham, A new intrusion detection system using support vector machines and hierarchical clustering, VLDB J. 16 (2007) 507-521.
    • (2007) VLDB J. , vol.16 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 17
    • 84888315965 scopus 로고    scopus 로고
    • A novel hybrid intrusion detection method integrating anomaly detection with misuse detection
    • G. Kim, S. Lee, S. Kim, A novel hybrid intrusion detection method integrating anomaly detection with misuse detection, Expert Syst. Appl. 41 (4) (2014) 1690-1700.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1690-1700
    • Kim, G.1    Lee, S.2    Kim, S.3
  • 18
    • 36549085110 scopus 로고    scopus 로고
    • An active learning based TCM-KNN algorithm for supervised network intrusion detection
    • Y. Li, L. Guo, An active learning based TCM-KNN algorithm for supervised network intrusion detection, Comput. Secur. 26 (2007) 459-467.
    • (2007) Comput. Secur. , vol.26 , pp. 459-467
    • Li, Y.1    Guo, L.2
  • 19
    • 84864772502 scopus 로고    scopus 로고
    • An intelligent algorithm with feature selection and decision rules applied to anomaly instruction detection
    • S.-W. Lin, K.-C. Ying, C.-Y. Lee, Z.-J. Lee, An intelligent algorithm with feature selection and decision rules applied to anomaly instruction detection, Appl. Soft Comput. 12 (12) (2012) 3285-3290.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.12 , pp. 3285-3290
    • Lin, S.-W.1    Ying, K.-C.2    Lee, C.-Y.3    Lee, Z.-J.4
  • 20
    • 33847406678 scopus 로고    scopus 로고
    • A hierarchical intrusion detection model based on the PCA neural networks
    • G. Liu, Z. Yi, S. Yang, A hierarchical intrusion detection model based on the PCA neural networks, Neurocomputing 70 (2007) 1561-1568.
    • (2007) Neurocomputing , vol.70 , pp. 1561-1568
    • Liu, G.1    Yi, Z.2    Yang, S.3
  • 21
    • 30344471038 scopus 로고    scopus 로고
    • Network security basics
    • G.A. Marin, Network security basics, IEEE Secur. Privacy 3 (6) (2005) 68-72.
    • (2005) IEEE Secur. Privacy , vol.3 , Issue.6 , pp. 68-72
    • Marin, G.A.1
  • 23
    • 84897435257 scopus 로고    scopus 로고
    • Effective approach toward Intrusion Detection System using data mining techniques
    • G.V. Nadiammai, M. Hemalatha, Effective approach toward Intrusion Detection System using data mining techniques, Egypt. Infor. J. 15 (1) (2014) 37-50.
    • (2014) Egypt. Infor. J. , vol.15 , Issue.1 , pp. 37-50
    • Nadiammai, G.V.1    Hemalatha, M.2
  • 25
    • 33750512162 scopus 로고    scopus 로고
    • Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening
    • T. Ozyer, R. Alhajj, K. Barker, Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening, J. Network Comput. Appl. 30 (2007) 99-113.
    • (2007) J. Network Comput. Appl. , vol.30 , pp. 99-113
    • Ozyer, T.1    Alhajj, R.2    Barker, K.3
  • 27
    • 80255126809 scopus 로고    scopus 로고
    • Practical real-time intrusion detection using machine learning approaches
    • P. Sangkatsanee, N. Wattanapongsakorn, C. Charnsripinyo, Practical real-time intrusion detection using machine learning approaches, Comput. Commun. 34 (18) (2011) 2227-2235.
    • (2011) Comput. Commun. , vol.34 , Issue.18 , pp. 2227-2235
    • Sangkatsanee, P.1    Wattanapongsakorn, N.2    Charnsripinyo, C.3
  • 29
    • 84866102744 scopus 로고    scopus 로고
    • Advanced probabilistic approach for network intrusion forecasting and detection
    • S. Shin, S. Lee, H. Kim, S. Kim, Advanced probabilistic approach for network intrusion forecasting and detection, Exp. Syst. Appl. 40 (1) (2013) 315-322.
    • (2013) Exp. Syst. Appl. , vol.40 , Issue.1 , pp. 315-322
    • Shin, S.1    Lee, S.2    Kim, H.3    Kim, S.4
  • 30
    • 34250801472 scopus 로고    scopus 로고
    • A hybrid machine learning approach to network anomaly detection
    • T. Shon, J. Moon, A hybrid machine learning approach to network anomaly detection, Inform. Sci. 177 (2007) 3799-3821.
    • (2007) Inform. Sci. , vol.177 , pp. 3799-3821
    • Shon, T.1    Moon, J.2
  • 31
    • 33748619234 scopus 로고    scopus 로고
    • Applying genetic algorithm for classifying anomalous TCP/IP packets
    • T. Shon, X. Kovah, J. Moon, Applying genetic algorithm for classifying anomalous TCP/IP packets, Neurocomputing 69 (2006) 2429-2433.
    • (2006) Neurocomputing , vol.69 , pp. 2429-2433
    • Shon, T.1    Kovah, X.2    Moon, J.3
  • 32
    • 58549089680 scopus 로고    scopus 로고
    • Intrusion detection using fuzzy association rules
    • A. Tajbakhsh, M. Rahmati, A. Mirzaei, Intrusion detection using fuzzy association rules, Appl. Soft Comput. 9 (2009) 462-469.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 462-469
    • Tajbakhsh, A.1    Rahmati, M.2    Mirzaei, A.3
  • 33
    • 69349090629 scopus 로고    scopus 로고
    • A research using hybrid RBF/Elman neural networks for intrusion detection system secure model
    • X. Tong, Z. Wang, H. Yu, A research using hybrid RBF/Elman neural networks for intrusion detection system secure model, Comput. Phys. Commun. 180 (10) (2009) 1795-1801.
    • (2009) Comput. Phys. Commun. , vol.180 , Issue.10 , pp. 1795-1801
    • Tong, X.1    Wang, Z.2    Yu, H.3
  • 34
    • 69249230890 scopus 로고    scopus 로고
    • Intrusion detection by machine learning: A review
    • C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, W.-Y. Lin, Intrusion detection by machine learning: a review, Expert Syst. Appl. 36 (10) (2009) 11994-12000.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.10 , pp. 11994-12000
    • Tsai, C.-F.1    Hsu, Y.-F.2    Lin, C.-Y.3    Lin, W.-Y.4
  • 35
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbor approach to intrusion detection
    • C.-F. Tsai, C.-Y. Lin, A triangle area based nearest neighbor approach to intrusion detection, Pattern Recogn. 43 (1) (2010) 222-229.
    • (2010) Pattern Recogn. , vol.43 , Issue.1 , pp. 222-229
    • Tsai, C.-F.1    Lin, C.-Y.2
  • 36
    • 84941079784 scopus 로고    scopus 로고
    • A new approach to intrusion detection using artificial neural networks and fuzzy clustering
    • G. Wang, J. Hao, J. Ma, L. Huang, A new approach to intrusion detection using artificial neural networks and fuzzy clustering, Exp. Syst. Appl. 37 (9) (2010) 6225-6232.
    • (2010) Exp. Syst. Appl. , vol.37 , Issue.9 , pp. 6225-6232
    • Wang, G.1    Hao, J.2    Ma, J.3    Huang, L.4
  • 37
    • 40849099949 scopus 로고    scopus 로고
    • Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees
    • C. Xiang, P.C. Yong, L.S. Meng, Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees, Pattern Recogn. Lett. 29 (2008) 918-924.
    • (2008) Pattern Recogn. Lett. , vol.29 , pp. 918-924
    • Xiang, C.1    Yong, P.C.2    Meng, L.S.3
  • 38
    • 15944375471 scopus 로고    scopus 로고
    • Intrusion detection using hierarchical neural network
    • C. Zhang, J. Jiang, M. Kamel, Intrusion detection using hierarchical neural network, Pattern Recogn. Lett. 26 (2005) 779-791.
    • (2005) Pattern Recogn. Lett. , vol.26 , pp. 779-791
    • Zhang, C.1    Jiang, J.2    Kamel, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.