메뉴 건너뛰기




Volumn 35, Issue 7, 2012, Pages 772-783

Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge

Author keywords

Evidence Accumulation; NIDS; Outliers detection; Sub Space Clustering; Unsupervised Machine Learning

Indexed keywords

EVIDENCE ACCUMULATION; NIDS; OUTLIERS DETECTION; SUB-SPACES; UNSUPERVISED MACHINE LEARNING;

EID: 84858698273     PISSN: 01403664     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.comcom.2012.01.016     Document Type: Conference Paper
Times cited : (213)

References (29)
  • 1
    • 15744370034 scopus 로고    scopus 로고
    • A taxonomy of network and computer attacks
    • DOI 10.1016/j.cose.2004.06.011, PII S0167404804001804
    • S. Hansman, R. Hunt, A taxonomy of network and computer attacks, in: Computers and Security, vol. 24, no. 1, pp. 31-43, 2005. (Pubitemid 40415398)
    • (2005) Computers and Security , vol.24 , Issue.1 , pp. 31-43
    • Hansman, S.1    Hunt, R.2
  • 4
    • 29844455221 scopus 로고    scopus 로고
    • What's new: Finding significant differences in network data streams
    • DOI 10.1109/TNET.2005.860096
    • G. Cormode, S. Muthukrishnan, What is new: finding significant differences in network data streams, in: IEEE Transactions on Networking, vol. 13 no. 6, 2005, pp. 1219-1232. (Pubitemid 43034131)
    • (2005) IEEE/ACM Transactions on Networking , vol.13 , Issue.6 , pp. 1219-1232
    • Cormode, G.1    Muthukrishnan, S.2
  • 5
    • 84858709024 scopus 로고    scopus 로고
    • UNADA: Unsupervised network anomaly detection using sub-space outliers ranking
    • P. Casas, J. Mazel, P. Owezarski, UNADA: Unsupervised network anomaly detection using sub-space outliers ranking, in: IFIP Networking, 2011.
    • (2011) IFIP Networking
    • Casas, P.1    Mazel, J.2    Owezarski, P.3
  • 6
    • 65249118227 scopus 로고    scopus 로고
    • Network anomaly detection and classification via opportunistic sampling
    • G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou Network anomaly detection and classification via opportunistic sampling IEEE Network 23 1 2009
    • (2009) IEEE Network , vol.23 , Issue.1
    • Androulidakis, G.1    Chatzigiannakis, V.2    Papavassiliou, S.3
  • 9
    • 3042667688 scopus 로고    scopus 로고
    • Using decision trees to improve signature-based intrusion detection
    • C. Kruegel, T. Toth, Using decision trees to improve signature-based intrusion detection, in: Proceedings RAID, 2003.
    • (2003) Proceedings RAID
    • Kruegel, C.1    Toth, T.2
  • 10
    • 84858700252 scopus 로고    scopus 로고
    • Effective value of decision tree with KDD99 intrusion detection datasets for IDS
    • J. Lee, H. Lee, S. Sohn, J. Ryu, T. Chung, Effective value of decision tree with KDD99 intrusion detection datasets for IDS, in: Proceedings ICACT, 2008.
    • (2008) Proceedings ICACT
    • Lee, J.1    Lee, H.2    Sohn, S.3    Ryu, J.4    Chung, T.5
  • 11
    • 14944367267 scopus 로고    scopus 로고
    • Characterization of network-wide anomalies in traffic flows
    • A. Lakhina, M. Crovella, C. Diot, Characterization of network-wide anomalies in traffic flows, in: Proceedings ACM IMC, 2004.
    • (2004) Proceedings ACM IMC
    • Lakhina, A.1    Crovella, M.2    Diot, C.3
  • 16
    • 62949129764 scopus 로고    scopus 로고
    • Extracting hidden anomalies using sketch and non gaussian multi-resolution statistical detection procedures
    • G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, K. Cho, Extracting hidden anomalies using sketch and non gaussian multi-resolution statistical detection procedures, in: Proceedings ACM LSAD Workshop, 2007.
    • (2007) Proceedings ACM LSAD Workshop
    • Dewaele, G.1    Fukuda, K.2    Borgnat, P.3    Abry, P.4    Cho, K.5
  • 17
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A.K. Jain Data clustering: 50 years beyond K-means Pattern Recognition Letters 31 8 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 18
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu Subspace clustering for high dimensional data: a review ACM SIGKDD Expl. Newsletter 6 1 2004 90 105
    • (2004) ACM SIGKDD Expl. Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 21
    • 33746860935 scopus 로고    scopus 로고
    • Unsupervised Anomaly detection in network intrusion detection using clustering
    • K. Leung, C. Leckie, Unsupervised Anomaly detection in network intrusion detection using clustering, in: Proceedings ACSC, 2005.
    • (2005) Proceedings ACSC
    • Leung, K.1    Leckie, C.2
  • 23
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings ACM SIGKDD, 1996.
    • (1996) Proceedings ACM SIGKDD
    • Ester, M.1    Kriegel, P.2    Sander, J.3    Xu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.