메뉴 건너뛰기




Volumn 231, Issue , 2013, Pages 4-14

Toward a more practical unsupervised anomaly detection system

Author keywords

Anomaly detection; Clustering; Intrusion Detection System; One class SVM

Indexed keywords

ANOMALY DETECTION; ANOMALY DETECTION METHODS; BUILDING PROCESS; CLUSTERING; CYBER-ATTACKS; DATA MINING TECHNIQUES; HONEYPOTS; INTRUSION DETECTION MODELS; INTRUSION DETECTION SYSTEMS; KYOTO UNIVERSITY; LABELED TRAINING DATA; NETWORK CHARACTERISTICS; ONE CLASS-SVM; REAL NETWORKS; REAL TRAFFIC; UNKNOWN ATTACKS; UNSUPERVISED ANOMALY DETECTION;

EID: 84874114774     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.08.011     Document Type: Article
Times cited : (71)

References (30)
  • 1
    • 0003914522 scopus 로고    scopus 로고
    • State of the practice of intrusion detection technologies
    • CMU/SEI-99-TR-028
    • J. Allen, A. Christie, W. Fithen, State of the Practice of Intrusion Detection Technologies, Technical Report, CMU/SEI-99-TR-028, 2000.
    • (2000) Technical Report
    • Allen, J.1    Christie, A.2    Fithen, W.3
  • 9
    • 85016684916 scopus 로고    scopus 로고
    • Intrusion detection in unlabeled data with quarter-sphere support vector machines
    • P. Laskov, C. Schäfer, & I. Kotenko, Intrusion detection in unlabeled data with quarter-sphere support vector machines, in: Proc. DIMVA, 2004 pp. 71-82.
    • (2004) Proc. DIMVA , pp. 71-82
    • Laskov, P.1
  • 10
    • 84874117838 scopus 로고    scopus 로고
    • .
  • 11
    • 84874114143 scopus 로고    scopus 로고
    • .
  • 12
    • 84874105569 scopus 로고    scopus 로고
    • .
  • 13
    • 84874117883 scopus 로고    scopus 로고
    • .
  • 14
    • 84874110642 scopus 로고    scopus 로고
    • .
  • 15
    • 33746860935 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • K. Leung, C. Leckie, Unsupervised anomaly detection in network intrusion detection using clusters, in: ACSC2005, 2005.
    • (2005) ACSC2005
    • Leung, K.1    Leckie, C.2
  • 17
    • 1542492748 scopus 로고    scopus 로고
    • Identifying significant features for network forensic analysis using artificial intelligent techniques
    • S. Mukkamala, and A.H. Sung Identifying significant features for network forensic analysis using artificial intelligent techniques International Journal of Digital Evidence 1 4 2003
    • (2003) International Journal of Digital Evidence , vol.1 , Issue.4
    • Mukkamala, S.1    Sung, A.H.2
  • 19
    • 77956590229 scopus 로고    scopus 로고
    • Unsupervised Anomaly Detection Based on Clustering and Multiple One-class SVM
    • Jungsuk Song, Hiroki Takakura, Yasuo Okabe, and Yongjin Kwon Unsupervised Anomaly Detection Based on Clustering and Multiple One-class SVM IEICE Transactions on Communications E92-B 06 2009 1981 1990
    • (2009) IEICE Transactions on Communications , vol.92 E -B , Issue.6 , pp. 1981-1990
    • Song, J.1    Takakura, H.2    Okabe, Y.3    Kwon, Y.4
  • 24
    • 3142623031 scopus 로고    scopus 로고
    • Clustering intrusion detection alarms to support root cause analysis
    • ACM Press (4)
    • K. Julisch Clustering intrusion detection alarms to support root cause analysis ACM Transactions on Information and System Security Vol. 6 2003 ACM Press 443 471 (4)
    • (2003) ACM Transactions on Information and System Security , vol.6 VOL. , pp. 443-471
    • Julisch, K.1
  • 26
    • 35048852163 scopus 로고    scopus 로고
    • A novel framework for alert correlation and understanding
    • Dong Yu, Deborah Frincke, A novel framework for alert correlation and understanding, in: ACNS 2004, LNCS 3089, 2004, pp. 452-466.
    • (2004) ACNS 2004, LNCS 3089 , pp. 452-466
    • Yu, D.1    Frincke, D.2
  • 28
    • 26944446508 scopus 로고    scopus 로고
    • Alarm clustering for intrusion detection systems in computer networks
    • Giorgio Giacinto, Roberto Perdisci, Fabio Roli, Alarm clustering for intrusion detection systems in computer networks, in: MLDM 2005, LNAI 3587, 2005, pp. 184-193.
    • (2005) MLDM 2005, LNAI 3587 , pp. 184-193
    • Giacinto, G.1    Perdisci, R.2    Roli, F.3
  • 29
    • 58149488644 scopus 로고    scopus 로고
    • Intrusion detection alarms reduction using root cause analysis and clustering
    • S. Al-Mamory, and H. Zhang Intrusion detection alarms reduction using root cause analysis and clustering ACM Computer Communications 32 2 2009 419 430
    • (2009) ACM Computer Communications , vol.32 , Issue.2 , pp. 419-430
    • Al-Mamory, S.1    Zhang, H.2
  • 30
    • 77950036364 scopus 로고    scopus 로고
    • On the versatility of radial basis function neural networks: A case study in the field of intrusion detection
    • Dominik Fisch, Alexander Hofmann, and Bernhard Sick On the versatility of radial basis function neural networks: A case study in the field of intrusion detection Information Sciences 180 12 2010 2421 2439
    • (2010) Information Sciences , vol.180 , Issue.12 , pp. 2421-2439
    • Fisch, D.1    Hofmann, A.2    Sick, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.