메뉴 건너뛰기




Volumn , Issue , 2011, Pages 531-536

NADO: Network Anomaly Detection using Outlier approach

Author keywords

Anomaly detection; Attacks; Outlier detection; Profile; Score

Indexed keywords

ANOMALY DETECTION; ATTACKS; OUTLIER DETECTION; PROFILE; SCORE;

EID: 79952932462     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1947940.1948050     Document Type: Conference Paper
Times cited : (32)

References (23)
  • 2
  • 3
    • 77952380096 scopus 로고    scopus 로고
    • Mining distance-based outliers in near linear time with randomization and a simple pruning rule
    • New York, USA
    • S. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In Proc. of the ninth ACM SIGKDD, pages 29-38, New York, USA, 2003.
    • (2003) Proc. of the Ninth ACM SIGKDD , pp. 29-38
    • Bay, S.1    Schwabacher, M.2
  • 4
    • 79952952185 scopus 로고    scopus 로고
    • Critical study of supervised learning techniques in predicting attacks
    • R. Beghdad. Critical study of supervised learning techniques in predicting attacks. Information Security Journal: A Global Perspective, 19(1):22-35, 2010.
    • (2010) Information Security Journal: A Global Perspective , vol.19 , Issue.1 , pp. 22-35
    • Beghdad, R.1
  • 6
    • 79953835698 scopus 로고    scopus 로고
    • RODD: An effective outlier detection technique for large datasets
    • N. M. et. al. editor, volume 133 of CCIS, Springer
    • M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. RODD: An effective outlier detection technique for large datasets. In N. M. et. al., editor, Proc. of CCSIT'11, volume 133 of CCIS, Part-III, pages 76-84. Springer, 2010.
    • (2010) Proc. of CCSIT'11 , Issue.PART-III , pp. 76-84
    • Bhuyan, M.H.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 10
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Sciences
    • A. Frank and A. Asuncion. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml], 2010. Irvine, CA: University of California, School of Information and Computer Sciences.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 11
    • 79952963997 scopus 로고    scopus 로고
    • KDDCUP99. October 28
    • KDDCUP99. Winning strategy in kdd99. http://kdd.ics.uci.edu/databases/ kddcup99/kddcup99.html October 28 1999.
    • (1999) Winning Strategy in Kdd99
  • 13
    • 85084163349 scopus 로고    scopus 로고
    • Data mining approaches for intrusion detection
    • USENIX Association, Berkeley, CA, USA
    • W. Lee and S. J. Stolfo. Data mining approaches for intrusion detection. In Proc. of the 7th conference on USENIX Security Symposium - Volume 7, pages 6-6, USENIX Association, Berkeley, CA, USA, 1998.
    • (1998) Proc. of the 7th Conference on USENIX Security Symposium , vol.7 , pp. 6
    • Lee, W.1    Stolfo, S.J.2
  • 14
    • 84878080825 scopus 로고    scopus 로고
    • An efficient reference-based approach to outlier detection in large datasets
    • Washington, DC, USA, IEEE
    • Y. Pei, O. R. Zaiane, and Y. Gao. An efficient reference-based approach to outlier detection in large datasets. In Proc. of the Sixth International Conference on Data Mining, pages 478-487, Washington, DC, USA, 2006. IEEE.
    • (2006) Proc. of the Sixth International Conference on Data Mining , pp. 478-487
    • Pei, Y.1    Zaiane, O.R.2    Gao, Y.3
  • 16
    • 0038663185 scopus 로고    scopus 로고
    • Intrusion detection with unlabeled data using clustering
    • Philadelphia, PA
    • L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with unlabeled data using clustering. In Proc. of ACM CSS Workshop on DMAS, pages 5-8, Philadelphia, PA, 2001.
    • (2001) Proc. of ACM CSS Workshop on DMAS , pp. 5-8
    • Portnoy, L.1    Eskin, E.2    Stolfo, S.3
  • 17
    • 51349120553 scopus 로고    scopus 로고
    • A novel outlier detection scheme for network intrusion detection systems
    • Washington, DC, USA, IEEE CS
    • K. Prakobphol and J. Zhan. A novel outlier detection scheme for network intrusion detection systems. In Proc. of the 2008 International Conference on ISA, pages 555-560, Washington, DC, USA, 2008. IEEE CS.
    • (2008) Proc. of the 2008 International Conference on ISA , pp. 555-560
    • Prakobphol, K.1    Zhan, J.2
  • 18
    • 35248842651 scopus 로고    scopus 로고
    • Detecting anomalous network traffic with self-organizing maps
    • LNCS, Springer
    • M. Ramadas, S. Ostermann, and B. Tjaden. Detecting anomalous network traffic with self-organizing maps. In Recent Advances in Intrusion Detection, LNCS, pages 36-54. Springer, 2003.
    • (2003) Recent Advances in Intrusion Detection , pp. 36-54
    • Ramadas, M.1    Ostermann, S.2    Tjaden, B.3
  • 22
    • 33746076451 scopus 로고    scopus 로고
    • One-class support vector machine for anomaly network traffic detection
    • Cairns, Australia
    • Q. A. Tran, H. Duan, and X. Li. One-class support vector machine for anomaly network traffic detection. In The 2nd Network Research Workshop of the 18th APAN, Cairns, Australia, 2004.
    • (2004) 2nd Network Research Workshop of the 18th APAN
    • Tran, Q.A.1    Duan, H.2    Li, X.3
  • 23
    • 42549142161 scopus 로고    scopus 로고
    • Anomaly based network intrusion detection with unsupervised outlier detection
    • DOI 10.1109/ICC.2006.255127, 4024522, 2006 IEEE International Conference on Communications, ICC 2006
    • J. Zhang and M. Zulkernine. Anomaly based network intrusion detection with unsupervised outlier detection. In IEEE International Conference on Communications, volume 5, pages 2388-2393, june 2006. (Pubitemid 351575588)
    • (2006) IEEE International Conference on Communications , vol.5 , pp. 2388-2393
    • Zhang, J.1    Zulkernine, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.