-
1
-
-
0004048154
-
-
Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology
-
J.P. Anderson Computer Security Threat Monitoring and Surveillance, Tech. Rep. 1980 Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology
-
(1980)
Computer Security Threat Monitoring and Surveillance, Tech. Rep.
-
-
Anderson, J.P.1
-
3
-
-
57849130705
-
Anomaly-based network intrusion detection: Techniques, systems and challenges
-
P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez Anomaly-based network intrusion detection: techniques, systems and challenges Comput. Secur. 28 1-2 2009 18 28
-
(2009)
Comput. Secur.
, vol.28
, Issue.1-2
, pp. 18-28
-
-
Garcia-Teodoro, P.1
Diaz-Verdejo, J.2
Macia-Fernandez, G.3
Vazquez, E.4
-
4
-
-
34250315640
-
An overview of anomaly detection techniques: Existing solutions and latest technological trends
-
A. Patcha, and J.-M. Park An overview of anomaly detection techniques: existing solutions and latest technological trends Comput. Netw. 51 12 2007 3448 3470
-
(2007)
Comput. Netw.
, vol.51
, Issue.12
, pp. 3448-3470
-
-
Patcha, A.1
Park, J.-M.2
-
6
-
-
0033295259
-
Bro: A system for detecting network intruders in real-time
-
V. Paxson Bro: a system for detecting network intruders in real-time Comput. Netw. 31 23 1999 2435 2463
-
(1999)
Comput. Netw.
, vol.31
, Issue.23
, pp. 2435-2463
-
-
Paxson, V.1
-
7
-
-
33646837908
-
Detecting unusual program behavior using the statistical component of the Next-generation Intrusion Detection Expert System (NIDES)
-
D. Anderson, T.F. Lunt, H. Javitz, A. Tamaru, A. Valdes, and et al. Detecting unusual program behavior using the statistical component of the Next-generation Intrusion Detection Expert System (NIDES) SRI International, Computer Science Laboratory, USA SRI-CSL-95-06 1995
-
(1995)
SRI International, Computer Science Laboratory, USA SRI-CSL-95-06
-
-
Anderson, D.1
Lunt, T.F.2
Javitz, H.3
Tamaru, A.4
Valdes, A.5
-
10
-
-
85084160308
-
A study in using neural networks for anomaly and misuse detection
-
A.K. Ghosh, and A. Schwartzbard A study in using neural networks for anomaly and misuse detection USENIX Security 1999
-
(1999)
USENIX Security
-
-
Ghosh, A.K.1
Schwartzbard, A.2
-
11
-
-
21844476566
-
A performance comparison of different back propagation neural networks methods in computer network intrusion detection
-
V.N. Dao, and V. Vemuri A performance comparison of different back propagation neural networks methods in computer network intrusion detection Differ. Equ. Dyn. Syst. 10 1-2 2002 201 214
-
(2002)
Differ. Equ. Dyn. Syst.
, vol.10
, Issue.1-2
, pp. 201-214
-
-
Dao, V.N.1
Vemuri, V.2
-
12
-
-
0036085392
-
Intrusion detection using neural networks and support vector machines
-
IEEE
-
S. Mukkamala, G. Janoski, and A. Sung Intrusion detection using neural networks and support vector machines Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint Conference on, vol. 2 IEEE 2002 1702 1707
-
(2002)
Neural Networks, 2002. IJCNN'02. Proceedings of the 2002 International Joint Conference On, Vol. 2
, pp. 1702-1707
-
-
Mukkamala, S.1
Janoski, G.2
Sung, A.3
-
14
-
-
0032676506
-
A data mining framework for building intrusion detection models
-
IEEE
-
W. Lee, S.J. Stolfo, and K.W. Mok A data mining framework for building intrusion detection models Security and Privacy, 1999, Proceedings of the 1999 IEEE Symposium on IEEE 1999 120 132
-
(1999)
Security and Privacy, 1999, Proceedings of the 1999 IEEE Symposium on
, pp. 120-132
-
-
Lee, W.1
Stolfo, S.J.2
Mok, K.W.3
-
15
-
-
0032639421
-
Detecting intrusions using system calls: Alternative data models
-
IEEE
-
C. Warrender, S. Forrest, and B. Pearlmutter Detecting intrusions using system calls: alternative data models Security and Privacy, 1999, Proceedings of the 1999 IEEE Symposium on IEEE 1999 133 145
-
(1999)
Security and Privacy, 1999, Proceedings of the 1999 IEEE Symposium on
, pp. 133-145
-
-
Warrender, C.1
Forrest, S.2
Pearlmutter, B.3
-
16
-
-
20444501420
-
Learning rules and clusters for anomaly detection in network traffic
-
Springer
-
P.K. Chan, M.V. Mahoney, and M.H. Arshad Learning rules and clusters for anomaly detection in network traffic Managing Cyber Threats 2005 Springer 81 99
-
(2005)
Managing Cyber Threats
, pp. 81-99
-
-
Chan, P.K.1
Mahoney, M.V.2
Arshad, M.H.3
-
17
-
-
70349687064
-
Rule-based anomaly detection on IP flows
-
IEEE
-
N. Duffield, P. Haffner, B. Krishnamurthy, and H. Ringberg Rule-based anomaly detection on IP flows INFOCOM 2009, IEEE IEEE 2009 424 432
-
(2009)
INFOCOM 2009, IEEE
, pp. 424-432
-
-
Duffield, N.1
Haffner, P.2
Krishnamurthy, B.3
Ringberg, H.4
-
19
-
-
33847704184
-
K-means+ id3: A novel method for supervised anomaly detection by cascading k-means clustering and id3 decision tree learning methods
-
S.R. Gaddam, V.V. Phoha, and K.S. Balagani K-means+ id3: a novel method for supervised anomaly detection by cascading k-means clustering and id3 decision tree learning methods IEEE Trans. Knowl. Data Eng. 19 3 2007 345 354
-
(2007)
IEEE Trans. Knowl. Data Eng.
, vol.19
, Issue.3
, pp. 345-354
-
-
Gaddam, S.R.1
Phoha, V.V.2
Balagani, K.S.3
-
20
-
-
36049030250
-
A new intrusion detection system using support vector machines and hierarchical clustering
-
L. Khan, M. Awad, and B. Thuraisingham A new intrusion detection system using support vector machines and hierarchical clustering VLDB J.-Int. J. Very Large Data Bases 16 4 2007 507 521
-
(2007)
VLDB J.-Int. J. Very Large Data Bases
, vol.16
, Issue.4
, pp. 507-521
-
-
Khan, L.1
Awad, M.2
Thuraisingham, B.3
-
21
-
-
77956393826
-
Network anomaly detection through nonlinear analysis
-
F. Palmieri, and U. Fiore Network anomaly detection through nonlinear analysis Comput. Secur. 29 7 2010 737 755
-
(2010)
Comput. Secur.
, vol.29
, Issue.7
, pp. 737-755
-
-
Palmieri, F.1
Fiore, U.2
-
25
-
-
84872418056
-
A fuzzified BRAIN algorithm for learning DNF from incomplete data
-
S. Rampone, and C. Russo A fuzzified BRAIN algorithm for learning DNF from incomplete data Electron. J. Appl. Stat. Anal. (EJASA) 5 2 2012 256 270
-
(2012)
Electron. J. Appl. Stat. Anal. (EJASA)
, vol.5
, Issue.2
, pp. 256-270
-
-
Rampone, S.1
Russo, C.2
-
26
-
-
0031788605
-
Recognition of splice junctions on DNA sequences by BRAIN learning algorithm
-
S. Rampone Recognition of splice junctions on DNA sequences by BRAIN learning algorithm Bioinformatics 14 8 1998 676 684
-
(1998)
Bioinformatics
, vol.14
, Issue.8
, pp. 676-684
-
-
Rampone, S.1
-
28
-
-
0000531852
-
Generalization as search
-
T.M. Mitchell Generalization as search Artif. Intell. 18 2 1982 203 226
-
(1982)
Artif. Intell.
, vol.18
, Issue.2
, pp. 203-226
-
-
Mitchell, T.M.1
-
29
-
-
0024082469
-
Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
-
D. Haussler Quantifying inductive bias: AI learning algorithms and Valiant's learning framework Artif. Intell. 36 2 1988 177 221
-
(1988)
Artif. Intell.
, vol.36
, Issue.2
, pp. 177-221
-
-
Haussler, D.1
-
30
-
-
84907188554
-
Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications
-
G. D'Angelo, and S. Rampone Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications BMC Bioinform. 15 5 2014 1 15
-
(2014)
BMC Bioinform.
, vol.15
, Issue.5
, pp. 1-15
-
-
D'Angelo, G.1
Rampone, S.2
-
31
-
-
0001321490
-
External memory algorithms and data structures: Dealing with massive data
-
J.S. Vitter External memory algorithms and data structures: dealing with massive data ACM Comput. Surv. (CsUR) 33 2 2001 209 271
-
(2001)
ACM Comput. Surv. (CsUR)
, vol.33
, Issue.2
, pp. 209-271
-
-
Vitter, J.S.1
-
35
-
-
84939175905
-
-
DARPA, KDD Cup 1999 Data set, available at the following website
-
DARPA, KDD Cup 1999 Data set, available at the following website http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
-
-
-
-
37
-
-
84939161486
-
-
M. Tavallaee, NSL-KDD dataset
-
M. Tavallaee, NSL-KDD dataset, http://www.iscx.ca/NSL-KDD.
-
-
-
-
38
-
-
85019691440
-
Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
-
J. McHugh Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory ACM Trans. Inf. Syst. Secur. 3 4 2000 262 294
-
(2000)
ACM Trans. Inf. Syst. Secur.
, vol.3
, Issue.4
, pp. 262-294
-
-
McHugh, J.1
-
40
-
-
84864758525
-
Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
-
D.M. Powers Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation J. Mach. Learn. Technol. 2 1 2011 37 63
-
(2011)
J. Mach. Learn. Technol.
, vol.2
, Issue.1
, pp. 37-63
-
-
Powers, D.M.1
-
41
-
-
2342647085
-
Robust linear discriminant trees
-
Springer
-
G.H. John Robust linear discriminant trees Learning from Data 1996 Springer 375 385
-
(1996)
Learning from Data
, pp. 375-385
-
-
John, G.H.1
-
43
-
-
0037143140
-
Neural network classification and novelty detection
-
M. Augusteijn, and B. Folkert Neural network classification and novelty detection Int. J. Remote Sens. 23 14 2002 2891 2902
-
(2002)
Int. J. Remote Sens.
, vol.23
, Issue.14
, pp. 2891-2902
-
-
Augusteijn, M.1
Folkert, B.2
-
47
-
-
0141797880
-
A geometric framework for unsupervised anomaly detection
-
Springer
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo A geometric framework for unsupervised anomaly detection Applications of Data Mining in Computer Security 2002 Springer 77 101
-
(2002)
Applications of Data Mining in Computer Security
, pp. 77-101
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
50
-
-
54049125096
-
Unsupervised anomaly detection using HDG-clustering algorithm
-
Springer
-
C.-F. Tsai, and C.-C. Yen Unsupervised anomaly detection using HDG-clustering algorithm Neural Information Processing 2008 Springer 356 365
-
(2008)
Neural Information Processing
, pp. 356-365
-
-
Tsai, C.-F.1
Yen, C.-C.2
-
51
-
-
84892867612
-
A fast anomaly detection system using probabilistic artificial immune algorithm capable of learning new attacks
-
M. Mohammadi, A. Akbari, B. Raahemi, B. Nassersharif, and H. Asgharian A fast anomaly detection system using probabilistic artificial immune algorithm capable of learning new attacks Evol. Intell. 6 3 2014 135 156
-
(2014)
Evol. Intell.
, vol.6
, Issue.3
, pp. 135-156
-
-
Mohammadi, M.1
Akbari, A.2
Raahemi, B.3
Nassersharif, B.4
Asgharian, H.5
|