메뉴 건너뛰기




Volumn 36, Issue , 2015, Pages 408-418

An uncertainty-managing batch relevance-based approach to network anomaly detection

Author keywords

Fuzzy based techniques; Inductive inference; Machine learning; Network anomaly detection; Supervised classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; BRAIN; INFERENCE ENGINES; LEARNING SYSTEMS; SUPERVISED LEARNING;

EID: 84939142748     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.07.029     Document Type: Article
Times cited : (60)

References (51)
  • 1
    • 0004048154 scopus 로고
    • Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology
    • J.P. Anderson Computer Security Threat Monitoring and Surveillance, Tech. Rep. 1980 Computer Security Division of the Information Technology Laboratory, National Institute of Standards and Technology
    • (1980) Computer Security Threat Monitoring and Surveillance, Tech. Rep.
    • Anderson, J.P.1
  • 3
    • 57849130705 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection: Techniques, systems and challenges
    • P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez Anomaly-based network intrusion detection: techniques, systems and challenges Comput. Secur. 28 1-2 2009 18 28
    • (2009) Comput. Secur. , vol.28 , Issue.1-2 , pp. 18-28
    • Garcia-Teodoro, P.1    Diaz-Verdejo, J.2    Macia-Fernandez, G.3    Vazquez, E.4
  • 4
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • A. Patcha, and J.-M. Park An overview of anomaly detection techniques: existing solutions and latest technological trends Comput. Netw. 51 12 2007 3448 3470
    • (2007) Comput. Netw. , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 6
    • 0033295259 scopus 로고    scopus 로고
    • Bro: A system for detecting network intruders in real-time
    • V. Paxson Bro: a system for detecting network intruders in real-time Comput. Netw. 31 23 1999 2435 2463
    • (1999) Comput. Netw. , vol.31 , Issue.23 , pp. 2435-2463
    • Paxson, V.1
  • 8
    • 0036090327 scopus 로고    scopus 로고
    • Practical automated detection of stealthy portscans
    • S. Staniford, J.A. Hoagland, and J.M. McAlerney Practical automated detection of stealthy portscans J. Comput. Secur. 10 1 2002 105 136
    • (2002) J. Comput. Secur. , vol.10 , Issue.1 , pp. 105-136
    • Staniford, S.1    Hoagland, J.A.2    McAlerney, J.M.3
  • 10
    • 85084160308 scopus 로고    scopus 로고
    • A study in using neural networks for anomaly and misuse detection
    • A.K. Ghosh, and A. Schwartzbard A study in using neural networks for anomaly and misuse detection USENIX Security 1999
    • (1999) USENIX Security
    • Ghosh, A.K.1    Schwartzbard, A.2
  • 11
    • 21844476566 scopus 로고    scopus 로고
    • A performance comparison of different back propagation neural networks methods in computer network intrusion detection
    • V.N. Dao, and V. Vemuri A performance comparison of different back propagation neural networks methods in computer network intrusion detection Differ. Equ. Dyn. Syst. 10 1-2 2002 201 214
    • (2002) Differ. Equ. Dyn. Syst. , vol.10 , Issue.1-2 , pp. 201-214
    • Dao, V.N.1    Vemuri, V.2
  • 16
    • 20444501420 scopus 로고    scopus 로고
    • Learning rules and clusters for anomaly detection in network traffic
    • Springer
    • P.K. Chan, M.V. Mahoney, and M.H. Arshad Learning rules and clusters for anomaly detection in network traffic Managing Cyber Threats 2005 Springer 81 99
    • (2005) Managing Cyber Threats , pp. 81-99
    • Chan, P.K.1    Mahoney, M.V.2    Arshad, M.H.3
  • 19
    • 33847704184 scopus 로고    scopus 로고
    • K-means+ id3: A novel method for supervised anomaly detection by cascading k-means clustering and id3 decision tree learning methods
    • S.R. Gaddam, V.V. Phoha, and K.S. Balagani K-means+ id3: a novel method for supervised anomaly detection by cascading k-means clustering and id3 decision tree learning methods IEEE Trans. Knowl. Data Eng. 19 3 2007 345 354
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.3 , pp. 345-354
    • Gaddam, S.R.1    Phoha, V.V.2    Balagani, K.S.3
  • 20
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • L. Khan, M. Awad, and B. Thuraisingham A new intrusion detection system using support vector machines and hierarchical clustering VLDB J.-Int. J. Very Large Data Bases 16 4 2007 507 521
    • (2007) VLDB J.-Int. J. Very Large Data Bases , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 21
    • 77956393826 scopus 로고    scopus 로고
    • Network anomaly detection through nonlinear analysis
    • F. Palmieri, and U. Fiore Network anomaly detection through nonlinear analysis Comput. Secur. 29 7 2010 737 755
    • (2010) Comput. Secur. , vol.29 , Issue.7 , pp. 737-755
    • Palmieri, F.1    Fiore, U.2
  • 25
    • 84872418056 scopus 로고    scopus 로고
    • A fuzzified BRAIN algorithm for learning DNF from incomplete data
    • S. Rampone, and C. Russo A fuzzified BRAIN algorithm for learning DNF from incomplete data Electron. J. Appl. Stat. Anal. (EJASA) 5 2 2012 256 270
    • (2012) Electron. J. Appl. Stat. Anal. (EJASA) , vol.5 , Issue.2 , pp. 256-270
    • Rampone, S.1    Russo, C.2
  • 26
    • 0031788605 scopus 로고    scopus 로고
    • Recognition of splice junctions on DNA sequences by BRAIN learning algorithm
    • S. Rampone Recognition of splice junctions on DNA sequences by BRAIN learning algorithm Bioinformatics 14 8 1998 676 684
    • (1998) Bioinformatics , vol.14 , Issue.8 , pp. 676-684
    • Rampone, S.1
  • 28
    • 0000531852 scopus 로고
    • Generalization as search
    • T.M. Mitchell Generalization as search Artif. Intell. 18 2 1982 203 226
    • (1982) Artif. Intell. , vol.18 , Issue.2 , pp. 203-226
    • Mitchell, T.M.1
  • 29
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • D. Haussler Quantifying inductive bias: AI learning algorithms and Valiant's learning framework Artif. Intell. 36 2 1988 177 221
    • (1988) Artif. Intell. , vol.36 , Issue.2 , pp. 177-221
    • Haussler, D.1
  • 30
    • 84907188554 scopus 로고    scopus 로고
    • Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications
    • G. D'Angelo, and S. Rampone Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications BMC Bioinform. 15 5 2014 1 15
    • (2014) BMC Bioinform. , vol.15 , Issue.5 , pp. 1-15
    • D'Angelo, G.1    Rampone, S.2
  • 31
    • 0001321490 scopus 로고    scopus 로고
    • External memory algorithms and data structures: Dealing with massive data
    • J.S. Vitter External memory algorithms and data structures: dealing with massive data ACM Comput. Surv. (CsUR) 33 2 2001 209 271
    • (2001) ACM Comput. Surv. (CsUR) , vol.33 , Issue.2 , pp. 209-271
    • Vitter, J.S.1
  • 35
    • 84939175905 scopus 로고    scopus 로고
    • DARPA, KDD Cup 1999 Data set, available at the following website
    • DARPA, KDD Cup 1999 Data set, available at the following website http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
  • 37
    • 84939161486 scopus 로고    scopus 로고
    • M. Tavallaee, NSL-KDD dataset
    • M. Tavallaee, NSL-KDD dataset, http://www.iscx.ca/NSL-KDD.
  • 38
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • J. McHugh Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory ACM Trans. Inf. Syst. Secur. 3 4 2000 262 294
    • (2000) ACM Trans. Inf. Syst. Secur. , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 40
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
    • D.M. Powers Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation J. Mach. Learn. Technol. 2 1 2011 37 63
    • (2011) J. Mach. Learn. Technol. , vol.2 , Issue.1 , pp. 37-63
    • Powers, D.M.1
  • 41
    • 2342647085 scopus 로고    scopus 로고
    • Robust linear discriminant trees
    • Springer
    • G.H. John Robust linear discriminant trees Learning from Data 1996 Springer 375 385
    • (1996) Learning from Data , pp. 375-385
    • John, G.H.1
  • 43
    • 0037143140 scopus 로고    scopus 로고
    • Neural network classification and novelty detection
    • M. Augusteijn, and B. Folkert Neural network classification and novelty detection Int. J. Remote Sens. 23 14 2002 2891 2902
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.14 , pp. 2891-2902
    • Augusteijn, M.1    Folkert, B.2
  • 50
    • 54049125096 scopus 로고    scopus 로고
    • Unsupervised anomaly detection using HDG-clustering algorithm
    • Springer
    • C.-F. Tsai, and C.-C. Yen Unsupervised anomaly detection using HDG-clustering algorithm Neural Information Processing 2008 Springer 356 365
    • (2008) Neural Information Processing , pp. 356-365
    • Tsai, C.-F.1    Yen, C.-C.2
  • 51
    • 84892867612 scopus 로고    scopus 로고
    • A fast anomaly detection system using probabilistic artificial immune algorithm capable of learning new attacks
    • M. Mohammadi, A. Akbari, B. Raahemi, B. Nassersharif, and H. Asgharian A fast anomaly detection system using probabilistic artificial immune algorithm capable of learning new attacks Evol. Intell. 6 3 2014 135 156
    • (2014) Evol. Intell. , vol.6 , Issue.3 , pp. 135-156
    • Mohammadi, M.1    Akbari, A.2    Raahemi, B.3    Nassersharif, B.4    Asgharian, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.