메뉴 건너뛰기




Volumn 13, Issue 2, 2009, Pages 191-206

Outlier detection based on rough sets theory

Author keywords

Anomaly; Deviate; Mining rarity; Non reduct; Outlier detection; Rare cases

Indexed keywords


EID: 65449165244     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2009-0363     Document Type: Article
Times cited : (30)

References (30)
  • 3
    • 7544223741 scopus 로고    scopus 로고
    • V.J. Hodge and J. Austin, A Survey of Outlier Detection Methodologies. Artificial Intellingence Review 22 (2004), 85-126.
    • V.J. Hodge and J. Austin, A Survey of Outlier Detection Methodologies. Artificial Intellingence Review 22 (2004), 85-126.
  • 6
    • 84879085576 scopus 로고    scopus 로고
    • A.L.-m. Chiu and A.W.-c Fu, Enhancements on Local Outlier Detection, Seventh International Database Engineering and Applications Symposium (IDEAS'03), 2003.
    • A.L.-m. Chiu and A.W.-c Fu, Enhancements on Local Outlier Detection, Seventh International Database Engineering and Applications Symposium (IDEAS'03), 2003.
  • 14
    • 0003892758 scopus 로고    scopus 로고
    • Set Aproach to Data Mining: Extracting a Logic of Default Rules from Data
    • University of Science and Technology
    • T. Mollestad, A Rough Set Aproach to Data Mining: Extracting a Logic of Default Rules from Data, The Norwegian University of Science and Technology, 1997.
    • (1997) The Norwegian
    • Mollestad, T.1    Rough, A.2
  • 20
    • 0003232240 scopus 로고    scopus 로고
    • Genetic Algorithms in Decomposition and Classification Problem
    • J. Wroblewski, Genetic Algorithms in Decomposition and Classification Problem, Rough Sets in Knowlwdge Discovry 2 (2004), 471-487.
    • (2004) Rough Sets in Knowlwdge Discovry , vol.2 , pp. 471-487
    • Wroblewski, J.1
  • 21
    • 65449119678 scopus 로고    scopus 로고
    • T. MathWorks, MatLab (Version R2006a): The MathWorks, Inc. (1984-2007).
    • T. MathWorks, MatLab (Version R2006a): The MathWorks, Inc. (1984-2007).
  • 23
    • 0039845384 scopus 로고    scopus 로고
    • Efficient Algorithms for Mining Outliers from Large Datasets
    • S. Ramaswamy, R. Rastogi and K. Shim, Efficient Algorithms for Mining Outliers from Large Datasets, SIGMOD, 2000, 93-104.
    • (2000) SIGMOD , pp. 93-104
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 24
    • 0041995118 scopus 로고
    • online Retrieved, from, 1 Mac
    • M.P. Murphy, UCI Machine Learning Repository, (online) Retrieved, from http://www.ics.uci.edu/~mlearn/MLRepository.html, (1 Mac 2005), 1995.
    • (1995) UCI Machine Learning Repository
    • Murphy, M.P.1
  • 28
    • 0004113716 scopus 로고    scopus 로고
    • Knowledge System Group, Norwegian University of Science and Technology, Trondheim Norway
    • A. Ohrm, ROSETTA TECHNICAL Reference Manual, Knowledge System Group, Norwegian University of Science and Technology, Trondheim Norway, 1998
    • (1998) ROSETTA TECHNICAL Reference Manual
    • Ohrm, A.1
  • 29
    • 65449154093 scopus 로고    scopus 로고
    • A. Lewandowski, How to detect potential customers, in: CoIL Challenge 2000: The Insurance Company Case, Technical Report 2000-2009, Netherlands: Leiden Institute of Adavnced computer science, 2000.
    • A. Lewandowski, How to detect potential customers, in: CoIL Challenge 2000: The Insurance Company Case, Technical Report 2000-2009, Netherlands: Leiden Institute of Adavnced computer science, 2000.
  • 30
    • 33645971031 scopus 로고    scopus 로고
    • Outlier detection using rough set theory
    • F. Jiang, Y. Sui and C. Cao, Outlier detection using rough set theory, RSFDGrC 2005, 2005, 79-87.
    • (2005) RSFDGrC 2005 , pp. 79-87
    • Jiang, F.1    Sui, Y.2    Cao, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.