-
1
-
-
0037005133
-
Autophagy in yeast: a review of the molecular machinery
-
Huang W.P., and Klionsky D.J. Autophagy in yeast: a review of the molecular machinery. Cell Struct. Funct. 27 (2002) 409-420
-
(2002)
Cell Struct. Funct.
, vol.27
, pp. 409-420
-
-
Huang, W.P.1
Klionsky, D.J.2
-
2
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., and Kroemer G. Autophagy in the pathogenesis of disease. Cell 132 (2008) 27-42
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
3
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., Yokoyama M., Mishima K., Saito I., Okano H., and Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441 (2006) 885-889
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
Yokoyama, M.7
Mishima, K.8
Saito, I.9
Okano, H.10
Mizushima, N.11
-
4
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
Komatsu M., Waguri S., Chiba T., Murata S., Iwata J., Tanida I., Ueno T., Koike M., Uchiyama Y., Kominami E., and Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441 (2006) 880-884
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
Tanaka, K.11
-
5
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
Xie Z., and Klionsky D.J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9 (2007) 1102-1109
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
6
-
-
0035503594
-
The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki K., Kirisako T., Kamada Y., Mizushima N., Noda T., and Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20 (2001) 5971-5981
-
(2001)
EMBO J.
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
Mizushima, N.4
Noda, T.5
Ohsumi, Y.6
-
7
-
-
21244448694
-
The TOR and EGO protein complexes orchestrate microautophagy in yeast
-
Dubouloz F., Deloche O., Wanke V., Cameroni E., and De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19 (2005) 15-26
-
(2005)
Mol. Cell
, vol.19
, pp. 15-26
-
-
Dubouloz, F.1
Deloche, O.2
Wanke, V.3
Cameroni, E.4
De Virgilio, C.5
-
8
-
-
1642329712
-
Determination of four sequential stages during microautophagy in vitro
-
Kunz J.B., Schwarz H., and Mayer A. Determination of four sequential stages during microautophagy in vitro. J. Biol. Chem. 279 (2004) 9987-9996
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 9987-9996
-
-
Kunz, J.B.1
Schwarz, H.2
Mayer, A.3
-
10
-
-
0034735536
-
Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding
-
Muller O., Sattler T., Flotenmeyer M., Schwarz H., Plattner H., and Mayer A. Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J. Cell Biol. 151 (2000) 519-528
-
(2000)
J. Cell Biol.
, vol.151
, pp. 519-528
-
-
Muller, O.1
Sattler, T.2
Flotenmeyer, M.3
Schwarz, H.4
Plattner, H.5
Mayer, A.6
-
11
-
-
0034735511
-
Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation
-
Sattler T., and Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J. Cell Biol. 151 (2000) 529-538
-
(2000)
J. Cell Biol.
, vol.151
, pp. 529-538
-
-
Sattler, T.1
Mayer, A.2
-
12
-
-
3142677196
-
Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
-
Shintani T., and Klionsky D.J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279 (2004) 29889-29894
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 29889-29894
-
-
Shintani, T.1
Klionsky, D.J.2
-
13
-
-
33947412742
-
Atg9 trafficking in the yeast Saccharomyces cerevisiae
-
Mari M., and Reggiori F. Atg9 trafficking in the yeast Saccharomyces cerevisiae. Autophagy 3 (2007) 145-148
-
(2007)
Autophagy
, vol.3
, pp. 145-148
-
-
Mari, M.1
Reggiori, F.2
-
14
-
-
0035897414
-
Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole
-
Kim J., Kamada Y., Stromhaug P.E., Guan J., Hefner-Gravink A., Baba M., Scott S.V., Ohsumi Y., Dunn Jr. W.A., and Klionsky D.J. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153 (2001) 381-396
-
(2001)
J. Cell Biol.
, vol.153
, pp. 381-396
-
-
Kim, J.1
Kamada, Y.2
Stromhaug, P.E.3
Guan, J.4
Hefner-Gravink, A.5
Baba, M.6
Scott, S.V.7
Ohsumi, Y.8
Dunn Jr., W.A.9
Klionsky, D.J.10
-
15
-
-
0036901104
-
Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway
-
Shintani T., Huang W.P., Stromhaug P.E., and Klionsky D.J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3 (2002) 825-837
-
(2002)
Dev. Cell
, vol.3
, pp. 825-837
-
-
Shintani, T.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
16
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39 (2005) 359-407
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
17
-
-
0017141141
-
Environmentally induced changes in mitochondria and endoplasmic reticulum of Saccharomyces carlsbergensis yeast
-
Damsky C.H. Environmentally induced changes in mitochondria and endoplasmic reticulum of Saccharomyces carlsbergensis yeast. J. Cell Biol. 71 (1976) 123-135
-
(1976)
J. Cell Biol.
, vol.71
, pp. 123-135
-
-
Damsky, C.H.1
-
18
-
-
0026743030
-
Structural dynamics of the mitochondrial compartment
-
Thorsness P.E. Structural dynamics of the mitochondrial compartment. Mutat. Res. 275 (1992) 237-241
-
(1992)
Mutat. Res.
, vol.275
, pp. 237-241
-
-
Thorsness, P.E.1
-
20
-
-
0017748853
-
Ultrastructural study of the normal degeneration of the intersegmental muscles of Anthereae polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference of cellular autophagy
-
Beaulaton J., and Lockshin R.A. Ultrastructural study of the normal degeneration of the intersegmental muscles of Anthereae polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference of cellular autophagy. J. Morphol. 154 (1977) 39-57
-
(1977)
J. Morphol.
, vol.154
, pp. 39-57
-
-
Beaulaton, J.1
Lockshin, R.A.2
-
21
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
Takeshige K., Baba M., Tsuboi S., Noda T., and Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119 (1992) 301-311
-
(1992)
J. Cell Biol.
, vol.119
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
22
-
-
27944482199
-
Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast
-
Priault M., Salin B., Schaeffer J., Vallette F.M., di Rago J.P., and Martinou J.C. Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ. 12 (2005) 1613-1621
-
(2005)
Cell Death Differ.
, vol.12
, pp. 1613-1621
-
-
Priault, M.1
Salin, B.2
Schaeffer, J.3
Vallette, F.M.4
di Rago, J.P.5
Martinou, J.C.6
-
23
-
-
0031694197
-
Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments
-
Campbell C.L., and Thorsness P.E. Escape of mitochondrial DNA to the nucleus in yme1 yeast is mediated by vacuolar-dependent turnover of abnormal mitochondrial compartments. J. Cell. Sci. 111 Pt 16 (1998) 2455-2464
-
(1998)
J. Cell. Sci.
, vol.111
, Issue.PART 16
, pp. 2455-2464
-
-
Campbell, C.L.1
Thorsness, P.E.2
-
24
-
-
34250796793
-
Selective and non-selective autophagic degradation of mitochondria in yeast
-
Kissova I., Salin B., Schaeffer J., Bhatia S., Manon S., and Camougrand N. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3 (2007) 329-336
-
(2007)
Autophagy
, vol.3
, pp. 329-336
-
-
Kissova, I.1
Salin, B.2
Schaeffer, J.3
Bhatia, S.4
Manon, S.5
Camougrand, N.6
-
25
-
-
34250898919
-
Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy
-
Nowikovsky K., Reipert S., Devenish R.J., and Schweyen R.J. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ. 14 (2007) 1647-1656
-
(2007)
Cell Death Differ.
, vol.14
, pp. 1647-1656
-
-
Nowikovsky, K.1
Reipert, S.2
Devenish, R.J.3
Schweyen, R.J.4
-
26
-
-
34247172582
-
Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival
-
Tal R., Winter G., Ecker N., Klionsky D.J., and Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 282 (2007) 5617-5624
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 5617-5624
-
-
Tal, R.1
Winter, G.2
Ecker, N.3
Klionsky, D.J.4
Abeliovich, H.5
-
27
-
-
34248590470
-
Mitophagy: the life-or-death dichotomy includes yeast
-
Abeliovich H. Mitophagy: the life-or-death dichotomy includes yeast. Autophagy 3 (2007) 275-277
-
(2007)
Autophagy
, vol.3
, pp. 275-277
-
-
Abeliovich, H.1
-
28
-
-
4644273585
-
Uth1p is involved in the autophagic degradation of mitochondria
-
Kissova I., Deffieu M., Manon S., and Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279 (2004) 39068-39074
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39068-39074
-
-
Kissova, I.1
Deffieu, M.2
Manon, S.3
Camougrand, N.4
-
29
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
Kanki T., and Klionsky D.J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283 (2008) 32386-32393
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
30
-
-
34250811414
-
The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains
-
Zhang Y., Qi H., Taylor R., Xu W., Liu L.F., and Jin S. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3 (2007) 337-346
-
(2007)
Autophagy
, vol.3
, pp. 337-346
-
-
Zhang, Y.1
Qi, H.2
Taylor, R.3
Xu, W.4
Liu, L.F.5
Jin, S.6
-
31
-
-
5444236546
-
Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death
-
Camougrand N., Kissova I., Velours G., and Manon S. Uth1p: a yeast mitochondrial protein at the crossroads of stress, degradation and cell death. FEMS Yeast Res. 5 (2004) 133-140
-
(2004)
FEMS Yeast Res.
, vol.5
, pp. 133-140
-
-
Camougrand, N.1
Kissova, I.2
Velours, G.3
Manon, S.4
-
32
-
-
3543029271
-
Mitochondrial diseases
-
DiMauro S. Mitochondrial diseases. Biochim. Biophys. Acta 1658 (2004) 80-88
-
(2004)
Biochim. Biophys. Acta
, vol.1658
, pp. 80-88
-
-
DiMauro, S.1
-
33
-
-
27644575235
-
Macroautophagy versus mitochondrial autophagy: a question of fate?
-
Kundu M., and Thompson C.B. Macroautophagy versus mitochondrial autophagy: a question of fate?. Cell Death Differ. 12 Suppl. 2 (2005) 1484-1489
-
(2005)
Cell Death Differ.
, vol.12
, Issue.SUPPL. 2
, pp. 1484-1489
-
-
Kundu, M.1
Thompson, C.B.2
-
34
-
-
33646389796
-
Bioenergetic aspects of apoptosis, necrosis and mitoptosis
-
Skulachev V.P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11 (2006) 473-485
-
(2006)
Apoptosis
, vol.11
, pp. 473-485
-
-
Skulachev, V.P.1
-
35
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D., Tanaka A., Suen D.F., and Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183 (2008) 795-803
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
Tanaka, A.2
Suen, D.F.3
Youle, R.J.4
-
36
-
-
33947715833
-
p53, Autophagy and tumor suppression
-
Jin S. p53, Autophagy and tumor suppression. Autophagy 1 (2005) 171-173
-
(2005)
Autophagy
, vol.1
, pp. 171-173
-
-
Jin, S.1
-
37
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8 (2005) 3-5
-
(2005)
Rejuvenation Res.
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
38
-
-
0039250954
-
Facile detection of mitochondrial DNA mutations in tumors and bodily fluids
-
Fliss M.S., Usadel H., Caballero O.L., Wu L., Buta M.R., Eleff S.M., Jen J., and Sidransky D. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287 (2000) 2017-2019
-
(2000)
Science
, vol.287
, pp. 2017-2019
-
-
Fliss, M.S.1
Usadel, H.2
Caballero, O.L.3
Wu, L.4
Buta, M.R.5
Eleff, S.M.6
Jen, J.7
Sidransky, D.8
-
41
-
-
33644586142
-
Pexophagy: the selective autophagy of peroxisomes
-
Dunn Jr. W.A., Cregg J.M., Kiel J.A., van der Klei I.J., Oku M., Sakai Y., Sibirny A.A., Stasyk O.V., and Veenhuis M. Pexophagy: the selective autophagy of peroxisomes. Autophagy 1 (2005) 75-83
-
(2005)
Autophagy
, vol.1
, pp. 75-83
-
-
Dunn Jr., W.A.1
Cregg, J.M.2
Kiel, J.A.3
van der Klei, I.J.4
Oku, M.5
Sakai, Y.6
Sibirny, A.A.7
Stasyk, O.V.8
Veenhuis, M.9
-
42
-
-
0035977052
-
Peroxisome biogenesis and selective degradation converge at Pex14p
-
Bellu A.R., Komori M., van der Klei I.J., Kiel J.A., and Veenhuis M. Peroxisome biogenesis and selective degradation converge at Pex14p. J. Biol. Chem. 276 (2001) 44570-44574
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 44570-44574
-
-
Bellu, A.R.1
Komori, M.2
van der Klei, I.J.3
Kiel, J.A.4
Veenhuis, M.5
-
43
-
-
38049062944
-
Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy
-
Zutphen T., Veenhuis M., and van der Klei I.J. Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy. Autophagy 4 (2008) 63-66
-
(2008)
Autophagy
, vol.4
, pp. 63-66
-
-
Zutphen, T.1
Veenhuis, M.2
van der Klei, I.J.3
-
45
-
-
0030883562
-
Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase
-
Yuan W., Tuttle D.L., Shi Y.J., Ralph G.S., and Dunn Jr. W.A. Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J. Cell. Sci. 110 Pt 16 (1997) 1935-1945
-
(1997)
J. Cell. Sci.
, vol.110
, Issue.PART 16
, pp. 1935-1945
-
-
Yuan, W.1
Tuttle, D.L.2
Shi, Y.J.3
Ralph, G.S.4
Dunn Jr., W.A.5
-
46
-
-
33747402357
-
PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy
-
Yamashita S., Oku M., Wasada Y., Ano Y., and Sakai Y. PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J. Cell Biol. 173 (2006) 709-717
-
(2006)
J. Cell Biol.
, vol.173
, pp. 709-717
-
-
Yamashita, S.1
Oku, M.2
Wasada, Y.3
Ano, Y.4
Sakai, Y.5
-
47
-
-
33645221489
-
Excess peroxisomes are degraded by autophagic machinery in mammals
-
Iwata J., Ezaki J., Komatsu M., Yokota S., Ueno T., Tanida I., Chiba T., Tanaka K., and Kominami E. Excess peroxisomes are degraded by autophagic machinery in mammals. J. Biol. Chem. 281 (2006) 4035-4041
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 4035-4041
-
-
Iwata, J.1
Ezaki, J.2
Komatsu, M.3
Yokota, S.4
Ueno, T.5
Tanida, I.6
Chiba, T.7
Tanaka, K.8
Kominami, E.9
-
48
-
-
4744371532
-
Peroxisomes, lipid metabolism, and peroxisomal disorders
-
Wanders R.J. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83 (2004) 16-27
-
(2004)
Mol. Genet. Metab.
, vol.83
, pp. 16-27
-
-
Wanders, R.J.1
-
49
-
-
0033944449
-
Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p
-
Pan X., Roberts P., Chen Y., Kvam E., Shulga N., Huang K., Lemmon S., and Goldfarb D.S. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol. Biol. Cell 11 (2000) 2445-2457
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 2445-2457
-
-
Pan, X.1
Roberts, P.2
Chen, Y.3
Kvam, E.4
Shulga, N.5
Huang, K.6
Lemmon, S.7
Goldfarb, D.S.8
-
50
-
-
24344449583
-
Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles
-
Kvam E., Gable K., Dunn T.M., and Goldfarb D.S. Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles. Mol. Biol. Cell 16 (2005) 3987-3998
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 3987-3998
-
-
Kvam, E.1
Gable, K.2
Dunn, T.M.3
Goldfarb, D.S.4
-
51
-
-
8744254603
-
Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae
-
Kvam E., and Goldfarb D.S. Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae. J. Cell. Sci. 117 (2004) 4959-4968
-
(2004)
J. Cell. Sci.
, vol.117
, pp. 4959-4968
-
-
Kvam, E.1
Goldfarb, D.S.2
-
52
-
-
57349198328
-
Piecemeal microautophagy of the nucleus requires the core macroautophagy genes
-
Krick R., Muehe Y., Prick T., Bremer S., Schlotterhose P., Eskelinen E.L., Millen J., Goldfarb D.S., and Thumm M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell 19 (2008) 4492-4505
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4492-4505
-
-
Krick, R.1
Muehe, Y.2
Prick, T.3
Bremer, S.4
Schlotterhose, P.5
Eskelinen, E.L.6
Millen, J.7
Goldfarb, D.S.8
Thumm, M.9
-
53
-
-
0037243892
-
Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae
-
Roberts P., Moshitch-Moshkovitz S., Kvam E., O'Toole E., Winey M., and Goldfarb D.S. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol. Biol. Cell 14 (2003) 129-141
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 129-141
-
-
Roberts, P.1
Moshitch-Moshkovitz, S.2
Kvam, E.3
O'Toole, E.4
Winey, M.5
Goldfarb, D.S.6
-
54
-
-
28544442609
-
Protein translocation across biological membranes
-
Wickner W., and Schekman R. Protein translocation across biological membranes. Science 310 (2005) 1452-1456
-
(2005)
Science
, vol.310
, pp. 1452-1456
-
-
Wickner, W.1
Schekman, R.2
-
55
-
-
23744457478
-
Versatility of the endoplasmic reticulum protein folding factory
-
van Anken E., and Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit. Rev. Biochem. Mol. Biol. 40 (2005) 191-228
-
(2005)
Crit. Rev. Biochem. Mol. Biol.
, vol.40
, pp. 191-228
-
-
van Anken, E.1
Braakman, I.2
-
57
-
-
33845480131
-
Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response
-
Bernales S., McDonald K.L., and Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4 (2006) e423
-
(2006)
PLoS Biol.
, vol.4
-
-
Bernales, S.1
McDonald, K.L.2
Walter, P.3
-
58
-
-
12444343145
-
Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast
-
Hamasaki M., Noda T., Baba M., and Ohsumi Y. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6 (2005) 56-65
-
(2005)
Traffic
, vol.6
, pp. 56-65
-
-
Hamasaki, M.1
Noda, T.2
Baba, M.3
Ohsumi, Y.4
-
59
-
-
34248581851
-
ER-phagy: selective autophagy of the endoplasmic reticulum
-
Bernales S., Schuck S., and Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3 (2007) 285-287
-
(2007)
Autophagy
, vol.3
, pp. 285-287
-
-
Bernales, S.1
Schuck, S.2
Walter, P.3
-
60
-
-
33845459165
-
Autophagy is activated for cell survival after endoplasmic reticulum stress
-
Ogata M., Hino S., Saito A., Morikawa K., Kondo S., Kanemoto S., Murakami T., Taniguchi M., Tanii I., Yoshinaga K., Shiosaka S., Hammarback J.A., Urano F., and Imaizumi K. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell Biol. 26 (2006) 9220-9231
-
(2006)
Mol. Cell Biol.
, vol.26
, pp. 9220-9231
-
-
Ogata, M.1
Hino, S.2
Saito, A.3
Morikawa, K.4
Kondo, S.5
Kanemoto, S.6
Murakami, T.7
Taniguchi, M.8
Tanii, I.9
Yoshinaga, K.10
Shiosaka, S.11
Hammarback, J.A.12
Urano, F.13
Imaizumi, K.14
-
62
-
-
33750974189
-
Endoplasmic reticulum and Golgi complex: contributions to, and turnover by, autophagy
-
Mijaljica D., Prescott M., and Devenish R.J. Endoplasmic reticulum and Golgi complex: contributions to, and turnover by, autophagy. Traffic 7 (2006) 1590-1595
-
(2006)
Traffic
, vol.7
, pp. 1590-1595
-
-
Mijaljica, D.1
Prescott, M.2
Devenish, R.J.3
-
63
-
-
33645216184
-
Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity
-
Kamimoto T., Shoji S., Hidvegi T., Mizushima N., Umebayashi K., Perlmutter D.H., and Yoshimori T. Intracellular inclusions containing mutant alpha1-antitrypsin Z are propagated in the absence of autophagic activity. J. Biol. Chem. 281 (2006) 4467-4476
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 4467-4476
-
-
Kamimoto, T.1
Shoji, S.2
Hidvegi, T.3
Mizushima, N.4
Umebayashi, K.5
Perlmutter, D.H.6
Yoshimori, T.7
-
64
-
-
33645451010
-
Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease
-
quiz 1404-1295
-
Kruse K.B., Dear A., Kaltenbrun E.R., Crum B.E., George P.M., Brennan S.O., and McCracken A.A. Mutant fibrinogen cleared from the endoplasmic reticulum via endoplasmic reticulum-associated protein degradation and autophagy: an explanation for liver disease. Am. J. Pathol. 168 (2006) 1299-1308 quiz 1404-1295
-
(2006)
Am. J. Pathol.
, vol.168
, pp. 1299-1308
-
-
Kruse, K.B.1
Dear, A.2
Kaltenbrun, E.R.3
Crum, B.E.4
George, P.M.5
Brennan, S.O.6
McCracken, A.A.7
-
65
-
-
34247113888
-
Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II)
-
Fujita E., Kouroku Y., Isoai A., Kumagai H., Misutani A., Matsuda C., Hayashi Y.K., and Momoi T. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet. 16 (2007) 618-629
-
(2007)
Hum. Mol. Genet.
, vol.16
, pp. 618-629
-
-
Fujita, E.1
Kouroku, Y.2
Isoai, A.3
Kumagai, H.4
Misutani, A.5
Matsuda, C.6
Hayashi, Y.K.7
Momoi, T.8
-
66
-
-
43549087613
-
Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma
-
Hersey P., and Zhang X.D. Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell Melanoma Res. 21 (2008) 358-367
-
(2008)
Pigment Cell Melanoma Res.
, vol.21
, pp. 358-367
-
-
Hersey, P.1
Zhang, X.D.2
-
67
-
-
0000730374
-
Cytoplasmic components in hepatic cell lysosomes
-
Ashford T.P., and Porter K.R. Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 12 (1962) 198-202
-
(1962)
J. Cell Biol.
, vol.12
, pp. 198-202
-
-
Ashford, T.P.1
Porter, K.R.2
-
69
-
-
43049138051
-
Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
-
Kraft C., Deplazes A., Sohrmann M., and Peter M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10 (2008) 602-610
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 602-610
-
-
Kraft, C.1
Deplazes, A.2
Sohrmann, M.3
Peter, M.4
-
70
-
-
0034534658
-
The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p
-
Kucharczyk R., Dupre S., Avaro S., Haguenauer-Tsapis R., Slonimski P.P., and Rytka J. The novel protein Ccz1p required for vacuolar assembly in Saccharomyces cerevisiae functions in the same transport pathway as Ypt7p. J. Cell. Sci. 113 Pt 23 (2000) 4301-4311
-
(2000)
J. Cell. Sci.
, vol.113
, Issue.PART 23
, pp. 4301-4311
-
-
Kucharczyk, R.1
Dupre, S.2
Avaro, S.3
Haguenauer-Tsapis, R.4
Slonimski, P.P.5
Rytka, J.6
-
71
-
-
50249128591
-
Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?
-
Kraft C., and Peter M. Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?. Autophagy 4 (2008) 838-840
-
(2008)
Autophagy
, vol.4
, pp. 838-840
-
-
Kraft, C.1
Peter, M.2
-
72
-
-
58149344946
-
Midbody ring disposal by autophagy is a post-abscission event of cytokinesis
-
Pohl C., and Jentsch S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11 (2009) 65-70
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 65-70
-
-
Pohl, C.1
Jentsch, S.2
-
73
-
-
28244478026
-
Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast
-
Baxter B.K., Abeliovich H., Zhang X., Stirling A.G., Burlingame A.L., and Goldfarb D.S. Atg19p ubiquitination and the cytoplasm to vacuole trafficking pathway in yeast. J. Biol. Chem. 280 (2005) 39067-39076
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39067-39076
-
-
Baxter, B.K.1
Abeliovich, H.2
Zhang, X.3
Stirling, A.G.4
Burlingame, A.L.5
Goldfarb, D.S.6
-
74
-
-
58149084405
-
Ordered organelle degradation during starvation-induced autophagy
-
Kristensen A.R., Schandorff S., Hoyer-Hansen M., Nielsen M.O., Jaattela M., Dengjel J., and Andersen J.S. Ordered organelle degradation during starvation-induced autophagy. Mol. Cell. Proteomics 7 (2008) 2419-2428
-
(2008)
Mol. Cell. Proteomics
, vol.7
, pp. 2419-2428
-
-
Kristensen, A.R.1
Schandorff, S.2
Hoyer-Hansen, M.3
Nielsen, M.O.4
Jaattela, M.5
Dengjel, J.6
Andersen, J.S.7
-
75
-
-
33751316103
-
A late-acting quality control process for mature eukaryotic rRNAs
-
LaRiviere F.J., Cole S.E., Ferullo D.J., and Moore M.J. A late-acting quality control process for mature eukaryotic rRNAs. Mol. Cell 24 (2006) 619-626
-
(2006)
Mol. Cell
, vol.24
, pp. 619-626
-
-
LaRiviere, F.J.1
Cole, S.E.2
Ferullo, D.J.3
Moore, M.J.4
-
76
-
-
46749134457
-
RPS19 mutations in patients with Diamond-Blackfan anemia
-
Campagnoli M.F., Ramenghi U., Armiraglio M., Quarello P., Garelli E., Carando A., Avondo F., Pavesi E., Fribourg S., Gleizes P.E., Loreni F., and Dianzani I. RPS19 mutations in patients with Diamond-Blackfan anemia. Hum. Mutat. 29 (2008) 911-920
-
(2008)
Hum. Mutat.
, vol.29
, pp. 911-920
-
-
Campagnoli, M.F.1
Ramenghi, U.2
Armiraglio, M.3
Quarello, P.4
Garelli, E.5
Carando, A.6
Avondo, F.7
Pavesi, E.8
Fribourg, S.9
Gleizes, P.E.10
Loreni, F.11
Dianzani, I.12
-
77
-
-
1942469479
-
Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae
-
Onodera J., and Ohsumi Y. Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J. Biol. Chem. 279 (2004) 16071-16076
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 16071-16076
-
-
Onodera, J.1
Ohsumi, Y.2
-
78
-
-
57749173129
-
Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae
-
Kageyama T., Suzuki K., and Ohsumi Y. Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 378 (2009) 551-557
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.378
, pp. 551-557
-
-
Kageyama, T.1
Suzuki, K.2
Ohsumi, Y.3
-
79
-
-
33645521571
-
Autophagic programmed cell death by selective catalase degradation
-
Yu L., Wan F., Dutta S., Welsh S., Liu Z., Freundt E., Baehrecke E.H., and Lenardo M. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 4952-4957
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 4952-4957
-
-
Yu, L.1
Wan, F.2
Dutta, S.3
Welsh, S.4
Liu, Z.5
Freundt, E.6
Baehrecke, E.H.7
Lenardo, M.8
-
80
-
-
8344242220
-
Autophagy in health and disease: a double-edged sword
-
Shintani T., and Klionsky D.J. Autophagy in health and disease: a double-edged sword. Science 306 (2004) 990-995
-
(2004)
Science
, vol.306
, pp. 990-995
-
-
Shintani, T.1
Klionsky, D.J.2
-
81
-
-
0030771894
-
Huntingtin localization in brains of normal and Huntington's disease patients
-
Sapp E., Schwarz C., Chase K., Bhide P.G., Young A.B., Penney J., Vonsattel J.P., Aronin N., and DiFiglia M. Huntingtin localization in brains of normal and Huntington's disease patients. Ann. Neurol. 42 (1997) 604-612
-
(1997)
Ann. Neurol.
, vol.42
, pp. 604-612
-
-
Sapp, E.1
Schwarz, C.2
Chase, K.3
Bhide, P.G.4
Young, A.B.5
Penney, J.6
Vonsattel, J.P.7
Aronin, N.8
DiFiglia, M.9
-
82
-
-
33947719279
-
Potential therapeutic applications of autophagy
-
Rubinsztein D.C., Gestwicki J.E., Murphy L.O., and Klionsky D.J. Potential therapeutic applications of autophagy. Nat. Rev., Drug Discov. 6 (2007) 304-312
-
(2007)
Nat. Rev., Drug Discov.
, vol.6
, pp. 304-312
-
-
Rubinsztein, D.C.1
Gestwicki, J.E.2
Murphy, L.O.3
Klionsky, D.J.4
-
83
-
-
27944504351
-
p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
-
Bjorkoy G., Lamark T., Brech A., Outzen H., Perander M., Overvatn A., Stenmark H., and Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171 (2005) 603-614
-
(2005)
J. Cell Biol.
, vol.171
, pp. 603-614
-
-
Bjorkoy, G.1
Lamark, T.2
Brech, A.3
Outzen, H.4
Perander, M.5
Overvatn, A.6
Stenmark, H.7
Johansen, T.8
-
84
-
-
34548259958
-
p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
-
Pankiv S., Clausen T.H., Lamark T., Brech A., Bruun J.A., Outzen H., Overvatn A., Bjorkoy G., and Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282 (2007) 24131-24145
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 24131-24145
-
-
Pankiv, S.1
Clausen, T.H.2
Lamark, T.3
Brech, A.4
Bruun, J.A.5
Outzen, H.6
Overvatn, A.7
Bjorkoy, G.8
Johansen, T.9
-
86
-
-
8344247016
-
Autophagy defends cells against invading group A Streptococcus
-
Nakagawa I., Amano A., Mizushima N., Yamamoto A., Yamaguchi H., Kamimoto T., Nara A., Funao J., Nakata M., Tsuda K., Hamada S., and Yoshimori T. Autophagy defends cells against invading group A Streptococcus. Science 306 (2004) 1037-1040
-
(2004)
Science
, vol.306
, pp. 1037-1040
-
-
Nakagawa, I.1
Amano, A.2
Mizushima, N.3
Yamamoto, A.4
Yamaguchi, H.5
Kamimoto, T.6
Nara, A.7
Funao, J.8
Nakata, M.9
Tsuda, K.10
Hamada, S.11
Yoshimori, T.12
-
87
-
-
33644609471
-
PKR-dependent autophagic degradation of herpes simplex virus type 1
-
Talloczy Z., Virgin H.W.t., and Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2 (2006) 24-29
-
(2006)
Autophagy
, vol.2
, pp. 24-29
-
-
Talloczy, Z.1
Virgin, H.W.t.2
Levine, B.3
-
88
-
-
34548700796
-
Unveiling the roles of autophagy in innate and adaptive immunity
-
Levine B., and Deretic V. Unveiling the roles of autophagy in innate and adaptive immunity. Nat. Rev., Immunol. 7 (2007) 767-777
-
(2007)
Nat. Rev., Immunol.
, vol.7
, pp. 767-777
-
-
Levine, B.1
Deretic, V.2
-
89
-
-
20344361954
-
Autophagy promotes MHC class II presentation of peptides from intracellular source proteins
-
Dengjel J., Schoor O., Fischer R., Reich M., Kraus M., Muller M., Kreymborg K., Altenberend F., Brandenburg J., Kalbacher H., Brock R., Driessen C., Rammensee H.G., and Stevanovic S. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 7922-7927
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 7922-7927
-
-
Dengjel, J.1
Schoor, O.2
Fischer, R.3
Reich, M.4
Kraus, M.5
Muller, M.6
Kreymborg, K.7
Altenberend, F.8
Brandenburg, J.9
Kalbacher, H.10
Brock, R.11
Driessen, C.12
Rammensee, H.G.13
Stevanovic, S.14
-
90
-
-
12844275079
-
Endogenous MHC class II processing of a viral nuclear antigen after autophagy
-
Paludan C., Schmid D., Landthaler M., Vockerodt M., Kube D., Tuschl T., and Munz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307 (2005) 593-596
-
(2005)
Science
, vol.307
, pp. 593-596
-
-
Paludan, C.1
Schmid, D.2
Landthaler, M.3
Vockerodt, M.4
Kube, D.5
Tuschl, T.6
Munz, C.7
-
91
-
-
13244256806
-
Escape of intracellular Shigella from autophagy
-
Ogawa M., Yoshimori T., Suzuki T., Sagara H., Mizushima N., and Sasakawa C. Escape of intracellular Shigella from autophagy. Science 307 (2005) 727-731
-
(2005)
Science
, vol.307
, pp. 727-731
-
-
Ogawa, M.1
Yoshimori, T.2
Suzuki, T.3
Sagara, H.4
Mizushima, N.5
Sasakawa, C.6
-
93
-
-
28644447348
-
The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae
-
Reggiori F., Monastyrska I., Shintani T., and Klionsky D.J. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16 (2005) 5843-5856
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 5843-5856
-
-
Reggiori, F.1
Monastyrska, I.2
Shintani, T.3
Klionsky, D.J.4
-
94
-
-
33645920963
-
Atg11 directs autophagosome cargoes to the PAS along actin cables
-
Monastyrska I., Shintani T., Klionsky D.J., and Reggiori F. Atg11 directs autophagosome cargoes to the PAS along actin cables. Autophagy 2 (2006) 119-121
-
(2006)
Autophagy
, vol.2
, pp. 119-121
-
-
Monastyrska, I.1
Shintani, T.2
Klionsky, D.J.3
Reggiori, F.4
-
95
-
-
48249132417
-
Arp2 links autophagic machinery with the actin cytoskeleton
-
Monastyrska I., He C., Geng J., Hoppe A.D., Li Z., and Klionsky D.J. Arp2 links autophagic machinery with the actin cytoskeleton. Mol. Biol. Cell 19 (2008) 1962-1975
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1962-1975
-
-
Monastyrska, I.1
He, C.2
Geng, J.3
Hoppe, A.D.4
Li, Z.5
Klionsky, D.J.6
|