메뉴 건너뛰기




Volumn 42, Issue , 2016, Pages 184-193

A self-organizing cascade neural network with random weights for nonlinear system modeling

Author keywords

Feedforward neural network; Nonlinear system modeling; Random weights; Self organizing cascade neural network; Wastewater treatment plant

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; NEURAL NETWORKS; SEWAGE TREATMENT; WASTEWATER TREATMENT;

EID: 84958948537     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2016.01.028     Document Type: Article
Times cited : (72)

References (42)
  • 2
    • 79952184300 scopus 로고    scopus 로고
    • Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization
    • J. Ding, T. Chai, and H. Wang Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization IEEE Trans. Neural Netw. 22 2011 408 419
    • (2011) IEEE Trans. Neural Netw. , vol.22 , pp. 408-419
    • Ding, J.1    Chai, T.2    Wang, H.3
  • 3
    • 84882889068 scopus 로고    scopus 로고
    • Real-time model predictive control using a self-organizing neural network
    • H.G. Han, X.L. Wu, and J.F. Qiao Real-time model predictive control using a self-organizing neural network IEEE Trans. Neural Netw. Learn. Syst. 24 2013 1425 1436
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , pp. 1425-1436
    • Han, H.G.1    Wu, X.L.2    Qiao, J.F.3
  • 5
    • 79960891365 scopus 로고    scopus 로고
    • An efficient self-organizing RBF neural network for water quality prediction
    • H.G. Han, Q. Chen, and J.F. Qiao An efficient self-organizing RBF neural network for water quality prediction Neural Netw. 24 2011 717 725
    • (2011) Neural Netw. , vol.24 , pp. 717-725
    • Han, H.G.1    Chen, Q.2    Qiao, J.F.3
  • 6
    • 69749089289 scopus 로고    scopus 로고
    • A systematic approach to data-driven modeling and soft sensing in a full-scale plant
    • M.H. Kim, Y.S. Kim, A.A. Prabu, and C.K. Yoo A systematic approach to data-driven modeling and soft sensing in a full-scale plant Water Sci. Technol. 60 2009 363 370
    • (2009) Water Sci. Technol. , vol.60 , pp. 363-370
    • Kim, M.H.1    Kim, Y.S.2    Prabu, A.A.3    Yoo, C.K.4
  • 7
    • 80052923685 scopus 로고    scopus 로고
    • Multi-stage genetic programming: A new strategy to nonlinear system modeling
    • A.H. Gandomi, and A.H. Alavi Multi-stage genetic programming: a new strategy to nonlinear system modeling Inf. Sci. 181 2011 5227 5239
    • (2011) Inf. Sci. , vol.181 , pp. 5227-5239
    • Gandomi, A.H.1    Alavi, A.H.2
  • 9
    • 84870248582 scopus 로고    scopus 로고
    • Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling
    • F. Ding Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling Appl. Math. Model. 37 2013 1694 1704
    • (2013) Appl. Math. Model. , vol.37 , pp. 1694-1704
    • Ding, F.1
  • 10
    • 84896916205 scopus 로고    scopus 로고
    • Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm
    • H. Han, X.L. Wu, and J.F. Qiao Nonlinear systems modeling based on self-organizing fuzzy-neural-network with adaptive computation algorithm IEEE Trans. Cybern. 44 2014 554 564
    • (2014) IEEE Trans. Cybern. , vol.44 , pp. 554-564
    • Han, H.1    Wu, X.L.2    Qiao, J.F.3
  • 11
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
    • F. Scarselli, and A.C. Tsoi Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results Neural Netw. 11 1998 15 37
    • (1998) Neural Netw. , vol.11 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 12
    • 79951956614 scopus 로고    scopus 로고
    • Multivariate sigmoidal neural network approximation
    • G.A. Anastassiou Multivariate sigmoidal neural network approximation Neural Netw. 24 2011 378 386
    • (2011) Neural Netw. , vol.24 , pp. 378-386
    • Anastassiou, G.A.1
  • 13
    • 77957914596 scopus 로고    scopus 로고
    • A differential evolution based neural network approach to nonlinear system identification
    • B. Subudhi, and D. Jena A differential evolution based neural network approach to nonlinear system identification Appl. Soft Comput. 11 2011 861 871
    • (2011) Appl. Soft Comput. , vol.11 , pp. 861-871
    • Subudhi, B.1    Jena, D.2
  • 14
    • 84864482334 scopus 로고    scopus 로고
    • Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach
    • J.F. Qiao, and H.G. Han Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach Automatica 48 2012 1729 1734
    • (2012) Automatica , vol.48 , pp. 1729-1734
    • Qiao, J.F.1    Han, H.G.2
  • 15
    • 0037117202 scopus 로고    scopus 로고
    • A fast learning algorithm for parsimonious fuzzy neural systems
    • J.E. Meng, and S. Wu A fast learning algorithm for parsimonious fuzzy neural systems Fuzzy Sets Syst. 126 2002 337 351
    • (2002) Fuzzy Sets Syst. , vol.126 , pp. 337-351
    • Meng, J.E.1    Wu, S.2
  • 16
    • 84879753900 scopus 로고    scopus 로고
    • A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation
    • N. Vuković, and Z. Miljković A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation Neural Netw. 46 2013 210 226
    • (2013) Neural Netw. , vol.46 , pp. 210-226
    • Vuković, N.1    Miljković, Z.2
  • 17
    • 77950953459 scopus 로고    scopus 로고
    • Self-constructing fuzzy neural networks with extended Kalman filter
    • M.J. Er, F. Liu, and M.B. Li Self-constructing fuzzy neural networks with extended Kalman filter Int. J. Fuzzy Syst. 12 2010 66 72
    • (2010) Int. J. Fuzzy Syst. , vol.12 , pp. 66-72
    • Er, M.J.1    Liu, F.2    Li, M.B.3
  • 18
    • 84875257054 scopus 로고    scopus 로고
    • Efficient self-organizing multilayer neural network for nonlinear system modeling
    • H.G. Han, L.D. Wang, and J.F. Qiao Efficient self-organizing multilayer neural network for nonlinear system modeling Neural Netw. 43 2013 22 32
    • (2013) Neural Netw. , vol.43 , pp. 22-32
    • Han, H.G.1    Wang, L.D.2    Qiao, J.F.3
  • 19
    • 84860395098 scopus 로고    scopus 로고
    • Automated nonlinear system modeling with multiple neural networks
    • W. Yu, K. Li, and X. Li Automated nonlinear system modeling with multiple neural networks Int. J. Syst. Sci. 42 2011 1683 1695
    • (2011) Int. J. Syst. Sci. , vol.42 , pp. 1683-1695
    • Yu, W.1    Li, K.2    Li, X.3
  • 20
    • 73449111308 scopus 로고    scopus 로고
    • Neural network architectures and learning algorithms
    • B.M. Wilamowski Neural network architectures and learning algorithms IEEE Ind. Electron. Mag. 3 2009 56 63
    • (2009) IEEE Ind. Electron. Mag. , vol.3 , pp. 56-63
    • Wilamowski, B.M.1
  • 21
    • 84859886103 scopus 로고    scopus 로고
    • Selection of proper neural network sizes and architectures - A comparative study
    • D. Hunter, H. Yu, M.S. Pukish, and et al. Selection of proper neural network sizes and architectures - a comparative study IEEE Trans. Ind. Inform. 8 2012 228 240
    • (2012) IEEE Trans. Ind. Inform. , vol.8 , pp. 228-240
    • Hunter, D.1    Yu, H.2    Pukish, M.S.3
  • 22
    • 77953120155 scopus 로고    scopus 로고
    • Improved computation for Levenberg-Marquardt training
    • B.M. Wilamowski, and H. Yu Improved computation for Levenberg-Marquardt training IEEE Trans. Neural Netw. 21 2010 930 937
    • (2010) IEEE Trans. Neural Netw. , vol.21 , pp. 930-937
    • Wilamowski, B.M.1    Yu, H.2
  • 23
    • 78149358747 scopus 로고    scopus 로고
    • Neural network learning without backpropagation
    • B.M. Wilamowski, and H. Yu Neural network learning without backpropagation IEEE Trans. Neural Netw. 21 2010 1793 1803
    • (2010) IEEE Trans. Neural Netw. , vol.21 , pp. 1793-1803
    • Wilamowski, B.M.1    Yu, H.2
  • 25
    • 84903439464 scopus 로고    scopus 로고
    • Cascade-correlation algorithm with trainable activation functions
    • F. Li, and Y. Li Cascade-correlation algorithm with trainable activation functions Comput. Inf. Sci. 4 2011 28 37
    • (2011) Comput. Inf. Sci. , vol.4 , pp. 28-37
    • Li, F.1    Li, Y.2
  • 26
    • 0036825537 scopus 로고    scopus 로고
    • Evaluation of constructive neural networks with cascaded architectures
    • J.J.T. Lahnajärvi, M.I. Lehtokangas, and J.P.P. Saarinen Evaluation of constructive neural networks with cascaded architectures Neurocomputing 48 2002 573 607
    • (2002) Neurocomputing , vol.48 , pp. 573-607
    • Lahnajärvi, J.J.T.1    Lehtokangas, M.I.2    Saarinen, J.P.P.3
  • 27
    • 84869499003 scopus 로고    scopus 로고
    • Orthogonal least squares algorithm for training cascade neural networks
    • G. Huang, S. Song, and C. Wu Orthogonal least squares algorithm for training cascade neural networks IEEE Trans. Circuits Syst.: Regul. Pap. 59 2012 2629 2637
    • (2012) IEEE Trans. Circuits Syst.: Regul. Pap. , vol.59 , pp. 2629-2637
    • Huang, G.1    Song, S.2    Wu, C.3
  • 28
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • M. Alhamdoosh, and D. Wang Fast decorrelated neural network ensembles with random weights Inf. Sci. 264 2014 104 117
    • (2014) Inf. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.2
  • 29
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • B. Igelnik, and Y.H. Pao Stochastic choice of basis functions in adaptive function approximation and the functional-link net IEEE Trans. Neural Netw. 6 1995 1320 1329
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.H.2
  • 31
    • 84922746025 scopus 로고    scopus 로고
    • Distributed learning for random vector functional-link networks
    • S. Scardapane, D. Wang, M. Panella, and et al. Distributed learning for random vector functional-link networks Inf. Sci. 301 2015 271 284
    • (2015) Inf. Sci. , vol.301 , pp. 271-284
    • Scardapane, S.1    Wang, D.2    Panella, M.3
  • 32
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Y.H. Pao, G.H. Park, and D.J. Sobajic Learning and generalization characteristics of the random vector functional-link net Neurocomputing 6 1994 163 180
    • (1994) Neurocomputing , vol.6 , pp. 163-180
    • Pao, Y.H.1    Park, G.H.2    Sobajic, D.J.3
  • 33
    • 84938215386 scopus 로고    scopus 로고
    • Particle size estimate of grinding processes using random vector functional link networks with improved robustness
    • W. Dai, Q. Liu, and T. Chai Particle size estimate of grinding processes using random vector functional link networks with improved robustness Neurocomputing 169 2015 361 372
    • (2015) Neurocomputing , vol.169 , pp. 361-372
    • Dai, W.1    Liu, Q.2    Chai, T.3
  • 34
    • 84941560101 scopus 로고    scopus 로고
    • Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections
    • P. Zhou, M. Yuan, H. Wang, and T. Chai Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections Inf. Sci. 325 2015 237 255
    • (2015) Inf. Sci. , vol.325 , pp. 237-255
    • Zhou, P.1    Yuan, M.2    Wang, H.3    Chai, T.4
  • 35
    • 0030287892 scopus 로고    scopus 로고
    • Adaptive process optimization using functional-link networks and evolutionary optimization
    • R. Cass, and B. Radl Adaptive process optimization using functional-link networks and evolutionary optimization Control Eng. Pract. 4 1996 1579 1584
    • (1996) Control Eng. Pract. , vol.4 , pp. 1579-1584
    • Cass, R.1    Radl, B.2
  • 36
    • 84928230663 scopus 로고    scopus 로고
    • A probabilistic learning algorithm for robust modeling using neural networks with random weights
    • F. Cao, H. Ye, and D. Wang A probabilistic learning algorithm for robust modeling using neural networks with random weights Inf. Sci. 313 2015 62 78
    • (2015) Inf. Sci. , vol.313 , pp. 62-78
    • Cao, F.1    Ye, H.2    Wang, D.3
  • 37
    • 84951918433 scopus 로고    scopus 로고
    • Constructive algorithm for fully connected cascade feedforward neural networks
    • J. Qiao, F. Li, H. Han, and W. Li Constructive algorithm for fully connected cascade feedforward neural networks Neurocomputing 182 2016 154 164 10.1016/j.neucom.2015.12.003
    • (2016) Neurocomputing , vol.182 , pp. 154-164
    • Qiao, J.1    Li, F.2    Han, H.3    Li, W.4
  • 38
    • 70349614379 scopus 로고    scopus 로고
    • A new constructive algorithm for architectural and functional adaptation of artificial neural networks
    • M.M. Islam, M.A. Sattar, M.F. Amin, and et al. A new constructive algorithm for architectural and functional adaptation of artificial neural networks IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39 2009 1590 1605
    • (2009) IEEE Trans. Syst. Man Cybern. Part B: Cybern. , vol.39 , pp. 1590-1605
    • Islam, M.M.1    Sattar, M.A.2    Amin, M.F.3
  • 39
    • 78649732347 scopus 로고    scopus 로고
    • A self-organizing fuzzy neural network based on a growing-and-pruning algorithm
    • H. Han, and J. Qiao A self-organizing fuzzy neural network based on a growing-and-pruning algorithm IEEE Trans. Fuzzy Syst. 18 2010 1129 1143
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , pp. 1129-1143
    • Han, H.1    Qiao, J.2
  • 40
    • 84867891849 scopus 로고    scopus 로고
    • A structure optimization algorithm for feedforward neural network construction
    • H.G. Han, and J.F. Qiao A structure optimization algorithm for feedforward neural network construction Neurocomputing 99 2013 347 357
    • (2013) Neurocomputing , vol.99 , pp. 347-357
    • Han, H.G.1    Qiao, J.F.2
  • 41
    • 84912000366 scopus 로고    scopus 로고
    • Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise
    • N. Vuković, and Z. Miljković Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise Neural Netw. 63 2015 31 47
    • (2015) Neural Netw. , vol.63 , pp. 31-47
    • Vuković, N.1    Miljković, Z.2
  • 42
    • 34249819041 scopus 로고    scopus 로고
    • Decoupled echo state networks with lateral inhibition
    • Y. Xue, L. Yang, and S. Haykin Decoupled echo state networks with lateral inhibition Neural Netw. 20 2007 365 376
    • (2007) Neural Netw. , vol.20 , pp. 365-376
    • Xue, Y.1    Yang, L.2    Haykin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.