메뉴 건너뛰기




Volumn 46, Issue , 2013, Pages 210-226

A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation

Author keywords

Extended Kalman filter; Feedforward neural networks; Hyper basis function; Neuron's significance; Sequential learning

Indexed keywords

ACTIVATION FUNCTIONS; ENGINEERING PRACTICES; FUNCTION APPROXIMATION; GENERALIZATION PROPERTIES; HYPER BASIS FUNCTIONS; RADIAL BASIS FUNCTION NEURAL NETWORKS; SEQUENTIAL LEARNING; SEQUENTIAL LEARNING ALGORITHM;

EID: 84879753900     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.06.004     Document Type: Article
Times cited : (62)

References (36)
  • 1
    • 0742290061 scopus 로고    scopus 로고
    • A new algorithm for online structure and parameter adaptation of RBF networks
    • Alexandridis A., Sarimveis H., Bafas G. A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks 2003, 16:1003-1017.
    • (2003) Neural Networks , vol.16 , pp. 1003-1017
    • Alexandridis, A.1    Sarimveis, H.2    Bafas, G.3
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science. [] (last date of access: September 10, 2012).
    • Asuncion, A., & Newman, D. (2010). UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. [] (last date of access: September 10, 2012). http://archive.ics.uci.edu/ml/.
    • (2010) UCI machine learning repository
    • Asuncion, A.1    Newman, D.2
  • 3
    • 36549083479 scopus 로고    scopus 로고
    • Generalized multiscale radial basis function networks
    • Billings S.A., Wei H.L., Balikhin M.A. Generalized multiscale radial basis function networks. Neural Networks 2007, 20(10):1081-1094.
    • (2007) Neural Networks , vol.20 , Issue.10 , pp. 1081-1094
    • Billings, S.A.1    Wei, H.L.2    Balikhin, M.A.3
  • 4
    • 67649344705 scopus 로고    scopus 로고
    • A growing and pruning method for radial basis function networks
    • Bortman M., Aladjem M. A growing and pruning method for radial basis function networks. IEEE Transactions on Neural Networks 2009, 20(6):1039-1045.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.6 , pp. 1039-1045
    • Bortman, M.1    Aladjem, M.2
  • 7
    • 0742321288 scopus 로고    scopus 로고
    • Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • Gonzalez J., Rojas I., Ortega J., Pomares H., Fernandez F.J., Diaz A.F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks 2003, 14(6):1478-1495.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernandez, F.J.5    Diaz, A.F.6
  • 8
    • 0004072207 scopus 로고    scopus 로고
    • Bilkent university function approximation repository
    • (last date of access: September 10, 2012).
    • Guvenir, H. A., & Uysal, I. (2000). Bilkent university function approximation repository. [ ] (last date of access: September 10, 2012). http://funapp.cs.bilkent.edu.tr.
    • (2000)
    • Guvenir, H.A.1    Uysal, I.2
  • 9
    • 79960891365 scopus 로고    scopus 로고
    • An efficient self-organizing RBF neural network for water quality prediction
    • Han H.G., Chen Q.L., Qiao J.F. An efficient self-organizing RBF neural network for water quality prediction. Neural Networks 2011, 24(7):717-725.
    • (2011) Neural Networks , vol.24 , Issue.7 , pp. 717-725
    • Han, H.G.1    Chen, Q.L.2    Qiao, J.F.3
  • 10
    • 84857190993 scopus 로고    scopus 로고
    • Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network
    • Han H.G., Qiao J.F., Chen Q.L. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network. Control Engineering Practice 2012, 20(4):465-476.
    • (2012) Control Engineering Practice , vol.20 , Issue.4 , pp. 465-476
    • Han, H.G.1    Qiao, J.F.2    Chen, Q.L.3
  • 12
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.B., Saratchandran P., Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks 2005, 16(1):57-67.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 14
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 17
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • Kadirkamanathan V., Niranjan M. A function estimation approach to sequential learning with neural networks. Neural Computation 1993, 5:954-975.
    • (1993) Neural Computation , vol.5 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 18
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • Karayiannis N.B. Reformulated radial basis neural networks trained by gradient descent. IEEE Transactions on Neural Networks 1999, 10(3):657-671.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.B.1
  • 19
    • 0037255446 scopus 로고    scopus 로고
    • A new EM-based training algorithm for RBF networks
    • Lazaro M., Santamari I., Pantaleo C. A new EM-based training algorithm for RBF networks. Neural Networks 2003, 16:69-77.
    • (2003) Neural Networks , vol.16 , pp. 69-77
    • Lazaro, M.1    Santamari, I.2    Pantaleo, C.3
  • 20
    • 0031568361 scopus 로고    scopus 로고
    • A sequental learning scheme for function approximation using minimal radial basis function (RBF) neural networks
    • Lu Y., Sundararajan N., Saratchandran P. A sequental learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Computation 1997, 9:461-478.
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 21
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • Lu Y., Sundararajan N., Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on Neural Networks 1998, 9(2):308-318.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.2 , pp. 308-318
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 22
    • 79955824877 scopus 로고    scopus 로고
    • Reduced hyperBF networks: regularization by explicit complexity reduction and scaled rprop based training
    • Mahdi R.N., Rouchka E.C. Reduced hyperBF networks: regularization by explicit complexity reduction and scaled rprop based training. IEEE Transactions on Neural Networks 2011, 22(5):673-686.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.5 , pp. 673-686
    • Mahdi, R.N.1    Rouchka, E.C.2
  • 23
    • 77956184242 scopus 로고    scopus 로고
    • Artificial neural networks-solved examples with theoretical background (in Serbian)
    • University of Belgrade-Faculty of Mechanical Engineering, Belgrade.
    • Miljković, Z., & Aleksendrić, D. (2009). Artificial neural networks-solved examples with theoretical background (in Serbian). University of Belgrade-Faculty of Mechanical Engineering, Belgrade.
    • (2009)
    • Miljković, Z.1    Aleksendrić, D.2
  • 24
    • 33748866315 scopus 로고    scopus 로고
    • An online learning algorithm with dimension selection using minimal hyper basis function networks
    • Nishida K., Yamauchi K., Omori T. An online learning algorithm with dimension selection using minimal hyper basis function networks. Systems and Computers in Japan 2006, 37(11):11-21.
    • (2006) Systems and Computers in Japan , vol.37 , Issue.11 , pp. 11-21
    • Nishida, K.1    Yamauchi, K.2    Omori, T.3
  • 26
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • Platt J. A resource allocating network for function interpolation. Neural Computation 1991, 3:213-225.
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 27
    • 0003207159 scopus 로고
    • A theory of networks for approximation and learning
    • MIT
    • Poggio T., Girosi F. A theory of networks for approximation and learning. A. I. Memo 1140 1989, MIT.
    • (1989) A. I. Memo 1140
    • Poggio, T.1    Girosi, F.2
  • 28
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proceedings of the IEEE 1990, 1990:1481-1497.
    • (1990) Proceedings of the IEEE , vol.1990 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 29
    • 84864482334 scopus 로고    scopus 로고
    • Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach
    • Qiao J.F., Han H.G. Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach. Automatica 2012, 48(8):1729-1734.
    • (2012) Automatica , vol.48 , Issue.8 , pp. 1729-1734
    • Qiao, J.F.1    Han, H.G.2
  • 30
    • 0035666428 scopus 로고    scopus 로고
    • Improved RAN sequential prediction using orthogonal techniques
    • Salmeron M., Ortega J., Puntonet C.G., Prieto A. Improved RAN sequential prediction using orthogonal techniques. Neurocomputing 2001, 41:153-172.
    • (2001) Neurocomputing , vol.41 , pp. 153-172
    • Salmeron, M.1    Ortega, J.2    Puntonet, C.G.3    Prieto, A.4
  • 31
    • 0035015680 scopus 로고    scopus 로고
    • Three learning phases for radial-basis-function networks
    • Schwenker F., Kestler H.A., Palm G. Three learning phases for radial-basis-function networks. Neural Networks 2001, 14(4-5):439-458.
    • (2001) Neural Networks , vol.14 , Issue.4-5 , pp. 439-458
    • Schwenker, F.1    Kestler, H.A.2    Palm, G.3
  • 32
    • 0036826054 scopus 로고    scopus 로고
    • Training radial basis function neural networks with the extended Kalman filter
    • Simon D. Training radial basis function neural networks with the extended Kalman filter. Neurocomputing 2001, 48:455-475.
    • (2001) Neurocomputing , vol.48 , pp. 455-475
    • Simon, D.1
  • 33
    • 84902205351 scopus 로고    scopus 로고
    • Extended Kalman filter trained recurrent radial basis function network in nonlinear system identification
    • In ICANN(2002)
    • Todorović, B., Stanković, M. S., & Moraga, C. (2002). Extended Kalman filter trained recurrent radial basis function network in nonlinear system identification. In ICANN(2002) (pp. 819-824).
    • (2002) , pp. 819-824
    • Todorović, B.1    Stanković, M.S.2    Moraga, C.3
  • 34
    • 84879738703 scopus 로고    scopus 로고
    • Machine learning of intelligent mobile robot based on artificial neural networks
    • Ph.D. dissertation (in Serbian). University of Belgrade-Faculty of Mechanical Engineering.
    • Vuković, N. (2012). Machine learning of intelligent mobile robot based on artificial neural networks. Ph.D. dissertation (in Serbian). University of Belgrade-Faculty of Mechanical Engineering.
    • (2012)
    • Vuković, N.1
  • 35
    • 84879738838 scopus 로고    scopus 로고
    • Using radial basis function networks for function approximation and classification
    • Article ID 324194
    • Wu Y., Wang H., Zhang B., Du K.-L. Using radial basis function networks for function approximation and classification. ISRN Applied Mathematics 2012, Article ID 324194. 10.5402/2012/324194.
    • (2012) ISRN Applied Mathematics
    • Wu, Y.1    Wang, H.2    Zhang, B.3    Du, K.-L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.