메뉴 건너뛰기




Volumn 24, Issue 4, 2011, Pages 378-386

Multivariate sigmoidal neural network approximation

Author keywords

Complex approximation; Multivariate modulus of continuiuty; Multivariate neural network approximation; Multivariate quasi interpolation operator; Sigmoidal function

Indexed keywords

COMPLEX APPROXIMATION; MULTIVARIATE MODULUS OF CONTINUIUTY; MULTIVARIATE NEURAL NETWORK APPROXIMATION; MULTIVARIATE QUASI-INTERPOLATION OPERATOR; SIGMOIDAL FUNCTIONS;

EID: 79951956614     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.01.003     Document Type: Article
Times cited : (146)

References (26)
  • 1
    • 0031195377 scopus 로고    scopus 로고
    • Rate of convergence of some neural network operators to the unit-univariate case
    • Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. Journal of Mathematical Analysis and Applications 1997, 212:237-262.
    • (1997) Journal of Mathematical Analysis and Applications , vol.212 , pp. 237-262
    • Anastassiou, G.A.1
  • 2
    • 0034231016 scopus 로고    scopus 로고
    • Rate of convergence of some multivariate neural network operators to the unit
    • Anastassiou G.A. Rate of convergence of some multivariate neural network operators to the unit. Journal of Computational and Applied Mathematics 2000, 40:1-19.
    • (2000) Journal of Computational and Applied Mathematics , vol.40 , pp. 1-19
    • Anastassiou, G.A.1
  • 4
    • 79951949702 scopus 로고    scopus 로고
    • Univariate sigmoidal neural network approximation (submitted for publication).
    • Anastassiou, G. A. (2010). Univariate sigmoidal neural network approximation (submitted for publication).
    • (2010)
    • Anastassiou, G.A.1
  • 5
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 1993, 39:930-945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 7
    • 38649094938 scopus 로고    scopus 로고
    • The estimate for approximation error of neural networks: a constructive approach
    • Cao F.L., Xie T.F., Xu Z.B. The estimate for approximation error of neural networks: a constructive approach. Neurocomputing 2008, 71:626-630.
    • (2008) Neurocomputing , vol.71 , pp. 626-630
    • Cao, F.L.1    Xie, T.F.2    Xu, Z.B.3
  • 9
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its applications to a dynamic system
    • Chen T.P., Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its applications to a dynamic system. IEEE Transactions on Neural Networks 1995, 6:911-917.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 911-917
    • Chen, T.P.1    Chen, H.2
  • 10
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • Chui C.K., Li X. Approximation by ridge functions and neural networks with one hidden layer. Journal of Approximation Theory 1992, 70:131-141.
    • (1992) Journal of Approximation Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 13
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K.I. On the approximate realization of continuous mappings by neural networks. Neural Networks 1989, 2:183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 14
  • 15
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 16
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik K., Stinchombe M., White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks 1990, 3:551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 18
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M., Lin V.Y., Pinks A., Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 1993, 6:861-867.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinks, A.3    Schocken, S.4
  • 20
    • 0032166654 scopus 로고    scopus 로고
    • Approximation bounds for smooth functions in C(Rd) by neural and mixture networks
    • Maiorov V., Meir R.S. Approximation bounds for smooth functions in C(Rd) by neural and mixture networks. IEEE Transactions on Neural Networks 1998, 9:969-978.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 969-978
    • Maiorov, V.1    Meir, R.S.2
  • 21
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Makovoz Y. Uniform approximation by neural networks. Journal of Approximation Theory 1998, 95:215-228.
    • (1998) Journal of Approximation Theory , vol.95 , pp. 215-228
    • Makovoz, Y.1
  • 23
    • 0000194429 scopus 로고
    • Degree of approximation by neural networks with a single hidden layer
    • Mhaskar H.N., Micchelli C.A. Degree of approximation by neural networks with a single hidden layer. Advances in Applied Mathematics 1995, 16:151-183.
    • (1995) Advances in Applied Mathematics , vol.16 , pp. 151-183
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 24
    • 0032144406 scopus 로고    scopus 로고
    • Constructive function approximation by three-layer artificial neural networks
    • Suzuki S. Constructive function approximation by three-layer artificial neural networks. Neural Networks 1998, 11:1049-1058.
    • (1998) Neural Networks , vol.11 , pp. 1049-1058
    • Suzuki, S.1
  • 26
    • 24344496437 scopus 로고    scopus 로고
    • The essential order of approximation for neural networks
    • Xu Z.B., Cao F.L. The essential order of approximation for neural networks. Science in China. Series F 2004, 47:97-112.
    • (2004) Science in China. Series F , vol.47 , pp. 97-112
    • Xu, Z.B.1    Cao, F.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.