메뉴 건너뛰기




Volumn 43, Issue , 2013, Pages 22-32

Efficient self-organizing multilayer neural network for nonlinear system modeling

Author keywords

Adaptive connecting and pruning algorithm; Automatic axon neural network; Feedforward computation; Information theory; Modeling

Indexed keywords

BENCH-MARK PROBLEMS; BETTER PERFORMANCE; FEED-FORWARD; MIXED-MODE OPERATIONS; NONLINEAR FUNCTIONS; NONLINEAR SYSTEM MODELING; NUMBER OF HIDDEN NEURONS; PRUNING ALGORITHMS;

EID: 84875257054     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.01.015     Document Type: Article
Times cited : (42)

References (49)
  • 1
    • 80053982144 scopus 로고    scopus 로고
    • Self-organization of topographic bilinear networks for invariant recognition
    • Bergmann U., Malsburg C. Self-organization of topographic bilinear networks for invariant recognition. Neural Computation 2011, 23(11):2770-2797.
    • (2011) Neural Computation , vol.23 , Issue.11 , pp. 2770-2797
    • Bergmann, U.1    Malsburg, C.2
  • 2
    • 17744362308 scopus 로고    scopus 로고
    • Laminar patterns of local excitatory input to layer 5 neurons in macaque primary visual cortex
    • Briggs F., Callaway E.M. Laminar patterns of local excitatory input to layer 5 neurons in macaque primary visual cortex. Cerebral Cortex 2004, 15(5):479-488.
    • (2004) Cerebral Cortex , vol.15 , Issue.5 , pp. 479-488
    • Briggs, F.1    Callaway, E.M.2
  • 3
    • 84155167791 scopus 로고    scopus 로고
    • Normalization as a canonical neural computation
    • Carandini M., Heeger D.J. Normalization as a canonical neural computation. Nature Reviews Neuroscience 2012, 13(1):51-62.
    • (2012) Nature Reviews Neuroscience , vol.13 , Issue.1 , pp. 51-62
    • Carandini, M.1    Heeger, D.J.2
  • 4
    • 84875270081 scopus 로고    scopus 로고
    • Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update
    • Dierks T., Jagannathan S. Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by using time-based policy update. IEEE Transactions on Neural Networks and Learning Systems 2012, 23(7):1118-1129.
    • (2012) IEEE Transactions on Neural Networks and Learning Systems , vol.23 , Issue.7 , pp. 1118-1129
    • Dierks, T.1    Jagannathan, S.2
  • 5
    • 49049090861 scopus 로고    scopus 로고
    • A constrained optimization approach to preserving prior knowledge during incremental training
    • Ferrari S., Jensenius M. A constrained optimization approach to preserving prior knowledge during incremental training. IEEE Transactions on Neural Networks 2008, 19(6):996-1009.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.6 , pp. 996-1009
    • Ferrari, S.1    Jensenius, M.2
  • 6
    • 0001699239 scopus 로고
    • Diffusion approximations for the constant learning rate BP algorithm and resistance to local minima
    • Finnoff W. Diffusion approximations for the constant learning rate BP algorithm and resistance to local minima. Neural Computation 1994, 6(2):285-295.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 285-295
    • Finnoff, W.1
  • 7
    • 84857704455 scopus 로고    scopus 로고
    • Investigation of efficient features for image recognition by neural networks
    • Goltsev A., Gritsenko V. Investigation of efficient features for image recognition by neural networks. Neural Networks 2012, 28(1):15-23.
    • (2012) Neural Networks , vol.28 , Issue.1 , pp. 15-23
    • Goltsev, A.1    Gritsenko, V.2
  • 8
    • 79960891365 scopus 로고    scopus 로고
    • An efficient self-organizing RBF neural network for water quality predicting
    • Han H.G., Chen Q.L., Qiao J.F. An efficient self-organizing RBF neural network for water quality predicting. Neural Networks 2011, 24(7):717-725.
    • (2011) Neural Networks , vol.24 , Issue.7 , pp. 717-725
    • Han, H.G.1    Chen, Q.L.2    Qiao, J.F.3
  • 9
    • 80052422915 scopus 로고    scopus 로고
    • A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control
    • Han M., Fan J.C., Wang J. A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control. IEEE Transactions on Neural Networks 2011, 22(9):1457-1468.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.9 , pp. 1457-1468
    • Han, M.1    Fan, J.C.2    Wang, J.3
  • 10
    • 79954612729 scopus 로고    scopus 로고
    • Adaptive dissolved oxygen control based on dynamic structure neural network
    • Han H.G., Qiao J.F. Adaptive dissolved oxygen control based on dynamic structure neural network. Applied Soft Computing 2011, 11(4):3812-3820.
    • (2011) Applied Soft Computing , vol.11 , Issue.4 , pp. 3812-3820
    • Han, H.G.1    Qiao, J.F.2
  • 12
    • 54049093297 scopus 로고    scopus 로고
    • Adaptive growing-and-pruning neural network control for a linear piezoelectric ceramic motor
    • Hsu C.F. Adaptive growing-and-pruning neural network control for a linear piezoelectric ceramic motor. Engineering Applications of Artificial Intelligence 2008, 21(8):1153-1163.
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.8 , pp. 1153-1163
    • Hsu, C.F.1
  • 13
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 14
    • 79951671371 scopus 로고    scopus 로고
    • Guiding hidden layer representations for improved rule extraction from neural networks
    • Huynh T.Q., Reggia J.A. Guiding hidden layer representations for improved rule extraction from neural networks. IEEE Transactions on Neural Networks 2011, 22(2):264-275.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.2 , pp. 264-275
    • Huynh, T.Q.1    Reggia, J.A.2
  • 15
    • 0034811555 scopus 로고    scopus 로고
    • A new algorithm to design compact two hidden-layer artificial neural networks
    • Islam M.M., Murase K. A new algorithm to design compact two hidden-layer artificial neural networks. Neural Networks 2001, 14(9):1265-1278.
    • (2001) Neural Networks , vol.14 , Issue.9 , pp. 1265-1278
    • Islam, M.M.1    Murase, K.2
  • 17
    • 84860289308 scopus 로고    scopus 로고
    • Robust adaptive learning of feedforward neural networks via LMI optimizations
    • Jing X.J. Robust adaptive learning of feedforward neural networks via LMI optimizations. Neural Networks 2012, 31(1):33-45.
    • (2012) Neural Networks , vol.31 , Issue.1 , pp. 33-45
    • Jing, X.J.1
  • 18
    • 84861761321 scopus 로고    scopus 로고
    • Autonomous growing neural gas for applications with time constraint: optimal parameter estimation
    • Jose G.R., Anastassia A., Juan M.G.C., Alexandra P., Sergio O.E., Vicente M.G. Autonomous growing neural gas for applications with time constraint: optimal parameter estimation. Neural Networks 2012, 32(1):196-208.
    • (2012) Neural Networks , vol.32 , Issue.1 , pp. 196-208
    • Jose, G.R.1    Anastassia, A.2    Juan, M.G.C.3    Alexandra, P.4    Sergio, O.E.5    Vicente, M.G.6
  • 19
    • 79951913762 scopus 로고    scopus 로고
    • Selective information enhancement learning for creating interpretable representations in competitive learning
    • Kamimura R. Selective information enhancement learning for creating interpretable representations in competitive learning. Neural Networks 2011, 24(4):387-405.
    • (2011) Neural Networks , vol.24 , Issue.4 , pp. 387-405
    • Kamimura, R.1
  • 20
    • 0037377185 scopus 로고    scopus 로고
    • Quantitative measures of organization for multiagent systems
    • Krivov S., Ulanowicz R.E., Dahiya A. Quantitative measures of organization for multiagent systems. BioSystems 2003, 69(1):39-54.
    • (2003) BioSystems , vol.69 , Issue.1 , pp. 39-54
    • Krivov, S.1    Ulanowicz, R.E.2    Dahiya, A.3
  • 21
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T.Y., Yeung D.Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks 1997, 8(3):630-645.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 22
    • 33644884686 scopus 로고    scopus 로고
    • A node pruning algorithm based on a Fourier amplitude sensitivity test method
    • Lauret P., Fock E., Mara T.A. A node pruning algorithm based on a Fourier amplitude sensitivity test method. IEEE Transactions on Neural Networks 2006, 17(2):273-293.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 273-293
    • Lauret, P.1    Fock, E.2    Mara, T.A.3
  • 23
    • 0032795250 scopus 로고    scopus 로고
    • Modelling with constructive backpropagation
    • Lehtokangas M. Modelling with constructive backpropagation. Neural Networks 1999, 12(5):707-716.
    • (1999) Neural Networks , vol.12 , Issue.5 , pp. 707-716
    • Lehtokangas, M.1
  • 24
    • 33947282595 scopus 로고    scopus 로고
    • Design for self-organizing fuzzy neural networks based on genetic algorithms
    • Leng G., McGinnity T.M., Prasad G. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Transactions on Fuzzy Systems 2006, 14(6):755-766.
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.6 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 25
    • 0035131889 scopus 로고    scopus 로고
    • A pruning method for the recursive least squared algorithm
    • Leung C.S., Wong K.W., Sum P.F., Chan L.W. A pruning method for the recursive least squared algorithm. Neural Networks 2001, 14(2):147-174.
    • (2001) Neural Networks , vol.14 , Issue.2 , pp. 147-174
    • Leung, C.S.1    Wong, K.W.2    Sum, P.F.3    Chan, L.W.4
  • 26
    • 23044516364 scopus 로고    scopus 로고
    • Constructive feedforward neural networks using Hermite polynomial activation functions
    • Ma L., Khorasani K. Constructive feedforward neural networks using Hermite polynomial activation functions. IEEE Transactions on Neural Networks 2005, 16(4):821-833.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.4 , pp. 821-833
    • Ma, L.1    Khorasani, K.2
  • 27
    • 77955057320 scopus 로고    scopus 로고
    • Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks
    • Mahmood A., Hamed D., Alireza S., Sylvain C. Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks. Neural Networks 2010, 23(7):892-904.
    • (2010) Neural Networks , vol.23 , Issue.7 , pp. 892-904
    • Mahmood, A.1    Hamed, D.2    Alireza, S.3    Sylvain, C.4
  • 28
    • 80051786833 scopus 로고    scopus 로고
    • Genetic algorithm pruning of probabilistic neural networks in medical disease estimation
    • Mantzaris D., Anastassopoulos G., Adamopoulos A. Genetic algorithm pruning of probabilistic neural networks in medical disease estimation. Neural Networks 2011, 24(8):831-835.
    • (2011) Neural Networks , vol.24 , Issue.8 , pp. 831-835
    • Mantzaris, D.1    Anastassopoulos, G.2    Adamopoulos, A.3
  • 29
    • 54449087782 scopus 로고    scopus 로고
    • Clustering and co-evolution to construct neural network ensembles: an experimental study
    • Minku F.L., Ludermir T.B. Clustering and co-evolution to construct neural network ensembles: an experimental study. Neural Networks 2008, 21(8):1363-1379.
    • (2008) Neural Networks , vol.21 , Issue.8 , pp. 1363-1379
    • Minku, F.L.1    Ludermir, T.B.2
  • 30
    • 56449086760 scopus 로고    scopus 로고
    • An integrated growing-pruning method for feedforward network training
    • Narasimha P.L., Delashmit W.H., Manry M.T., Li J., Maldonado F. An integrated growing-pruning method for feedforward network training. Neurocomputing 2008, 71(13-15):2831-2847.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 2831-2847
    • Narasimha, P.L.1    Delashmit, W.H.2    Manry, M.T.3    Li, J.4    Maldonado, F.5
  • 31
    • 37349016848 scopus 로고    scopus 로고
    • Synaptic plasticity, memory and the hippocampus: a neural network approach to causality
    • Neves G., Cooke S.F., Bliss T.V.P. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience 2008, 9(1):65-75.
    • (2008) Nature Reviews Neuroscience , vol.9 , Issue.1 , pp. 65-75
    • Neves, G.1    Cooke, S.F.2    Bliss, T.V.P.3
  • 32
    • 44649169676 scopus 로고    scopus 로고
    • Structure learning by pruning in independent component analysis
    • Nielsen A.B., Hansen L.K. Structure learning by pruning in independent component analysis. Neurocomputing 2008, 71(10-12):2281-2290.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2281-2290
    • Nielsen, A.B.1    Hansen, L.K.2
  • 33
    • 80455160272 scopus 로고    scopus 로고
    • Adaptive evolutionary artificial neural networks for pattern classification
    • Oong T.H., Isa N.A.M. Adaptive evolutionary artificial neural networks for pattern classification. IEEE Transactions on Neural Networks 2011, 22(11):1823-1825.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.11 , pp. 1823-1825
    • Oong, T.H.1    Isa, N.A.M.2
  • 34
    • 39549096279 scopus 로고    scopus 로고
    • A new Jacobian matrix for optimal learning of single-layer neural networks
    • Peng J.X., Li K., Irwin G.W. A new Jacobian matrix for optimal learning of single-layer neural networks. IEEE Transactions on Neural Networks 2008, 19(1):119-129.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.1 , pp. 119-129
    • Peng, J.X.1    Li, K.2    Irwin, G.W.3
  • 35
    • 54449083953 scopus 로고    scopus 로고
    • Fast unit pruning algorithm for feedforward neural network design
    • Qiao J.F., Zhang Y., Han H.G. Fast unit pruning algorithm for feedforward neural network design. Applied Mathematics and Computation 2008, 205(2):622-627.
    • (2008) Applied Mathematics and Computation , vol.205 , Issue.2 , pp. 622-627
    • Qiao, J.F.1    Zhang, Y.2    Han, H.G.3
  • 36
    • 46849100436 scopus 로고    scopus 로고
    • Transient dynamics for neural processing
    • Rabinovich M., Huerta R., Laurent G. Transient dynamics for neural processing. Science 2008, 321(5885):48-50.
    • (2008) Science , vol.321 , Issue.5885 , pp. 48-50
    • Rabinovich, M.1    Huerta, R.2    Laurent, G.3
  • 38
    • 78149435065 scopus 로고    scopus 로고
    • The myeloid cells of the central nervous system parenchyma
    • Ransohoff R.M., Cardona A.E. The myeloid cells of the central nervous system parenchyma. Nature 2010, 468:253-262.
    • (2010) Nature , vol.468 , pp. 253-262
    • Ransohoff, R.M.1    Cardona, A.E.2
  • 40
    • 80051548719 scopus 로고    scopus 로고
    • Identification of extended Hammerstein systems using dynamic self-optimizing neural networks
    • Ren X.M., Lv X.H. Identification of extended Hammerstein systems using dynamic self-optimizing neural networks. IEEE Transactions on Neural Networks 2011, 22(8):1169-1179.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.8 , pp. 1169-1179
    • Ren, X.M.1    Lv, X.H.2
  • 41
    • 82355175771 scopus 로고    scopus 로고
    • Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
    • Romeroa E., Alquezar R. Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks. Neural Networks 2012, 25(1):122-129.
    • (2012) Neural Networks , vol.25 , Issue.1 , pp. 122-129
    • Romeroa, E.1    Alquezar, R.2
  • 42
    • 0035654279 scopus 로고    scopus 로고
    • Feedforward neural network construction using cross validation
    • Sentiono R. Feedforward neural network construction using cross validation. Neural Computation 2001, 13(12):2865-2877.
    • (2001) Neural Computation , vol.13 , Issue.12 , pp. 2865-2877
    • Sentiono, R.1
  • 43
    • 44349131067 scopus 로고    scopus 로고
    • Robust neural network tracking controller using simultaneous perturbation stochastic approximation
    • Song Q., Spall J.C., Soh Y.C., Ni J. Robust neural network tracking controller using simultaneous perturbation stochastic approximation. IEEE Transactions on Neural Networks 2008, 19(5):817-835.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.5 , pp. 817-835
    • Song, Q.1    Spall, J.C.2    Soh, Y.C.3    Ni, J.4
  • 44
    • 7244257333 scopus 로고    scopus 로고
    • Neural networks and perceptual learning
    • Tsodyks M., Gilbert C. Neural networks and perceptual learning. Nature 2004, 431:775-781.
    • (2004) Nature , vol.431 , pp. 775-781
    • Tsodyks, M.1    Gilbert, C.2
  • 45
    • 78649659993 scopus 로고    scopus 로고
    • Convergence analysis of online gradient method for BP neural networks
    • Wu W., Wang J., Cheng M.S., Li Z.X. Convergence analysis of online gradient method for BP neural networks. Neural Networks 2011, 24(1):91-98.
    • (2011) Neural Networks , vol.24 , Issue.1 , pp. 91-98
    • Wu, W.1    Wang, J.2    Cheng, M.S.3    Li, Z.X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.