메뉴 건너뛰기




Volumn 63, Issue , 2015, Pages 31-47

Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise

Author keywords

Feedforward neural networks; Heavy tailed noise; Inverse Wishart distribution; Robust extended Kalman filter; Sequential learning; Structured variational approximation

Indexed keywords

ESTIMATION; EXTENDED KALMAN FILTERS; ITERATIVE METHODS; LEARNING ALGORITHMS; PROBABILITY DISTRIBUTIONS; RANDOM PROCESSES; SPURIOUS SIGNAL NOISE; STATISTICS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84912000366     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2014.11.001     Document Type: Article
Times cited : (26)

References (62)
  • 1
    • 84897451422 scopus 로고    scopus 로고
    • Robust estimation in non-linear state-space models with state-dependent noise
    • Agamennoni G., Nebot E.M. Robust estimation in non-linear state-space models with state-dependent noise. IEEE Transactions on Signal Processing 2014, 62(8):2165-2175.
    • (2014) IEEE Transactions on Signal Processing , vol.62 , Issue.8 , pp. 2165-2175
    • Agamennoni, G.1    Nebot, E.M.2
  • 3
    • 84866497004 scopus 로고    scopus 로고
    • Approximate inference in state-space models with heavy-tailed noise
    • Agamennoni G., Nieto J., Nebot E. Approximate inference in state-space models with heavy-tailed noise. IEEE Transactions on Signal Processing 2012, 60(10):5024-5037.
    • (2012) IEEE Transactions on Signal Processing , vol.60 , Issue.10 , pp. 5024-5037
    • Agamennoni, G.1    Nieto, J.2    Nebot, E.3
  • 4
    • 0000211514 scopus 로고    scopus 로고
    • Robust full Bayesian learning for radial basis networks
    • Andrieu C., De Freitas N., Doucet A. Robust full Bayesian learning for radial basis networks. Neural Computation 2001, 13(10):2359-2407.
    • (2001) Neural Computation , vol.13 , Issue.10 , pp. 2359-2407
    • Andrieu, C.1    De Freitas, N.2    Doucet, A.3
  • 5
    • 33845659662 scopus 로고    scopus 로고
    • Robust Bayesian clustering
    • Archambeau C., Verleysen M. Robust Bayesian clustering. Neural Networks 2007, 20(1):129-138.
    • (2007) Neural Networks , vol.20 , Issue.1 , pp. 129-138
    • Archambeau, C.1    Verleysen, M.2
  • 6
    • 84886567160 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science., Irvine, CA (last date of access: February 10, 2014)
    • Bache K., Lichman M. UCI machine learning repository 2013, University of California, School of Information and Computer Science., Irvine, CA, http://archive.ics.uci.edu/ml (last date of access: February 10, 2014).
    • (2013) UCI machine learning repository
    • Bache, K.1    Lichman, M.2
  • 9
    • 36549083479 scopus 로고    scopus 로고
    • Generalized multiscale radial basis function networks
    • Billings S.A., Wei H.L., Balikhin M.A. Generalized multiscale radial basis function networks. Neural Networks 2007, 20(10):1081-1094.
    • (2007) Neural Networks , vol.20 , Issue.10 , pp. 1081-1094
    • Billings, S.A.1    Wei, H.L.2    Balikhin, M.A.3
  • 14
    • 34047257199 scopus 로고    scopus 로고
    • CPBUM neural networks for modeling with outliers and noise
    • Chuang C.C., Jeng J.T. CPBUM neural networks for modeling with outliers and noise. Applied Soft Computing 2007, 7(3):957-967.
    • (2007) Applied Soft Computing , vol.7 , Issue.3 , pp. 957-967
    • Chuang, C.C.1    Jeng, J.T.2
  • 15
    • 0742289150 scopus 로고    scopus 로고
    • Annealing robust radial basis function networks for function approximation with outliers
    • Chuang C.C., Jeng J.T., Lin P.T. Annealing robust radial basis function networks for function approximation with outliers. Neurocomputing 2004, 56:123-139.
    • (2004) Neurocomputing , vol.56 , pp. 123-139
    • Chuang, C.C.1    Jeng, J.T.2    Lin, P.T.3
  • 16
    • 77957891947 scopus 로고    scopus 로고
    • Hybrid robust support vector machines for regression with outliers
    • Chuang C.C., Lee Z.J. Hybrid robust support vector machines for regression with outliers. Applied Soft Computing 2011, 11(1):64-72.
    • (2011) Applied Soft Computing , vol.11 , Issue.1 , pp. 64-72
    • Chuang, C.C.1    Lee, Z.J.2
  • 17
    • 0035696162 scopus 로고    scopus 로고
    • Robust TSK fuzzy modeling for function approximation with outliers
    • Chuang C.C., Su S.F., Chen S.S. Robust TSK fuzzy modeling for function approximation with outliers. IEEE Transactions on Fuzzy Systems 2001, 9(6):810-821.
    • (2001) IEEE Transactions on Fuzzy Systems , vol.9 , Issue.6 , pp. 810-821
    • Chuang, C.C.1    Su, S.F.2    Chen, S.S.3
  • 18
    • 0036856978 scopus 로고    scopus 로고
    • Robust support vector regression networks for function approximation with outliers
    • Chuang C.C., Su S.F., Jeng J.T., Hsiao C.C. Robust support vector regression networks for function approximation with outliers. IEEE Transactions on Neural Networks 2002, 13(6):1322-1330.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.6 , pp. 1322-1330
    • Chuang, C.C.1    Su, S.F.2    Jeng, J.T.3    Hsiao, C.C.4
  • 22
    • 77549083433 scopus 로고    scopus 로고
    • ARFNNs with SVR for prediction of chaotic time series with outliers
    • Fu Y.Y., Wu C.J., Jeng J.T., Ko C.N. ARFNNs with SVR for prediction of chaotic time series with outliers. Expert Systems with Applications 2010, 37(6):4441-4451.
    • (2010) Expert Systems with Applications , vol.37 , Issue.6 , pp. 4441-4451
    • Fu, Y.Y.1    Wu, C.J.2    Jeng, J.T.3    Ko, C.N.4
  • 23
    • 84893654394 scopus 로고    scopus 로고
    • TOSELM: Timeliness online sequential extreme learning machine
    • Gu Y., Liu J., Chen Y., Jiang X., Yu H. TOSELM: Timeliness online sequential extreme learning machine. Neurocomputing 2014, 128:119-127.
    • (2014) Neurocomputing , vol.128 , pp. 119-127
    • Gu, Y.1    Liu, J.2    Chen, Y.3    Jiang, X.4    Yu, H.5
  • 24
    • 84893693421 scopus 로고    scopus 로고
    • An incremental extreme learning machine for online sequential learning problems
    • Guo L., Hao J.H., Liu M. An incremental extreme learning machine for online sequential learning problems. Neurocomputing 2014, 128:50-58.
    • (2014) Neurocomputing , vol.128 , pp. 50-58
    • Guo, L.1    Hao, J.H.2    Liu, M.3
  • 25
    • 0004072207 scopus 로고    scopus 로고
    • Bilkent University Function Approximation Repository
    • (last date of access: February 10, 2014).
    • Guvenir, H.A., & Uysal, I. (2000). Bilkent University Function Approximation Repository. (last date of access: February 10, 2014). http://funapp.cs.bilkent.edu.tr.
    • (2000)
    • Guvenir, H.A.1    Uysal, I.2
  • 26
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge V.J., Austin J. A survey of outlier detection methodologies. Artificial Intelligence Review 2004, 22(2):85-126.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 28
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.B., Saratchandran P., Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks 2005, 16(1):57-67.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 29
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 31
    • 80052829448 scopus 로고    scopus 로고
    • Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks
    • Huynh H.T., Won Y. Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks. Pattern Recognition Letters 2011, 32(14):1930-1935.
    • (2011) Pattern Recognition Letters , vol.32 , Issue.14 , pp. 1930-1935
    • Huynh, H.T.1    Won, Y.2
  • 32
    • 77952543580 scopus 로고    scopus 로고
    • Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers
    • Jeng J.T., Chuang C.C., Tao C.W. Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers. Neurocomputing 2010, 73(10):1686-1693.
    • (2010) Neurocomputing , vol.73 , Issue.10 , pp. 1686-1693
    • Jeng, J.T.1    Chuang, C.C.2    Tao, C.W.3
  • 33
    • 84857446921 scopus 로고    scopus 로고
    • Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm
    • Ko C.N. Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm. Engineering Applications of Artificial Intelligence 2012, 25(3):533-543.
    • (2012) Engineering Applications of Artificial Intelligence , vol.25 , Issue.3 , pp. 533-543
    • Ko, C.N.1
  • 34
    • 58349093296 scopus 로고    scopus 로고
    • Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques
    • Lee C.C., Chiang Y.C., Shih C.Y., Tsai C.L. Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Systems with Applications 2009, 36(3):4717-4724.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4717-4724
    • Lee, C.C.1    Chiang, Y.C.2    Shih, C.Y.3    Tsai, C.L.4
  • 38
    • 79955824877 scopus 로고    scopus 로고
    • Reduced HyperBF networks: Regularization by explicit complexity reduction and scaled Rprop based training
    • Mahdi R.N., Rouchka E.C. Reduced HyperBF networks: Regularization by explicit complexity reduction and scaled Rprop based training. IEEE Transactions on Neural Networks 2011, 22(5):673-686.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.5 , pp. 673-686
    • Mahdi, R.N.1    Rouchka, E.C.2
  • 39
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: a review-part 1: statistical approaches
    • Markou M., Singh S. Novelty detection: a review-part 1: statistical approaches. Signal Processing 2003, 83(12):2481-2497.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 40
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: a review-part 2: neural network based approaches
    • Markou M., Singh S. Novelty detection: a review-part 2: neural network based approaches. Signal Processing 2003, 83(12):2499-2521.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 41
    • 77956184242 scopus 로고    scopus 로고
    • Artificial neural networks-solved examples with theoretical background
    • University of Belgrade-Faculty of Mechanical Engineering, Belgrade, (in Serbian).
    • Miljković, Z., & Aleksendrić, D. (2009). Artificial neural networks-solved examples with theoretical background. University of Belgrade-Faculty of Mechanical Engineering, Belgrade, (in Serbian).
    • (2009)
    • Miljković, Z.1    Aleksendrić, D.2
  • 44
    • 39649120551 scopus 로고    scopus 로고
    • Sequential Bayesian kernel modelling with non-Gaussian noise
    • Nikolaev N.Y., de Menezes L.M. Sequential Bayesian kernel modelling with non-Gaussian noise. Neural Networks 2008, 21(1):36-47.
    • (2008) Neural Networks , vol.21 , Issue.1 , pp. 36-47
    • Nikolaev, N.Y.1    de Menezes, L.M.2
  • 45
    • 33748866315 scopus 로고    scopus 로고
    • An online learning algorithm with dimension selection using minimal hyper basis function networks
    • Nishida K., Yamauchi K., Omori T. An online learning algorithm with dimension selection using minimal hyper basis function networks. Systems and Computers in Japan 2006, 37(11):11-21.
    • (2006) Systems and Computers in Japan , vol.37 , Issue.11 , pp. 11-21
    • Nishida, K.1    Yamauchi, K.2    Omori, T.3
  • 47
    • 0004030839 scopus 로고
    • A theory of networks for approximation and learning
    • A. I. Memo 1140, MIT.
    • Poggio, T., & Girosi, F. (1989). A theory of networks for approximation and learning. A. I. Memo 1140, MIT.
    • (1989)
    • Poggio, T.1    Girosi, F.2
  • 48
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T., Girosi F. Networks for approximation and learning. Proceedings of the IEEE 1990, 1481-1497.
    • (1990) Proceedings of the IEEE , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 49
    • 38049105501 scopus 로고    scopus 로고
    • Robust LTS backpropagation learning algorithm
    • Springer, Berlin, Heidelberg
    • Rusiecki A. Robust LTS backpropagation learning algorithm. Computational and ambient intelligence 2007, 102-109. Springer, Berlin, Heidelberg.
    • (2007) Computational and ambient intelligence , pp. 102-109
    • Rusiecki, A.1
  • 50
    • 84882840750 scopus 로고    scopus 로고
    • Robust learning algorithm based on LTA estimator
    • Special Issue: Image Feature Detection and Description
    • Rusiecki A. Robust learning algorithm based on LTA estimator. Neurocomputing 2013, 624-632. Special Issue: Image Feature Detection and Description.
    • (2013) Neurocomputing , pp. 624-632
    • Rusiecki, A.1
  • 51
    • 63449123513 scopus 로고    scopus 로고
    • Recursive noise adaptive Kalman filtering by variational Bayesian approximations
    • Sarkka S., Nummenmaa A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Transactions on Automatic Control 2009, 54(3):596-600.
    • (2009) IEEE Transactions on Automatic Control , vol.54 , Issue.3 , pp. 596-600
    • Sarkka, S.1    Nummenmaa, A.2
  • 52
    • 21844510440 scopus 로고
    • Robust recursive estimation in the presence of heavy-tailed observation noise
    • Schick I.C., Mitter S.K. Robust recursive estimation in the presence of heavy-tailed observation noise. The Annals of Statistics 1994, 22(2):1045-1080.
    • (1994) The Annals of Statistics , vol.22 , Issue.2 , pp. 1045-1080
    • Schick, I.C.1    Mitter, S.K.2
  • 53
    • 0036826054 scopus 로고    scopus 로고
    • Training radial basis neural networks with the extended Kalman filter
    • Simon D. Training radial basis neural networks with the extended Kalman filter. Neurocomputing 2002, 48(1):455-475.
    • (2002) Neurocomputing , vol.48 , Issue.1 , pp. 455-475
    • Simon, D.1
  • 55
    • 0022756394 scopus 로고
    • Analysis of robust stochastic approximation algorithms for process identification
    • Stanković S.S., Kovačević B.D. Analysis of robust stochastic approximation algorithms for process identification. Automatica 1986, 22(4):483-488.
    • (1986) Automatica , vol.22 , Issue.4 , pp. 483-488
    • Stanković, S.S.1    Kovačević, B.D.2
  • 59
    • 84879753900 scopus 로고    scopus 로고
    • A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation
    • Vuković N., Miljković Z. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Neural Networks 2013, 46:210-226.
    • (2013) Neural Networks , vol.46 , pp. 210-226
    • Vuković, N.1    Miljković, Z.2
  • 61
    • 84950426631 scopus 로고
    • High breakdown-point estimates of regression by means of the minimization of an efficient scale
    • Yohai V.J., Zamar R.H. High breakdown-point estimates of regression by means of the minimization of an efficient scale. Journal of the American Statistical Association 1988, 83(402):406-413.
    • (1988) Journal of the American Statistical Association , vol.83 , Issue.402 , pp. 406-413
    • Yohai, V.J.1    Zamar, R.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.