-
1
-
-
84897451422
-
Robust estimation in non-linear state-space models with state-dependent noise
-
Agamennoni G., Nebot E.M. Robust estimation in non-linear state-space models with state-dependent noise. IEEE Transactions on Signal Processing 2014, 62(8):2165-2175.
-
(2014)
IEEE Transactions on Signal Processing
, vol.62
, Issue.8
, pp. 2165-2175
-
-
Agamennoni, G.1
Nebot, E.M.2
-
3
-
-
84866497004
-
Approximate inference in state-space models with heavy-tailed noise
-
Agamennoni G., Nieto J., Nebot E. Approximate inference in state-space models with heavy-tailed noise. IEEE Transactions on Signal Processing 2012, 60(10):5024-5037.
-
(2012)
IEEE Transactions on Signal Processing
, vol.60
, Issue.10
, pp. 5024-5037
-
-
Agamennoni, G.1
Nieto, J.2
Nebot, E.3
-
4
-
-
0000211514
-
Robust full Bayesian learning for radial basis networks
-
Andrieu C., De Freitas N., Doucet A. Robust full Bayesian learning for radial basis networks. Neural Computation 2001, 13(10):2359-2407.
-
(2001)
Neural Computation
, vol.13
, Issue.10
, pp. 2359-2407
-
-
Andrieu, C.1
De Freitas, N.2
Doucet, A.3
-
6
-
-
84886567160
-
-
University of California, School of Information and Computer Science., Irvine, CA (last date of access: February 10, 2014)
-
Bache K., Lichman M. UCI machine learning repository 2013, University of California, School of Information and Computer Science., Irvine, CA, http://archive.ics.uci.edu/ml (last date of access: February 10, 2014).
-
(2013)
UCI machine learning repository
-
-
Bache, K.1
Lichman, M.2
-
9
-
-
36549083479
-
Generalized multiscale radial basis function networks
-
Billings S.A., Wei H.L., Balikhin M.A. Generalized multiscale radial basis function networks. Neural Networks 2007, 20(10):1081-1094.
-
(2007)
Neural Networks
, vol.20
, Issue.10
, pp. 1081-1094
-
-
Billings, S.A.1
Wei, H.L.2
Balikhin, M.A.3
-
14
-
-
34047257199
-
CPBUM neural networks for modeling with outliers and noise
-
Chuang C.C., Jeng J.T. CPBUM neural networks for modeling with outliers and noise. Applied Soft Computing 2007, 7(3):957-967.
-
(2007)
Applied Soft Computing
, vol.7
, Issue.3
, pp. 957-967
-
-
Chuang, C.C.1
Jeng, J.T.2
-
15
-
-
0742289150
-
Annealing robust radial basis function networks for function approximation with outliers
-
Chuang C.C., Jeng J.T., Lin P.T. Annealing robust radial basis function networks for function approximation with outliers. Neurocomputing 2004, 56:123-139.
-
(2004)
Neurocomputing
, vol.56
, pp. 123-139
-
-
Chuang, C.C.1
Jeng, J.T.2
Lin, P.T.3
-
16
-
-
77957891947
-
Hybrid robust support vector machines for regression with outliers
-
Chuang C.C., Lee Z.J. Hybrid robust support vector machines for regression with outliers. Applied Soft Computing 2011, 11(1):64-72.
-
(2011)
Applied Soft Computing
, vol.11
, Issue.1
, pp. 64-72
-
-
Chuang, C.C.1
Lee, Z.J.2
-
17
-
-
0035696162
-
Robust TSK fuzzy modeling for function approximation with outliers
-
Chuang C.C., Su S.F., Chen S.S. Robust TSK fuzzy modeling for function approximation with outliers. IEEE Transactions on Fuzzy Systems 2001, 9(6):810-821.
-
(2001)
IEEE Transactions on Fuzzy Systems
, vol.9
, Issue.6
, pp. 810-821
-
-
Chuang, C.C.1
Su, S.F.2
Chen, S.S.3
-
18
-
-
0036856978
-
Robust support vector regression networks for function approximation with outliers
-
Chuang C.C., Su S.F., Jeng J.T., Hsiao C.C. Robust support vector regression networks for function approximation with outliers. IEEE Transactions on Neural Networks 2002, 13(6):1322-1330.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.6
, pp. 1322-1330
-
-
Chuang, C.C.1
Su, S.F.2
Jeng, J.T.3
Hsiao, C.C.4
-
22
-
-
77549083433
-
ARFNNs with SVR for prediction of chaotic time series with outliers
-
Fu Y.Y., Wu C.J., Jeng J.T., Ko C.N. ARFNNs with SVR for prediction of chaotic time series with outliers. Expert Systems with Applications 2010, 37(6):4441-4451.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.6
, pp. 4441-4451
-
-
Fu, Y.Y.1
Wu, C.J.2
Jeng, J.T.3
Ko, C.N.4
-
23
-
-
84893654394
-
TOSELM: Timeliness online sequential extreme learning machine
-
Gu Y., Liu J., Chen Y., Jiang X., Yu H. TOSELM: Timeliness online sequential extreme learning machine. Neurocomputing 2014, 128:119-127.
-
(2014)
Neurocomputing
, vol.128
, pp. 119-127
-
-
Gu, Y.1
Liu, J.2
Chen, Y.3
Jiang, X.4
Yu, H.5
-
24
-
-
84893693421
-
An incremental extreme learning machine for online sequential learning problems
-
Guo L., Hao J.H., Liu M. An incremental extreme learning machine for online sequential learning problems. Neurocomputing 2014, 128:50-58.
-
(2014)
Neurocomputing
, vol.128
, pp. 50-58
-
-
Guo, L.1
Hao, J.H.2
Liu, M.3
-
25
-
-
0004072207
-
Bilkent University Function Approximation Repository
-
(last date of access: February 10, 2014).
-
Guvenir, H.A., & Uysal, I. (2000). Bilkent University Function Approximation Repository. (last date of access: February 10, 2014). http://funapp.cs.bilkent.edu.tr.
-
(2000)
-
-
Guvenir, H.A.1
Uysal, I.2
-
26
-
-
7544223741
-
A survey of outlier detection methodologies
-
Hodge V.J., Austin J. A survey of outlier detection methodologies. Artificial Intelligence Review 2004, 22(2):85-126.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
27
-
-
10044221078
-
An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks
-
Huang G.B., Saratchandran P., Sundararajan N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 2004, 34(6):2284-2292.
-
(2004)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.34
, Issue.6
, pp. 2284-2292
-
-
Huang, G.B.1
Saratchandran, P.2
Sundararajan, N.3
-
28
-
-
13844256702
-
A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
-
Huang G.B., Saratchandran P., Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks 2005, 16(1):57-67.
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.1
, pp. 57-67
-
-
Huang, G.B.1
Saratchandran, P.2
Sundararajan, N.3
-
29
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
31
-
-
80052829448
-
Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks
-
Huynh H.T., Won Y. Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks. Pattern Recognition Letters 2011, 32(14):1930-1935.
-
(2011)
Pattern Recognition Letters
, vol.32
, Issue.14
, pp. 1930-1935
-
-
Huynh, H.T.1
Won, Y.2
-
32
-
-
77952543580
-
Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers
-
Jeng J.T., Chuang C.C., Tao C.W. Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers. Neurocomputing 2010, 73(10):1686-1693.
-
(2010)
Neurocomputing
, vol.73
, Issue.10
, pp. 1686-1693
-
-
Jeng, J.T.1
Chuang, C.C.2
Tao, C.W.3
-
33
-
-
84857446921
-
Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm
-
Ko C.N. Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm. Engineering Applications of Artificial Intelligence 2012, 25(3):533-543.
-
(2012)
Engineering Applications of Artificial Intelligence
, vol.25
, Issue.3
, pp. 533-543
-
-
Ko, C.N.1
-
34
-
-
58349093296
-
Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques
-
Lee C.C., Chiang Y.C., Shih C.Y., Tsai C.L. Noisy time series prediction using M-estimator based robust radial basis function neural networks with growing and pruning techniques. Expert Systems with Applications 2009, 36(3):4717-4724.
-
(2009)
Expert Systems with Applications
, vol.36
, Issue.3
, pp. 4717-4724
-
-
Lee, C.C.1
Chiang, Y.C.2
Shih, C.Y.3
Tsai, C.L.4
-
35
-
-
0033280252
-
Robust radial basis function neural networks
-
Lee C.C., Chung P.C., Tsai J.R., Chang C.I. Robust radial basis function neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 1999, 29(6):674-685.
-
(1999)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.29
, Issue.6
, pp. 674-685
-
-
Lee, C.C.1
Chung, P.C.2
Tsai, J.R.3
Chang, C.I.4
-
37
-
-
34047174077
-
A fast and accurate online sequential learning algorithm for feedforward networks
-
Liang N.Y., Huang G.B., Saratchandran P., Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks 2006, 17(6):1411-1423.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.6
, pp. 1411-1423
-
-
Liang, N.Y.1
Huang, G.B.2
Saratchandran, P.3
Sundararajan, N.4
-
38
-
-
79955824877
-
Reduced HyperBF networks: Regularization by explicit complexity reduction and scaled Rprop based training
-
Mahdi R.N., Rouchka E.C. Reduced HyperBF networks: Regularization by explicit complexity reduction and scaled Rprop based training. IEEE Transactions on Neural Networks 2011, 22(5):673-686.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.5
, pp. 673-686
-
-
Mahdi, R.N.1
Rouchka, E.C.2
-
39
-
-
0142063407
-
Novelty detection: a review-part 1: statistical approaches
-
Markou M., Singh S. Novelty detection: a review-part 1: statistical approaches. Signal Processing 2003, 83(12):2481-2497.
-
(2003)
Signal Processing
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
40
-
-
0142126712
-
Novelty detection: a review-part 2: neural network based approaches
-
Markou M., Singh S. Novelty detection: a review-part 2: neural network based approaches. Signal Processing 2003, 83(12):2499-2521.
-
(2003)
Signal Processing
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
41
-
-
77956184242
-
Artificial neural networks-solved examples with theoretical background
-
University of Belgrade-Faculty of Mechanical Engineering, Belgrade, (in Serbian).
-
Miljković, Z., & Aleksendrić, D. (2009). Artificial neural networks-solved examples with theoretical background. University of Belgrade-Faculty of Mechanical Engineering, Belgrade, (in Serbian).
-
(2009)
-
-
Miljković, Z.1
Aleksendrić, D.2
-
42
-
-
84875479536
-
New hybrid vision-based control approach for automated guided vehicles
-
Miljković Z., Vuković N., Mitić M., Babić B. New hybrid vision-based control approach for automated guided vehicles. The International Journal of Advanced Manufacturing Technology 2013, 66(1-4):231-249.
-
(2013)
The International Journal of Advanced Manufacturing Technology
, vol.66
, Issue.1-4
, pp. 231-249
-
-
Miljković, Z.1
Vuković, N.2
Mitić, M.3
Babić, B.4
-
44
-
-
39649120551
-
Sequential Bayesian kernel modelling with non-Gaussian noise
-
Nikolaev N.Y., de Menezes L.M. Sequential Bayesian kernel modelling with non-Gaussian noise. Neural Networks 2008, 21(1):36-47.
-
(2008)
Neural Networks
, vol.21
, Issue.1
, pp. 36-47
-
-
Nikolaev, N.Y.1
de Menezes, L.M.2
-
45
-
-
33748866315
-
An online learning algorithm with dimension selection using minimal hyper basis function networks
-
Nishida K., Yamauchi K., Omori T. An online learning algorithm with dimension selection using minimal hyper basis function networks. Systems and Computers in Japan 2006, 37(11):11-21.
-
(2006)
Systems and Computers in Japan
, vol.37
, Issue.11
, pp. 11-21
-
-
Nishida, K.1
Yamauchi, K.2
Omori, T.3
-
46
-
-
15944426684
-
TAO-robust backpropagation learning algorithm
-
Pernía-Espinoza A.V., Ordieres-Meré J.B., Martínez-de-Pisón F.J., González-Marcos A. TAO-robust backpropagation learning algorithm. Neural Networks 2005, 18(2):191-204.
-
(2005)
Neural Networks
, vol.18
, Issue.2
, pp. 191-204
-
-
Pernía-Espinoza, A.V.1
Ordieres-Meré, J.B.2
Martínez-de-Pisón, F.J.3
González-Marcos, A.4
-
47
-
-
0004030839
-
A theory of networks for approximation and learning
-
A. I. Memo 1140, MIT.
-
Poggio, T., & Girosi, F. (1989). A theory of networks for approximation and learning. A. I. Memo 1140, MIT.
-
(1989)
-
-
Poggio, T.1
Girosi, F.2
-
49
-
-
38049105501
-
Robust LTS backpropagation learning algorithm
-
Springer, Berlin, Heidelberg
-
Rusiecki A. Robust LTS backpropagation learning algorithm. Computational and ambient intelligence 2007, 102-109. Springer, Berlin, Heidelberg.
-
(2007)
Computational and ambient intelligence
, pp. 102-109
-
-
Rusiecki, A.1
-
50
-
-
84882840750
-
Robust learning algorithm based on LTA estimator
-
Special Issue: Image Feature Detection and Description
-
Rusiecki A. Robust learning algorithm based on LTA estimator. Neurocomputing 2013, 624-632. Special Issue: Image Feature Detection and Description.
-
(2013)
Neurocomputing
, pp. 624-632
-
-
Rusiecki, A.1
-
51
-
-
63449123513
-
Recursive noise adaptive Kalman filtering by variational Bayesian approximations
-
Sarkka S., Nummenmaa A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Transactions on Automatic Control 2009, 54(3):596-600.
-
(2009)
IEEE Transactions on Automatic Control
, vol.54
, Issue.3
, pp. 596-600
-
-
Sarkka, S.1
Nummenmaa, A.2
-
52
-
-
21844510440
-
Robust recursive estimation in the presence of heavy-tailed observation noise
-
Schick I.C., Mitter S.K. Robust recursive estimation in the presence of heavy-tailed observation noise. The Annals of Statistics 1994, 22(2):1045-1080.
-
(1994)
The Annals of Statistics
, vol.22
, Issue.2
, pp. 1045-1080
-
-
Schick, I.C.1
Mitter, S.K.2
-
53
-
-
0036826054
-
Training radial basis neural networks with the extended Kalman filter
-
Simon D. Training radial basis neural networks with the extended Kalman filter. Neurocomputing 2002, 48(1):455-475.
-
(2002)
Neurocomputing
, vol.48
, Issue.1
, pp. 455-475
-
-
Simon, D.1
-
54
-
-
79952188498
-
BELM: Bayesian extreme learning machine
-
Soria-Olivas E., Gomez-Sanchis J., Jarman I.H., Vila-Frances J., Martinez M., Magdalena J.R., et al. BELM: Bayesian extreme learning machine. IEEE Transactions on Neural Networks 2011, 22(3):505-509.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.3
, pp. 505-509
-
-
Soria-Olivas, E.1
Gomez-Sanchis, J.2
Jarman, I.H.3
Vila-Frances, J.4
Martinez, M.5
Magdalena, J.R.6
-
55
-
-
0022756394
-
Analysis of robust stochastic approximation algorithms for process identification
-
Stanković S.S., Kovačević B.D. Analysis of robust stochastic approximation algorithms for process identification. Automatica 1986, 22(4):483-488.
-
(1986)
Automatica
, vol.22
, Issue.4
, pp. 483-488
-
-
Stanković, S.S.1
Kovačević, B.D.2
-
59
-
-
84879753900
-
A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation
-
Vuković N., Miljković Z. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Neural Networks 2013, 46:210-226.
-
(2013)
Neural Networks
, vol.46
, pp. 210-226
-
-
Vuković, N.1
Miljković, Z.2
-
60
-
-
84875189392
-
A novel self-constructing radial basis function neural-fuzzy system
-
Yang Y.K., Sun T.Y., Huo C.L., Yu Y.H., Liu C.C., Tsai C.H. A novel self-constructing radial basis function neural-fuzzy system. Applied Soft Computing 2013, 13(5):2390-2404.
-
(2013)
Applied Soft Computing
, vol.13
, Issue.5
, pp. 2390-2404
-
-
Yang, Y.K.1
Sun, T.Y.2
Huo, C.L.3
Yu, Y.H.4
Liu, C.C.5
Tsai, C.H.6
-
61
-
-
84950426631
-
High breakdown-point estimates of regression by means of the minimization of an efficient scale
-
Yohai V.J., Zamar R.H. High breakdown-point estimates of regression by means of the minimization of an efficient scale. Journal of the American Statistical Association 1988, 83(402):406-413.
-
(1988)
Journal of the American Statistical Association
, vol.83
, Issue.402
, pp. 406-413
-
-
Yohai, V.J.1
Zamar, R.H.2
-
62
-
-
57049181420
-
Robust regularized kernel regression
-
Zhu J., Hoi S., Lyu M.T. Robust regularized kernel regression. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 2008, 38(6):1639-1644.
-
(2008)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.38
, Issue.6
, pp. 1639-1644
-
-
Zhu, J.1
Hoi, S.2
Lyu, M.T.3
|