메뉴 건너뛰기




Volumn 39, Issue 6, 2009, Pages 1590-1605

A new constructive algorithm for architectural and functional adaptation of artificial neural networks

Author keywords

Architectural adaptation; Artificial neural networks (ANNs); Constructive approach; Functional adaptation; Generalization ability

Indexed keywords

ARCHITECTURAL ADAPTATION; ARTIFICIAL NEURAL NETWORKS (ANNS); CONSTRUCTIVE APPROACH; FUNCTIONAL ADAPTATION; GENERALIZATION ABILITY;

EID: 70349614379     PISSN: 10834419     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2009.2021849     Document Type: Article
Times cited : (55)

References (48)
  • 1
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • May
    • T. Y. Kwok and D. Y. Yeung, "Constructive algorithms for structure learning in feedforward neural networks for regression problems," IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 630-645, May 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 2
    • 0035505658 scopus 로고    scopus 로고
    • A new pruning heuristic based on variance analysis of sensitivity information
    • Nov
    • A. P. Engelbrecht, "A new pruning heuristic based on variance analysis of sensitivity information," IEEE Trans. Neural Netw., vol. 12, no. 6, pp. 1386-1399, Nov. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, A.P.1
  • 3
    • 0001234705 scopus 로고
    • Second-order derivatives for network pruning: Optimal brain surgeon
    • C. Lee, S. Hanson, and J. Cowan, Eds. San Mateo, CA: Morgan Kaufmann
    • B. Hassibi and D. G. Stork, "Second-order derivatives for network pruning: Optimal brain surgeon," in Advances in Neural Information Processing Systems, vol. 5, C. Lee, S. Hanson, and J. Cowan, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 4
    • 67349203854 scopus 로고    scopus 로고
    • A new adaptive merging and growing algorithm for designing artificial neural networks
    • Jun
    • Md. M. Islam,Md. A. Sattar,Md. F. Amin, X. Yao, and K. Murase, "A new adaptive merging and growing algorithm for designing artificial neural networks," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 39, no. 3, pp. 705-722, Jun. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. B: Cybern , vol.39 , Issue.3 , pp. 705-722
    • Islam, M.M.1    Sattar, M.A.2    Amin, M.F.3    Yao, X.4    Murase, K.5
  • 5
    • 0042525842 scopus 로고    scopus 로고
    • Neural-network construction and selection in nonlinear modeling
    • Jul
    • I. Rivals and L. Personnaz, "Neural-network construction and selection in nonlinear modeling," IEEE Trans. Neural Netw., vol. 14, no. 4, pp. 804-819, Jul. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.4 , pp. 804-819
    • Rivals, I.1    Personnaz, L.2
  • 6
    • 33744529638 scopus 로고    scopus 로고
    • Evolutionary neural networks for anomaly detection based on the behavior of a program
    • Jun
    • S.-J. Han and S.-B. Cho, "Evolutionary neural networks for anomaly detection based on the behavior of a program," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 36, no. 3, pp. 559-570, Jun. 2006.
    • (2006) IEEE Trans. Syst., Man, Cybern. B: Cybern , vol.36 , Issue.3 , pp. 559-570
    • Han, S.-J.1    Cho, S.-B.2
  • 7
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • May
    • X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 694-713, May 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 54249119198 scopus 로고    scopus 로고
    • A new constructive algorithm for designing and training artificial neural networks
    • Kitakyushu, Japan, Nov. 13-16
    • Md. A. Sattar, Md. M. Islam, and K. Murase, "A new constructive algorithm for designing and training artificial neural networks," in Proc. 14th Int. Conf. Neural Inf. Process., Kitakyushu, Japan, Nov. 13-16, 2007, pp. 317-327.
    • (2007) Proc. 14th Int. Conf. Neural Inf. Process , pp. 317-327
    • Sattar, M.A.1    Islam, M.M.2    Murase, K.3
  • 10
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation, in Proc. 24th Int. Conf. Mach. Learn., Corvallis, OR, Jun. 20-24, 2007, pp. 473-480.
    • An empirical evaluation of deep architectures on problems with many factors of variation," in Proc. 24th Int. Conf. Mach. Learn., Corvallis, OR, Jun. 20-24, 2007, pp. 473-480.
  • 11
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Jul
    • G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554, Jul. 2006.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 12
    • 1542316196 scopus 로고    scopus 로고
    • The research on an algorithm for special two-hidden-layer artificial neural network
    • Xi'an, China, Nov. 2-5
    • J.-D. Ren, H.-Y. Huang, and J. Bao, "The research on an algorithm for special two-hidden-layer artificial neural network," in Proc. 2nd Int. Conf. Mach. Learn. Cybern., Xi'an, China, Nov. 2-5, 2003, pp. 1127-1131.
    • (2003) Proc. 2nd Int. Conf. Mach. Learn. Cybern , pp. 1127-1131
    • Ren, J.-D.1    Huang, H.-Y.2    Bao, J.3
  • 13
    • 0034811555 scopus 로고    scopus 로고
    • A new algorithm to design compact two-hidden-layer artificial neural networks
    • Nov
    • Md. M. Islam and K. Murase, "A new algorithm to design compact two-hidden-layer artificial neural networks," Neural Netw., vol. 14, no. 9, pp. 1265-1278, Nov. 2001.
    • (2001) Neural Netw , vol.14 , Issue.9 , pp. 1265-1278
    • Islam, M.M.1    Murase, K.2
  • 14
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture," in Proc. Advances Neural Inf. Process. Syst., D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, vol. 2, pp. 524-532.
    • (1990) Proc. Advances Neural Inf. Process. Syst , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 15
    • 0027242791 scopus 로고
    • Backpropagation neural nets with one and two hidden layers
    • Jan
    • J. de Villiers and E. Barnard, "Backpropagation neural nets with one and two hidden layers," IEEE Trans. Neural Netw., vol. 4, no. 1, pp. 136-141, Jan. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.4 , Issue.1 , pp. 136-141
    • de Villiers, J.1    Barnard, E.2
  • 16
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: Four layers versus three
    • Mar
    • S. Tamura and M. Tateishi, "Capabilities of a four-layered feedforward neural network: Four layers versus three," IEEE Trans. Neural Netw. vol. 8, no. 2, pp. 251-255, Mar. 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 17
    • 23044516364 scopus 로고    scopus 로고
    • Constructive feedforward neural networks using Hermite polynomial activation functions
    • Jul
    • L. Ma and K. Khorasani, "Constructive feedforward neural networks using Hermite polynomial activation functions," IEEE Trans. Neural Netw. vol. 16, no. 4, pp. 821-833, Jul. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.4 , pp. 821-833
    • Ma, L.1    Khorasani, K.2
  • 18
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • Sep
    • R. Reed, "Pruning algorithms - A survey," IEEE Trans. Neural Netw. vol. 4, no. 5, pp. 740-747, Sep. 1993.
    • (1993) IEEE Trans. Neural Netw , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 19
    • 33644884686 scopus 로고    scopus 로고
    • A node pruning algorithm based on a Fourier amplitude sensitivity test method
    • Mar
    • P. Lauret, E. Fock, and T. A. Mara, "A node pruning algorithm based on a Fourier amplitude sensitivity test method," IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 273-293, Mar. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.2 , pp. 273-293
    • Lauret, P.1    Fock, E.2    Mara, T.A.3
  • 20
    • 34848872651 scopus 로고    scopus 로고
    • An optimization methodology for neural network weights and architectures
    • Nov
    • T. B. Ludermir, A. Yamazaki, and C. Zanchettin, "An optimization methodology for neural network weights and architectures," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1452-1459, Nov. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.6 , pp. 1452-1459
    • Ludermir, T.B.1    Yamazaki, A.2    Zanchettin, C.3
  • 21
    • 0037272132 scopus 로고    scopus 로고
    • Regularization parameter estimation for feedforward neural networks
    • Feb
    • P. Guo, M. R. Lyu, and C. L. P. Chen, "Regularization parameter estimation for feedforward neural networks," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 33, no. 1, pp. 35-44, Feb. 2003.
    • (2003) IEEE Trans. Syst., Man, Cybern. B: Cybern , vol.33 , Issue.1 , pp. 35-44
    • Guo, P.1    Lyu, M.R.2    Chen, C.L.P.3
  • 22
    • 0035131889 scopus 로고    scopus 로고
    • A pruning method for the recursive least squares algorithm
    • Mar
    • C.-S. Leung, K.-W.Wong, P.-F. Sum, and L.-W. Chan, "A pruning method for the recursive least squares algorithm," Neural Netw., vol. 14, no. 2, pp. 147-174, Mar. 2001.
    • (2001) Neural Netw , vol.14 , Issue.2 , pp. 147-174
    • Leung, C.-S.1    Wong, K.W.2    Sum, P.-F.3    Chan, L.-W.4
  • 23
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The tiling algorithm
    • Jun
    • M. Mezard and J.-P. Nadal, "Learning in feedforward layered networks: The tiling algorithm," J. Phys. A: Math. Gen., vol. 22, no. 12, pp. 2191-2203, Jun. 1989.
    • (1989) J. Phys. A: Math. Gen , vol.22 , Issue.12 , pp. 2191-2203
    • Mezard, M.1    Nadal, J.-P.2
  • 24
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Jun
    • R. E. Schapire, "The strength of weak learnability," Mach. Learn. vol. 5, no. 2, pp. 197-227, Jun. 1990.
    • (1990) Mach. Learn , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 26
    • 34047104426 scopus 로고    scopus 로고
    • An ensemble-based incremental learning approach to data fusion
    • Apr
    • D. Parikh and R. Polikar, "An ensemble-based incremental learning approach to data fusion," IEEE Trans. Syst., Man, Cybern. B: Cybern. vol. 37, no. 2, pp. 437-450, Apr. 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern. B: Cybern , vol.37 , Issue.2 , pp. 437-450
    • Parikh, D.1    Polikar, R.2
  • 27
    • 0033742041 scopus 로고    scopus 로고
    • Constructive neural-network learning algorithms for pattern classification
    • Mar
    • R. Parekh, J. Yang, and V. Honavar, "Constructive neural-network learning algorithms for pattern classification," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 436-451, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.2 , pp. 436-451
    • Parekh, R.1    Yang, J.2    Honavar, V.3
  • 28
    • 0028538768 scopus 로고
    • Connectivity and performance tradeoffs in the cascade correlation learning architecture
    • Nov
    • D. S. Phatak and I. Koren, "Connectivity and performance tradeoffs in the cascade correlation learning architecture," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 930-935, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.6 , pp. 930-935
    • Phatak, D.S.1    Koren, I.2
  • 29
    • 0034187293 scopus 로고    scopus 로고
    • Modified cascade-correlation learning for classification
    • May
    • M. Lehtokangas, "Modified cascade-correlation learning for classification," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 795-798, May 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.3 , pp. 795-798
    • Lehtokangas, M.1
  • 32
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • I, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,MA: MIT Press
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," in Parallel Distributed Processing, vol. I, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,MA: MIT Press, 1986, pp. 318-362.
    • (1986) Parallel Distributed Processing, vol , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 0028494739 scopus 로고
    • Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training
    • Sep
    • A. F. Murray and P. J. Edwards, "Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training," IEEE Trans. Neural Netw., vol. 5, no. 5, pp. 792-802, Sep. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.5 , pp. 792-802
    • Murray, A.F.1    Edwards, P.J.2
  • 36
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Jun
    • L. Prechelt, "Automatic early stopping using cross validation: Quantifying the criteria," Neural Netw., vol. 11, no. 4, pp. 761-767, Jun. 1998.
    • (1998) Neural Netw , vol.11 , Issue.4 , pp. 761-767
    • Prechelt, L.1
  • 37
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Sep
    • T. Y. Kwok and D. Y. Yeung, "Objective functions for training new hidden units in constructive neural networks," IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 1131-1148, Sep. 1997.
    • (1997) IEEE Trans. Neural Netw , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 38
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol. 4, no. 2, pp. 251-257, 1991.
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 40
    • 47149089036 scopus 로고    scopus 로고
    • Berlin, Germany: Springer-Verlag
    • A. I. Galushkin, Neural Networks Theory. Berlin, Germany: Springer-Verlag, 2007, pp. 53-63.
    • (2007) Neural Networks Theory , pp. 53-63
    • Galushkin, A.I.1
  • 41
    • 0030130727 scopus 로고    scopus 로고
    • A quantitative study of experimental evaluation of neural network learning algorithms
    • Apr
    • L. Prechelt, "A quantitative study of experimental evaluation of neural network learning algorithms," Neural Netw., vol. 9, no. 3, pp. 457-462, Apr. 1996.
    • (1996) Neural Netw , vol.9 , Issue.3 , pp. 457-462
    • Prechelt, L.1
  • 42
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Jun
    • T. Fawcett, "An introduction to ROC analysis," Pattern Recognit. Lett., vol. 27, no. 8, pp. 861-874, Jun. 2006.
    • (2006) Pattern Recognit. Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 43
    • 0029185114 scopus 로고
    • Use of quasi-Newton method in a feedforward neural network construction algorithm
    • Jan
    • R. Setiono and L. C. K. Hui, "Use of quasi-Newton method in a feedforward neural network construction algorithm," IEEE Trans. Neural Netw., vol. 6, no. 1, pp. 273-277, Jan. 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.1 , pp. 273-277
    • Setiono, R.1    Hui, L.C.K.2
  • 44
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • May
    • S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, no. 4598, pp. 671-680, May 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt Jr., C.D.2    Vecchi, M.P.3
  • 45
    • 0022865373 scopus 로고
    • Future paths for integer programming and links to artificial intelligence
    • May
    • F. Glover, "Future paths for integer programming and links to artificial intelligence," Comput. Oper. Res., vol. 13, no. 5, pp. 533-549, May 1986.
    • (1986) Comput. Oper. Res , vol.13 , Issue.5 , pp. 533-549
    • Glover, F.1
  • 47
    • 0000494466 scopus 로고
    • Optimal brain damage
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • Y. Le Cun, J. S. Denker, and S. A. Solla, "Optimal brain damage," in Proc. Advances Neural Inf. Process. Syst., D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, vol. 2, pp. 598-605.
    • (1990) Proc. Advances Neural Inf. Process. Syst , vol.2 , pp. 598-605
    • Le Cun, Y.1    Denker, J.S.2    Solla, S.A.3
  • 48
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • Mar
    • P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 525-536, Mar. 1998.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.