메뉴 건너뛰기




Volumn 18, Issue 6, 2010, Pages 1129-1143

A self-organizing fuzzy neural network based on a growing-and-pruning algorithm

Author keywords

Fuzzy neural network (FNN); growing and pruning algorithm (GP); sensitivity analysis (SA)

Indexed keywords

COMPACT STRUCTURES; FUZZY NEURAL MODELS; LEARNING PROCESS; PRUNING ALGORITHMS; RADIAL BASIS FUNCTIONS; SELF ORGANIZING; SELF-ORGANIZING FUZZY NEURAL NETWORK; SIMULATION RESULT; STRUCTURE-LEARNING; TRAINING ALGORITHMS; TRAINING PHASE;

EID: 78649732347     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2010.2070841     Document Type: Article
Times cited : (165)

References (44)
  • 1
    • 50549095617 scopus 로고    scopus 로고
    • A probabilistic neural-fuzzy learning system for stochastic modeling
    • Aug.
    • H. X. Li and Z. Liu, "A probabilistic neural-fuzzy learning system for stochastic modeling," IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 898-908, Aug. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.4 , pp. 898-908
    • Li, H.X.1    Liu, Z.2
  • 2
    • 56449114792 scopus 로고    scopus 로고
    • Asymptotic stability analysis of neural networks with successive time delay components
    • Jun.
    • Y. Zhao, H. J. Gao, and S. S. Mou, "Asymptotic stability analysis of neural networks with successive time delay components," Neurocomput., vol. 71, no. 13-15, pp. 2848-2856, Jun. 2008.
    • (2008) Neurocomput. , vol.71 , Issue.13-15 , pp. 2848-2856
    • Zhao, Y.1    Gao, H.J.2    Mou, S.S.3
  • 3
    • 15944375785 scopus 로고    scopus 로고
    • Analysis of global exponential stability and periodic solutions of neural networks with time-varying delays
    • DOI 10.1016/j.neunet.2004.11.002, PII S0893608004002114
    • H. Huang, D. W. C. Ho, and J. D. Cao, "Analysis of global exponential stability and periodic solutions of neural networks with time-varying delays," Neural Netw., vol. 18, no. 2, pp. 161-170, Feb. 2005. (Pubitemid 40431614)
    • (2005) Neural Networks , vol.18 , Issue.2 , pp. 161-170
    • Huang, H.1    Ho, D.W.C.2    Cao, J.3
  • 4
    • 33645067635 scopus 로고    scopus 로고
    • Application of fuzzy set and neural network techniques in determining food process control set points
    • Sep.
    • S. Kupongsak and J. Tan, "Application of fuzzy set and neural network techniques in determining food process control set points," Fuzzy Sets Syst., vol. 157, no. 9, pp. 1169-1178, Sep. 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.9 , pp. 1169-1178
    • Kupongsak, S.1    Tan, J.2
  • 5
    • 36749028187 scopus 로고    scopus 로고
    • Fuzzy neural-based control for nonlinear time-varying delay systems
    • Dec.
    • C. L. Hwang and L. J. Chang, "Fuzzy neural-based control for nonlinear time-varying delay systems," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 6, pp. 1471-1485, Dec. 2007.
    • (2007) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.37 , Issue.6 , pp. 1471-1485
    • Hwang, C.L.1    Chang, L.J.2
  • 6
    • 39549093167 scopus 로고    scopus 로고
    • Adaptive fuzzy-neural-network control for ma-glev transportation system
    • Jan.
    • R. J. Wai and J. D. Lee, "Adaptive fuzzy-neural-network control for ma-glev transportation system," IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 54-70, Jan. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.1 , pp. 54-70
    • Wai, R.J.1    Lee, J.D.2
  • 7
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks - A novel approach to function approximation
    • Apr.
    • S. Wu and M. J. Er, "Dynamic fuzzy neural networks - A novel approach to function approximation," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 358-364, Apr. 2000.
    • (2000) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.30 , Issue.2 , pp. 358-364
    • Wu, S.1    Er, M.J.2
  • 8
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • Nov.
    • K. B. Cho and B. H. Wang, "Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction," Fuzzy Sets Syst., vol. 83, no. 3, pp. 325-339, Nov. 1996.
    • (1996) Fuzzy Sets Syst. , vol.83 , Issue.3 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 9
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • Feb.
    • C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, Feb. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 10
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Jan.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 1, pp. 116-132, Jan. 1985.
    • (1985) IEEE Trans. Syst., Man, Cybern. , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 11
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • Aug.
    • S. Wu, M. J. Er, and Y. Gao, "A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 578-594, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 12
    • 69249220427 scopus 로고    scopus 로고
    • A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks
    • Oct.
    • N. Wang, M. J. Er, and X. Y. Meng, "A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks," Neurocom-put., vol. 72, no. 16-18, pp. 3818-3829, Oct. 2009.
    • (2009) Neurocomput. , vol.72 , Issue.16-18 , pp. 3818-3829
    • Wang, N.1    Er, M.J.2    Meng, X.Y.3
  • 13
    • 72649095852 scopus 로고    scopus 로고
    • SOFMLS: Online self-organizing fuzzy modified least-squares network
    • Dec.
    • J. D. J. Rubio, "SOFMLS: Online self-organizing fuzzy modified least-squares network," IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1296-1309, Dec. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.6 , pp. 1296-1309
    • Rubio, J.D.J.1
  • 14
    • 0033114942 scopus 로고    scopus 로고
    • Implementation of evolutionary fuzzy systems
    • Feb.
    • Y. Shi, R. Eberhart, and Y. Chen, "Implementation of evolutionary fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 109-119, Feb. 1999.
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.1 , pp. 109-119
    • Shi, Y.1    Eberhart, R.2    Chen, Y.3
  • 15
    • 33947282595 scopus 로고    scopus 로고
    • Design for self-organizing fuzzy neural networks based on genetic algorithms
    • Dec.
    • G. Leng, T. M. McGinnity, and G. Prasad, "Design for self-organizing fuzzy neural networks based on genetic algorithms," IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 755-766, Dec. 2006.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.6 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 16
    • 59649112625 scopus 로고    scopus 로고
    • Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms
    • Jul.
    • J. Alcalá-Fdez, R. Alcalá, M. J. Gacto, and F. Herrera, "Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms," Fuzzy Sets Syst., vol. 160, no. 7, pp. 905-921, Jul. 2009.
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.7 , pp. 905-921
    • Alcalá-Fdez, J.1    Alcalá, R.2    Gacto, M.J.3    Herrera, F.4
  • 17
    • 35348824955 scopus 로고    scopus 로고
    • A self-organizing TS-type fuzzy network with support vector learning and its application to classification problems
    • Oct.
    • C. F. Juang, S. H. Chiu, and S. W. Chang, "A self-organizing TS-Type fuzzy network with support vector learning and its application to classification problems," IEEE Trans. Fuzzy Syst., vol. 15, no. 5, pp. 998-1008, Oct. 2007.
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.5 , pp. 998-1008
    • Juang, C.F.1    Chiu, S.H.2    Chang, S.W.3
  • 18
    • 1542333735 scopus 로고    scopus 로고
    • Support vector learning mechanism for fuzzy rule-based modeling: A new approach
    • Feb.
    • J. H. Chiang and P. Y. Hao, "Support vector learning mechanism for fuzzy rule-based modeling: A new approach," IEEE Trans. Fuzzy Syst., vol. 12, no. 1, pp. 1-12, Feb. 2004.
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , Issue.1 , pp. 1-12
    • Chiang, J.H.1    Hao, P.Y.2
  • 19
    • 56549084044 scopus 로고    scopus 로고
    • Using self-organizing fuzzy network with support vector learning for face detection in color images
    • Oct.
    • C. F. Juang and S. J. Shiu, "Using self-organizing fuzzy network with support vector learning for face detection in color images," Neurocomput., vol. 71, no. 16-18, pp. 3409-3420, Oct. 2008.
    • (2008) Neurocomput. , vol.71 , Issue.16-18 , pp. 3409-3420
    • Juang, C.F.1    Shiu, S.J.2
  • 20
    • 33144459783 scopus 로고    scopus 로고
    • Support-vector-based fuzzy neural network for pattern classification
    • Feb.
    • C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, "Support-vector-based fuzzy neural network for pattern classification, " IEEE Trans. Fuzzy Syst., vol. 14, no. 1, pp. 31-41, Feb. 2006.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.1 , pp. 31-41
    • Lin, C.T.1    Yeh, C.M.2    Liang, S.F.3    Chung, J.F.4    Kumar, N.5
  • 21
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Apr.
    • N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 22
    • 11244351634 scopus 로고    scopus 로고
    • An approach for online extraction of fuzzy rules using a self-organizing fuzzy neural network
    • Mar.
    • G. Leng, T. McGinnity, and G. Prasad, "An approach for online extraction of fuzzy rules using a self-organizing fuzzy neural network," Fuzzy Sets Syst., vol. 150, no. 2, pp. 211-243, Mar. 2005.
    • (2005) Fuzzy Sets Syst. , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.2    Prasad, G.3
  • 23
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • May
    • N. S. H. J. Rong, G. B. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets Syst., vol. 157, no. 9, pp. 1260-1275, May 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, N.S.H.J.1    Huang, G.B.2    Saratchandran, P.3
  • 24
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A robust incremental learning approach for evolving takagi-sugeno fuzzy models
    • Dec.
    • E. D. Lughofer, "FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1393-1410, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.D.1
  • 25
    • 58149487281 scopus 로고    scopus 로고
    • A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning
    • Dec.
    • C. F. Juang and Y. W. Tsao, "A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning," IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1411-1424, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1411-1424
    • Juang, C.F.1    Tsao, Y.W.2
  • 26
    • 0037093163 scopus 로고    scopus 로고
    • Making best use of model evaluations to compute sensitivity indices
    • Feb.
    • A. Saltelli, "Making best use of model evaluations to compute sensitivity indices," Comput. Phys. Commun., vol. 145, no. 2, pp. 280-297, Feb. 2002.
    • (2002) Comput. Phys. Commun. , vol.145 , Issue.2 , pp. 280-297
    • Saltelli, A.1
  • 28
    • 33644884686 scopus 로고    scopus 로고
    • A node pruning algorithm based on a fourier amplitude sensitivity test method
    • Mar.
    • P. Lauret, E. Fock, and T. A. Mara, "A node pruning algorithm based on a Fourier amplitude sensitivity test method," IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 273-293, Mar. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.2 , pp. 273-293
    • Lauret, P.1    Fock, E.2    Mara, T.A.3
  • 29
    • 59649099114 scopus 로고    scopus 로고
    • Incremental learningofdynamic fuzzy neural networks for accurate system modeling
    • Apr.
    • X. S. Deng and X. Z. Wang, "Incremental learningofdynamic fuzzy neural networks for accurate system modeling," Fuzzy Sets Syst., vol. 160, no. 7, pp. 972-987, Apr. 2009.
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.7 , pp. 972-987
    • Deng, X.S.1    Wang, X.Z.2
  • 30
    • 76849088600 scopus 로고    scopus 로고
    • Hierarchical cluster-based mul-tispecies particle-swarm optimization for fuzzy-system optimization
    • Feb.
    • C. F. Juang, C. M. Hsiao, and C. H. Hsu, "Hierarchical cluster-based mul-tispecies particle-swarm optimization for fuzzy-system optimization," IEEE Trans. Fuzzy Syst., vol. 18, no. 1, pp. 14-26, Feb. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.1 , pp. 14-26
    • Juang, C.F.1    Hsiao, C.M.2    Hsu, C.H.3
  • 31
    • 67149116745 scopus 로고    scopus 로고
    • A selection model for optimal fuzzy clustering algorithm and number of clusters based on competitive comprehensive fuzzy evaluation
    • Jun.
    • Y. N. Wang, C. S. Li, and Y. Zuo, "A selection model for optimal fuzzy clustering algorithm and number of clusters based on competitive comprehensive fuzzy evaluation," IEEE Trans. Fuzzy Syst., vol. 17, no. 3, pp. 568-577, Jun. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.3 , pp. 568-577
    • Wang, Y.N.1    Li, C.S.2    Zuo, Y.3
  • 32
    • 7444264194 scopus 로고    scopus 로고
    • Uncertainty and global sensitivity analysis of road transport emission estimates
    • Dec.
    • I. Kioutsioukis, S. Tarantola, A. Saltelli, and D. Gatelli, "Uncertainty and global sensitivity analysis of road transport emission estimates," Atmos. Environ., vol. 38, no. 38, pp. 6609-6620, Dec. 2004.
    • (2004) Atmos. Environ. , vol.38 , Issue.38 , pp. 6609-6620
    • Kioutsioukis, I.1    Tarantola, S.2    Saltelli, A.3    Gatelli, D.4
  • 33
    • 33748423071 scopus 로고    scopus 로고
    • On-line estimation of the final prediction error via recursive least-squares method
    • Oct.
    • J. Sum and K. Ho, "On-line estimation of the final prediction error via recursive least-squares method," Neurocomput., vol. 69, no. 16-18, pp. 2420-2424, Oct. 2006.
    • (2006) Neurocomput. , vol.69 , Issue.16-18 , pp. 2420-2424
    • Sum, J.1    Ho, K.2
  • 34
    • 0001371650 scopus 로고    scopus 로고
    • New similarity measures on fuzzy sets and on elements
    • Feb.
    • W. J. Wang, "New similarity measures on fuzzy sets and on elements," Fuzzy Sets Syst., vol. 85, no. 3, pp. 305-309, Feb. 1997.
    • (1997) Fuzzy Sets Syst. , vol.85 , Issue.3 , pp. 305-309
    • Wang, W.J.1
  • 35
    • 38649139150 scopus 로고    scopus 로고
    • A self-organizing fuzzy neural network and its applications to function approximation and forecast modeling
    • Jan.
    • J. F. Qiao and H. D. Wang, "A self-organizing fuzzy neural network and its applications to function approximation and forecast modeling," Neurocomput., vol. 71, no. 4-6, pp. 564-569, Jan. 2008.
    • (2008) Neurocomput. , vol.71 , Issue.4-6 , pp. 564-569
    • Qiao, J.F.1    Wang, H.D.2
  • 36
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • G. Dec.
    • N. Y. Liang, G., B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423, Dec. 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.Y.1    Huang, B.2    Saratchandran, P.3    Sundararajan, N.4
  • 38
    • 29344449726 scopus 로고    scopus 로고
    • Dissolved oxygen control for activated sludge processes
    • Oct.
    • W. Chotkowski, M. A. Brdys, and K. Konarczak, "Dissolved oxygen control for activated sludge processes," Int. J. Syst. Sci., vol. 36, no. 12, pp. 727-736, Oct. 2005.
    • (2005) Int. J. Syst. Sci. , vol.36 , Issue.12 , pp. 727-736
    • Chotkowski, W.1    Brdys, M.A.2    Konarczak, K.3
  • 39
    • 39049086764 scopus 로고    scopus 로고
    • Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors
    • Feb.
    • T. W. Tan and H. Y. Ng, "Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors," Water Res., vol. 42, no. 4-5, pp. 1122-1132, Feb. 2008.
    • (2008) Water Res. , vol.42 , Issue.4-5 , pp. 1122-1132
    • Tan, T.W.1    Ng, H.Y.2
  • 40
    • 44649175791 scopus 로고    scopus 로고
    • Bilinear black-box identification and MPC of the activated sludge process
    • Aug.
    • M. Ekman, "Bilinear black-box identification and MPC of the activated sludge process," J. Process Contr., vol. 18, no. 7-8, pp. 643-653, Aug. 2008.
    • (2008) J. Process Contr. , vol.18 , Issue.7-8 , pp. 643-653
    • Ekman, M.1
  • 41
    • 23344438746 scopus 로고    scopus 로고
    • Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant
    • Jul.
    • A. Traore, S. Grieu, S. Puig, L. Corominas, F. Thiery, M. Polit, and J. Colprim, "Fuzzy control of dissolved oxygen in a sequencing batch reactor pilot plant," Chem. Eng. J., vol. 111, no. 1, pp. 13-19, Jul. 2005.
    • (2005) Chem. Eng. J. , vol.111 , Issue.1 , pp. 13-19
    • Traore, A.1    Grieu, S.2    Puig, S.3    Corominas, L.4    Thiery, F.5    Polit, M.6    Colprim, J.7
  • 42
    • 50649100676 scopus 로고    scopus 로고
    • An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands
    • Jan.
    • C. S. Akratos, J. N. E. Papaspyros, and V. A. Tsihrintzis, "An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands," Chem. Eng. J., vol. 143, no. 1-3, pp. 96-110, Jan. 2008.
    • (2008) Chem. Eng. J. , vol.143 , Issue.1-3 , pp. 96-110
    • Akratos, C.S.1    Papaspyros, J.N.E.2    Tsihrintzis, V.A.3
  • 43
    • 54049091201 scopus 로고    scopus 로고
    • Water quality modeling for load reduction under uncertainty: A Bayesian approach
    • Jul.
    • Y. Liu, P. J. Yang, C. Hu, and H. C. Guo, "Water quality modeling for load reduction under uncertainty: A Bayesian approach," Water Res., vol. 42, no. 13, pp. 3305-3314, Jul. 2008.
    • (2008) Water Res. , vol.42 , Issue.13 , pp. 3305-3314
    • Liu, Y.1    Yang, P.J.2    Hu, C.3    Guo, H.C.4
  • 44
    • 37849185810 scopus 로고    scopus 로고
    • Backfilling missing microbial concentrations in a riverine database using artificial neural networks
    • Jan.
    • V. Chandramouli, G. Brion, T. R. Neelakantan, and S. Lingireddy, "Backfilling missing microbial concentrations in a riverine database using artificial neural networks," Water Res., vol. 41, no. 1, pp. 217-227, Jan. 2007.
    • (2007) Water Res. , vol.41 , Issue.1 , pp. 217-227
    • Chandramouli, V.1    Brion, G.2    Neelakantan, T.R.3    Lingireddy, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.