메뉴 건너뛰기




Volumn 24, Issue 7, 2011, Pages 717-725

An efficient self-organizing RBF neural network for water quality prediction

Author keywords

Flexibility structure; Radial basis function (RBF); Self organizing; Water quality prediction

Indexed keywords

DYNAMIC PROCESS; FLEXIBILITY STRUCTURE; HIDDEN NEURONS; MUTUAL INFORMATIONS; NETWORK COMPLEXITY; NEURON ACTIVITY; NON-LINEAR DYNAMIC SYSTEMS; OTHER ALGORITHMS; PREDICTION ACCURACY; QUALITY PREDICTION; RADIAL BASIS FUNCTION (RBF); RADIAL BASIS FUNCTION NEURAL NETWORKS; RBF NEURAL NETWORK; SELF ORGANIZING; TRAINING TIME; WASTEWATER TREATMENT PROCESS; WATER QUALITY PREDICTION;

EID: 79960891365     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.04.006     Document Type: Article
Times cited : (214)

References (27)
  • 1
    • 0742290061 scopus 로고    scopus 로고
    • A new algorithm for online structure and parameter adaptation of RBF networks
    • Alexandridis A., Sarimveis H., Bafas G. A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks 2003, 16(7):1003-1017.
    • (2003) Neural Networks , vol.16 , Issue.7 , pp. 1003-1017
    • Alexandridis, A.1    Sarimveis, H.2    Bafas, G.3
  • 2
    • 84857054943 scopus 로고    scopus 로고
    • UCI Machine Learning Repository, [Online]. Available.
    • Asuncion, A., & Newman, D.J. (2007). UCI Machine Learning Repository, [Online]. Available http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 67649344705 scopus 로고    scopus 로고
    • A growing and pruning method for radial basis function networks
    • Bortman M., Aladjem M. A growing and pruning method for radial basis function networks. IEEE Transactions on Neural Networks 2009, 20(6):1039-1045.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.6 , pp. 1039-1045
    • Bortman, M.1    Aladjem, M.2
  • 4
    • 0034861969 scopus 로고    scopus 로고
    • A model-based approach to predicting BOD5 in settled sewage
    • Brydon D.A., Frodsham D.A. A model-based approach to predicting BOD5 in settled sewage. Water Science and Technology 2001, 44(2-3):9-15.
    • (2001) Water Science and Technology , vol.44 , Issue.2-3 , pp. 9-15
    • Brydon, D.A.1    Frodsham, D.A.2
  • 5
    • 37849185810 scopus 로고    scopus 로고
    • Backfilling missing microbial concentrations in a riverine database using artificial neural networks
    • Chandramouli V., Brion G., Neelakantan T.R., Lingireddy S. Backfilling missing microbial concentrations in a riverine database using artificial neural networks. Water Reasearch 2007, 41(1):217-227.
    • (2007) Water Reasearch , vol.41 , Issue.1 , pp. 217-227
    • Chandramouli, V.1    Brion, G.2    Neelakantan, T.R.3    Lingireddy, S.4
  • 6
    • 33750375213 scopus 로고    scopus 로고
    • Self-generation RBFNs using evolutional PSO learning
    • Feng H.M. Self-generation RBFNs using evolutional PSO learning. Neurocomputing 2006, 70(1-3):241-251.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 241-251
    • Feng, H.M.1
  • 8
    • 64349104747 scopus 로고    scopus 로고
    • Time-frequency analysis of beach bacteria variations and its implication for recreational water quality modeling
    • Ge Z.F., Frick W.E. Time-frequency analysis of beach bacteria variations and its implication for recreational water quality modeling. Environmental Science & Technology 2009, 43(4):1128-1133.
    • (2009) Environmental Science & Technology , vol.43 , Issue.4 , pp. 1128-1133
    • Ge, Z.F.1    Frick, W.E.2
  • 9
    • 0742321288 scopus 로고    scopus 로고
    • Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • Gonzalez J., Rojas I., Ortega J., Pomares H., Fernandez F.J., Diaz A.F. Multi-objective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Transactions on Neural Networks 2003, 14(6):1478-1495.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6 , pp. 1478-1495
    • Gonzalez, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernandez, F.J.5    Diaz, A.F.6
  • 11
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • Huang G.B., Saratchandran P., Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks 2005, 16(1):57-67.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 13
    • 0037377185 scopus 로고    scopus 로고
    • Quantitative measures of organization for multiagent systems
    • Krivov S., Ulanowicz R.E., Dahiya A. Quantitative measures of organization for multiagent systems. Biosystems 2003, 69(1):39-54.
    • (2003) Biosystems , vol.69 , Issue.1 , pp. 39-54
    • Krivov, S.1    Ulanowicz, R.E.2    Dahiya, A.3
  • 14
    • 70449528756 scopus 로고    scopus 로고
    • Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
    • Lee C.M., Ko C.N. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing 2009, 73(1-3):449-460.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 449-460
    • Lee, C.M.1    Ko, C.N.2
  • 15
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural Computation 1991, 3(2):213-225.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 16
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks
    • Li Y.W., Sundararajan N., Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Computation 1997, 9(2):461-478.
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 461-478
    • Li, Y.W.1    Sundararajan, N.2    Saratchandran, P.3
  • 17
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm
    • Li Y.W., Sundararajan N., Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on Neural Networks 1998, 9(2):308-318.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.2 , pp. 308-318
    • Li, Y.W.1    Sundararajan, N.2    Saratchandran, P.3
  • 18
    • 41049101978 scopus 로고    scopus 로고
    • Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems
    • Lian J.M., Lee Y.G., Sudhoff S.D., Stanislaw H.Z. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems. IEEE Transactions on Neural Networks 2008, 19(3):460-474.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.3 , pp. 460-474
    • Lian, J.M.1    Lee, Y.G.2    Sudhoff, S.D.3    Stanislaw, H.Z.4
  • 19
    • 11244339733 scopus 로고    scopus 로고
    • Identification and prediction using recurrent compensatory neuro-fuzzy systems
    • Lin C.J., Chen C.H. Identification and prediction using recurrent compensatory neuro-fuzzy systems. Fuzzy Sets and Systems 2005, 150(2):307-330.
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 307-330
    • Lin, C.J.1    Chen, C.H.2
  • 20
    • 54049091201 scopus 로고    scopus 로고
    • Water quality modeling for load reduction under uncertainty: a Bayesian approach
    • Liu Y., Yang P.J., Hu C., Guo H.C. Water quality modeling for load reduction under uncertainty: a Bayesian approach. Water Reasearch 2008, 42(13):3305-3314.
    • (2008) Water Reasearch , vol.42 , Issue.13 , pp. 3305-3314
    • Liu, Y.1    Yang, P.J.2    Hu, C.3    Guo, H.C.4
  • 21
    • 37349016848 scopus 로고    scopus 로고
    • Synaptic plasticity, memory and the hippocampus: a neural network approach to causality
    • Neves G., Cooke S.F., Bliss T.V.P. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience 2008, 9(1):65-75.
    • (2008) Nature Reviews Neuroscience , vol.9 , Issue.1 , pp. 65-75
    • Neves, G.1    Cooke, S.F.2    Bliss, T.V.P.3
  • 23
    • 77951611501 scopus 로고    scopus 로고
    • A repair algorithm for RBF neural network and its application to chemical oxygen demand modeling
    • Qiao J.F., Han H.G. A repair algorithm for RBF neural network and its application to chemical oxygen demand modeling. International Journal of Neural Systems 2010, 20(1):63-74.
    • (2010) International Journal of Neural Systems , vol.20 , Issue.1 , pp. 63-74
    • Qiao, J.F.1    Han, H.G.2
  • 24
    • 71049128082 scopus 로고    scopus 로고
    • A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection
    • Samanwoy G.D., Hojjat A. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Networks 2009, 22(10):1419-1431.
    • (2009) Neural Networks , vol.22 , Issue.10 , pp. 1419-1431
    • Samanwoy, G.D.1    Hojjat, A.2
  • 25
    • 24344455644 scopus 로고    scopus 로고
    • Sensitivity analysis applied to the construction of radial basis function networks
    • Shi D., Yeung D.S., Gao J. Sensitivity analysis applied to the construction of radial basis function networks. Neural Networks 2005, 18(7):951-957.
    • (2005) Neural Networks , vol.18 , Issue.7 , pp. 951-957
    • Shi, D.1    Yeung, D.S.2    Gao, J.3
  • 26
    • 39649084649 scopus 로고    scopus 로고
    • Adaptive RBF network for parameter estimation and stable air-fuel ratio control
    • Wang S.W., Yu D.L. Adaptive RBF network for parameter estimation and stable air-fuel ratio control. Neural Networks 2008, 21(1):102-112.
    • (2008) Neural Networks , vol.21 , Issue.1 , pp. 102-112
    • Wang, S.W.1    Yu, D.L.2
  • 27
    • 34047179107 scopus 로고    scopus 로고
    • Self-organizing and self-evolving neurons: a new neural network for optimization
    • Wu S., Chow T.W.S. Self-organizing and self-evolving neurons: a new neural network for optimization. IEEE Transactions on Neural Networks 2007, 18(2):385-396.
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.2 , pp. 385-396
    • Wu, S.1    Chow, T.W.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.