메뉴 건너뛰기




Volumn 15, Issue 1, 2016, Pages

Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose

Author keywords

Evolutionary engineering; Fatty alcohols; Promoter engineering; Yeast

Indexed keywords

HEXADECANOL; OXIDOREDUCTASE; UNCLASSIFIED DRUG; XYLITOL DEHYDROGENASE; XYLOSE; XYLOSE REDUCTASE; XYLULOSE KINASE; FATTY ALCOHOL;

EID: 84957954289     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-016-0423-9     Document Type: Article
Times cited : (48)

References (40)
  • 1
    • 84890934527 scopus 로고    scopus 로고
    • Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli
    • Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng. 2014;22:10-21.
    • (2014) Metab Eng , vol.22 , pp. 10-21
    • Liu, R.1    Zhu, F.2    Lu, L.3    Fu, A.4    Lu, J.5    Deng, Z.6    Liu, T.7
  • 2
    • 80051704380 scopus 로고    scopus 로고
    • Engineering microbial factories for synthesis of value-added products
    • Du J, Shao Z, Zhao H. Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol. 2011;38(8):873-90.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , Issue.8 , pp. 873-890
    • Du, J.1    Shao, Z.2    Zhao, H.3
  • 3
    • 84891829362 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    • Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng. 2014;21:103-13.
    • (2014) Metab Eng , vol.21 , pp. 103-113
    • Runguphan, W.1    Keasling, J.D.2
  • 6
    • 34247602166 scopus 로고    scopus 로고
    • Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel
    • Rupilius W, Ahmad S. Palm oil and palm kernel oil as raw materials for basic oleochemicals and biodiesel. Eur J Lipid Sci Technol. 2007;109(4):433-9.
    • (2007) Eur J Lipid Sci Technol , vol.109 , Issue.4 , pp. 433-439
    • Rupilius, W.1    Ahmad, S.2
  • 8
    • 33746655320 scopus 로고    scopus 로고
    • Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
    • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006;103(30):11206-10.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.30 , pp. 11206-11210
    • Hill, J.1    Nelson, E.2    Tilman, D.3    Polasky, S.4    Tiffany, D.5
  • 9
    • 80052647009 scopus 로고    scopus 로고
    • Metabolic engineering of microbial pathways for advanced biofuels production
    • Zhang F, Rodriguez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol. 2011;22(6):775-83.
    • (2011) Curr Opin Biotechnol , vol.22 , Issue.6 , pp. 775-783
    • Zhang, F.1    Rodriguez, S.2    Keasling, J.D.3
  • 10
    • 84909594452 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production
    • Feng X, Lian J, Zhao H. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng. 2015;27:10-9.
    • (2015) Metab Eng , vol.27 , pp. 10-19
    • Feng, X.1    Lian, J.2    Zhao, H.3
  • 13
    • 84861142495 scopus 로고    scopus 로고
    • Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli
    • Zheng Y, Li L, Liu Q, Yang J, Wang X, Liu W, Xu X, Liu H, Zhao G, Xian M. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Fact. 2012;11:65.
    • (2012) Microb Cell Fact , vol.11 , pp. 65
    • Zheng, Y.1    Li, L.2    Liu, Q.3    Yang, J.4    Wang, X.5    Liu, W.6    Xu, X.7    Liu, H.8    Zhao, G.9    Xian, M.10
  • 14
    • 84871952399 scopus 로고    scopus 로고
    • Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
    • Akhtar MK, Turner NJ, Jones PR. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci USA. 2013;110(1):87-92.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.1 , pp. 87-92
    • Akhtar, M.K.1    Turner, N.J.2    Jones, P.R.3
  • 15
    • 84880511769 scopus 로고    scopus 로고
    • Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases
    • Liu A, Tan X, Yao L, Lu X. Fatty alcohol production in engineered E. coli expressing Marinobacter fatty acyl-CoA reductases. Appl Microbiol Biotechnol. 2013;97(15):7061-71.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.15 , pp. 7061-7071
    • Liu, A.1    Tan, X.2    Yao, L.3    Lu, X.4
  • 16
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong KK, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci. 2012;69(16):2671-90.
    • (2012) Cell Mol Life Sci , vol.69 , Issue.16 , pp. 2671-2690
    • Hong, K.K.1    Nielsen, J.2
  • 17
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei N, Quarterman J, Kim SR, Cate JH, Jin YS. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nature Commun. 2013;4:2580.
    • (2013) Nature Commun , vol.4 , pp. 2580
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3    Cate, J.H.4    Jin, Y.S.5
  • 18
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries T, Jin Y. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol. 2004;63(5):495-509.
    • (2004) Appl Microbiol Biotechnol , vol.63 , Issue.5 , pp. 495-509
    • Jeffries, T.1    Jin, Y.2
  • 19
    • 0033856888 scopus 로고    scopus 로고
    • Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures
    • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol. 2000;66(8):3381-6.
    • (2000) Appl Environ Microbiol , vol.66 , Issue.8 , pp. 3381-3386
    • Eliasson, A.1    Christensson, C.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4
  • 20
    • 84873843576 scopus 로고    scopus 로고
    • Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels
    • Kim B, Du J, Eriksen DT, Zhao H. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol. 2013;79(3):931-41.
    • (2013) Appl Environ Microbiol , vol.79 , Issue.3 , pp. 931-941
    • Kim, B.1    Du, J.2    Eriksen, D.T.3    Zhao, H.4
  • 23
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H, Cheng J-S, Wang B, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng. 2012;14(6):611-22.
    • (2012) Metab Eng , vol.14 , Issue.6 , pp. 611-622
    • Zhou, H.1    Cheng, J.-S.2    Wang, B.3    Fink, G.R.4    Stephanopoulos, G.5
  • 24
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels. 2013;6(1):1-24.
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 1-24
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquié-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6    Abt, T.7    Bonini, B.M.8    Liden, G.9    Dumortier, F.10
  • 25
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz R, Schiestl R. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):31-4.
    • (2007) Nat Protoc , vol.2 , Issue.1 , pp. 31-34
    • Gietz, R.1    Schiestl, R.2
  • 26
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009;27(2):e16.
    • (2009) Nucleic Acids Res , vol.27 , Issue.2 , pp. e16
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 27
    • 79952642503 scopus 로고    scopus 로고
    • Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler
    • Shao Z, Luo Y, Zhao H. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol BioSyst. 2011;7(4):1056-9.
    • (2011) Mol BioSyst , vol.7 , Issue.4 , pp. 1056-1059
    • Shao, Z.1    Luo, Y.2    Zhao, H.3
  • 28
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012;40(18):e142.
    • (2012) Nucleic Acids Res , vol.40 , Issue.18 , pp. e142
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5
  • 29
    • 84879830242 scopus 로고    scopus 로고
    • Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis
    • Feng X, Zhao H. Investigating host dependence of xylose utilization in recombinant Saccharomyces cerevisiae strains using RNA-seq analysis. Biotechnol Biofuels. 2013;6:95.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 95
    • Feng, X.1    Zhao, H.2
  • 30
    • 78649922301 scopus 로고    scopus 로고
    • Optimizing pentose utilization in yeast: the need for novel tools and approaches
    • Young E, Lee S, Alper H. Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels. 2010;3:24.
    • (2010) Biotechnol Biofuels , vol.3 , pp. 24
    • Young, E.1    Lee, S.2    Alper, H.3
  • 32
    • 84887769375 scopus 로고    scopus 로고
    • Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis
    • Feng X, Zhao H. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb Cell Fact. 2013;12(1):114.
    • (2013) Microb Cell Fact , vol.12 , Issue.1 , pp. 114
    • Feng, X.1    Zhao, H.2
  • 33
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 2005;5(10):925-34.
    • (2005) FEMS Yeast Res , vol.5 , Issue.10 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    Dijken, J.P.5    Pronk, J.T.6
  • 34
    • 84863618228 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
    • Scalcinati G, Otero JM, Van Vleet JR, Jeffries TW, Olsson L, Nielsen J. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012;12(5):582-97.
    • (2012) FEMS Yeast Res , vol.12 , Issue.5 , pp. 582-597
    • Scalcinati, G.1    Otero, J.M.2    Vleet, J.R.3    Jeffries, T.W.4    Olsson, L.5    Nielsen, J.6
  • 35
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger M, Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol. 2003;69(4):1990-8.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.4 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 36
    • 84909594452 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production
    • Feng X, Lian J, Zhao H. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng. 2015;27:10-9.
    • (2015) Metab Eng , vol.27 , pp. 10-19
    • Feng, X.1    Lian, J.2    Zhao, H.3
  • 37
    • 84920071376 scopus 로고    scopus 로고
    • Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae
    • Tang X, Chen WN. Enhanced production of fatty alcohols by engineering the TAGs synthesis pathway in Saccharomyces cerevisiae. Biotechnol Bioeng. 2015;112(2):386-92.
    • (2015) Biotechnol Bioeng , vol.112 , Issue.2 , pp. 386-392
    • Tang, X.1    Chen, W.N.2
  • 38
    • 84903748219 scopus 로고    scopus 로고
    • Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
    • Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK, Dueber JE. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng. 2014;25:20-9.
    • (2014) Metab Eng , vol.25 , pp. 20-29
    • Latimer, L.N.1    Lee, M.E.2    Medina-Cleghorn, D.3    Kohnz, R.A.4    Nomura, D.K.5    Dueber, J.E.6
  • 39
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • Lian J, Si T, Nair NU, Zhao H. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng. 2014;24:139-49.
    • (2014) Metab Eng , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.U.3    Zhao, H.4
  • 40
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du J, Yuan Y, Si T, Lian J, Zhao H. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012;40(18):e142.
    • (2012) Nucleic Acids Res , vol.40 , Issue.18
    • Du, J.1    Yuan, Y.2    Si, T.3    Lian, J.4    Zhao, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.