-
1
-
-
34248371981
-
Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease
-
Akiyama Y., Maegawa S. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol. Microbiol. 2007, 64:1028-1037.
-
(2007)
Mol. Microbiol.
, vol.64
, pp. 1028-1037
-
-
Akiyama, Y.1
Maegawa, S.2
-
2
-
-
84865328335
-
Architectural and thermodynamic principles underlying intramembrane protease function
-
Baker R.P., Urban S. Architectural and thermodynamic principles underlying intramembrane protease function. Nat. Chem. Biol. 2012, 8:759-768.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 759-768
-
-
Baker, R.P.1
Urban, S.2
-
3
-
-
61549125968
-
Rhomboid protease dynamics and lipid interactions
-
Bondar A.N., del Val C., White S.H. Rhomboid protease dynamics and lipid interactions. Structure 2009, 17:395-405.
-
(2009)
Structure
, vol.17
, pp. 395-405
-
-
Bondar, A.N.1
del Val, C.2
White, S.H.3
-
4
-
-
84885161299
-
Untangling structure-function relationships in the rhomboid family of intramembrane proteases
-
Brooks C.L., Lemieux M.J. Untangling structure-function relationships in the rhomboid family of intramembrane proteases. Biochim. Biophys. Acta 2013, 1828:2862-2872.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2862-2872
-
-
Brooks, C.L.1
Lemieux, M.J.2
-
5
-
-
0034681260
-
Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans
-
Brown M.S., Ye J., Rawson R.B., Goldstein J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 2000, 100:391-398.
-
(2000)
Cell
, vol.100
, pp. 391-398
-
-
Brown, M.S.1
Ye, J.2
Rawson, R.B.3
Goldstein, J.L.4
-
6
-
-
84885100166
-
The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes
-
Chan E.Y., McQuibban G.A. The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes. Biochim. Biophys. Acta 2013, 1828:2916-2925.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2916-2925
-
-
Chan, E.Y.1
McQuibban, G.A.2
-
7
-
-
78049374467
-
Novel research horizons for presenilins and γ-secretases in cell biology and disease
-
De Strooper B., Annaert W. Novel research horizons for presenilins and γ-secretases in cell biology and disease. Annu. Rev. Cell Dev. Biol. 2010, 26:235-260.
-
(2010)
Annu. Rev. Cell Dev. Biol.
, vol.26
, pp. 235-260
-
-
De Strooper, B.1
Annaert, W.2
-
8
-
-
84890087383
-
Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity
-
Dickey S.W., Baker R.P., Cho S., Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2013, 155:1270-1281.
-
(2013)
Cell
, vol.155
, pp. 1270-1281
-
-
Dickey, S.W.1
Baker, R.P.2
Cho, S.3
Urban, S.4
-
9
-
-
77956310878
-
Emerging principles in protease-based drug discovery
-
Drag M., Salvesen G.S. Emerging principles in protease-based drug discovery. Nat. Rev. 2010, 9:690-701.
-
(2010)
Nat. Rev.
, vol.9
, pp. 690-701
-
-
Drag, M.1
Salvesen, G.S.2
-
10
-
-
0036301007
-
Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure
-
Faham S., Bowie J.U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 2002, 316:1-6.
-
(2002)
J. Mol. Biol.
, vol.316
, pp. 1-6
-
-
Faham, S.1
Bowie, J.U.2
-
11
-
-
77953654163
-
Detection of damaged DNA bases by DNA glycosylase enzymes
-
Friedman J.I., Stivers J.T. Detection of damaged DNA bases by DNA glycosylase enzymes. Biochemistry 2010, 49:4957-4967.
-
(2010)
Biochemistry
, vol.49
, pp. 4957-4967
-
-
Friedman, J.I.1
Stivers, J.T.2
-
12
-
-
84885172858
-
γ-Secretase inhibitors and modulators
-
Golde T.E., Koo E.H., Felsenstein K.M., Osborne B.A., Miele L. γ-Secretase inhibitors and modulators. Biochim. Biophys. Acta 2013, 1828:2898-2907.
-
(2013)
Biochim. Biophys. Acta
, vol.1828
, pp. 2898-2907
-
-
Golde, T.E.1
Koo, E.H.2
Felsenstein, K.M.3
Osborne, B.A.4
Miele, L.5
-
13
-
-
0036882394
-
Serine protease mechanism and specificity
-
Hedstrom L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102:4501-4524.
-
(2002)
Chem. Rev.
, vol.102
, pp. 4501-4524
-
-
Hedstrom, L.1
-
14
-
-
0014945734
-
Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme
-
Henderson R. Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J. Mol. Biol. 1970, 54:341-354.
-
(1970)
J. Mol. Biol.
, vol.54
, pp. 341-354
-
-
Henderson, R.1
-
15
-
-
84924940607
-
Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process
-
Kamp F., Winkler E., Trambauer J., Ebke A., Fluhrer R., Steiner H. Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process. Biophys. J. 2015, 108:1229-1237.
-
(2015)
Biophys. J.
, vol.108
, pp. 1229-1237
-
-
Kamp, F.1
Winkler, E.2
Trambauer, J.3
Ebke, A.4
Fluhrer, R.5
Steiner, H.6
-
16
-
-
84890441584
-
Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1
-
Manolaridis I., Kulkarni K., Dodd R.B., Ogasawara S., Zhang Z., Bineva G., O'Reilly N., Hanrahan S.J., Thompson A.J., Cronin N., et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 2013, 504:301-305.
-
(2013)
Nature
, vol.504
, pp. 301-305
-
-
Manolaridis, I.1
Kulkarni, K.2
Dodd, R.B.3
Ogasawara, S.4
Zhang, Z.5
Bineva, G.6
O'Reilly, N.7
Hanrahan, S.J.8
Thompson, A.J.9
Cronin, N.10
-
17
-
-
84878843045
-
Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics
-
Moin S.M., Urban S. Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics. eLife 2012, 1:e00173.
-
(2012)
eLife
, vol.1
, pp. e00173
-
-
Moin, S.M.1
Urban, S.2
-
18
-
-
84947927493
-
Chemical Tools for the Study of Intramembrane Proteases
-
Nguyen M.T., Kersavond T.V., Verhelst S.H. Chemical Tools for the Study of Intramembrane Proteases. ACS Chem. Biol. 2015, 10:2423-2434.
-
(2015)
ACS Chem. Biol.
, vol.10
, pp. 2423-2434
-
-
Nguyen, M.T.1
Kersavond, T.V.2
Verhelst, S.H.3
-
19
-
-
84860798774
-
Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication
-
Parussini F., Tang Q., Moin S.M., Mital J., Urban S., Ward G.E. Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication. Proc. Natl. Acad. Sci. U S A 2012, 109:7463-7468.
-
(2012)
Proc. Natl. Acad. Sci. U S A
, vol.109
, pp. 7463-7468
-
-
Parussini, F.1
Tang, Q.2
Moin, S.M.3
Mital, J.4
Urban, S.5
Ward, G.E.6
-
20
-
-
79954613090
-
Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases
-
Pierrat O.A., Strisovsky K., Christova Y., Large J., Ansell K., Bouloc N., Smiljanic E., Freeman M. Monocyclic β-lactams are selective, mechanism-based inhibitors of rhomboid intramembrane proteases. ACS Chem. Biol. 2011, 6:325-335.
-
(2011)
ACS Chem. Biol.
, vol.6
, pp. 325-335
-
-
Pierrat, O.A.1
Strisovsky, K.2
Christova, Y.3
Large, J.4
Ansell, K.5
Bouloc, N.6
Smiljanic, E.7
Freeman, M.8
-
21
-
-
0036882396
-
Irreversible inhibitors of serine, cysteine, and threonine proteases
-
Powers J.C., Asgian J.L., Ekici O.D., James K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 2002, 102:4639-4750.
-
(2002)
Chem. Rev.
, vol.102
, pp. 4639-4750
-
-
Powers, J.C.1
Asgian, J.L.2
Ekici, O.D.3
James, K.E.4
-
22
-
-
17444385981
-
Chemical conditionality: a genetic strategy to probe organelle assembly
-
Ruiz N., Falcone B., Kahne D., Silhavy T.J. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 2005, 121:307-317.
-
(2005)
Cell
, vol.121
, pp. 307-317
-
-
Ruiz, N.1
Falcone, B.2
Kahne, D.3
Silhavy, T.J.4
-
23
-
-
72149124813
-
Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates
-
Strisovsky K., Sharpe H.J., Freeman M. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell 2009, 36:1048-1059.
-
(2009)
Mol. Cell
, vol.36
, pp. 1048-1059
-
-
Strisovsky, K.1
Sharpe, H.J.2
Freeman, M.3
-
24
-
-
67349117281
-
Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms
-
Urban S. Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat. Rev. Microbiol. 2009, 7:411-423.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 411-423
-
-
Urban, S.1
-
25
-
-
84922523232
-
A subset of membrane-altering agents and γ-secretase modulators provoke nonsubstrate cleavage by rhomboid proteases
-
Urban S., Moin S.M. A subset of membrane-altering agents and γ-secretase modulators provoke nonsubstrate cleavage by rhomboid proteases. Cell Rep. 2014, 8:1241-1247.
-
(2014)
Cell Rep.
, vol.8
, pp. 1241-1247
-
-
Urban, S.1
Moin, S.M.2
-
26
-
-
0035913908
-
Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases
-
Urban S., Lee J.R., Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001, 107:173-182.
-
(2001)
Cell
, vol.107
, pp. 173-182
-
-
Urban, S.1
Lee, J.R.2
Freeman, M.3
-
27
-
-
0037015265
-
Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids
-
Urban S., Schlieper D., Freeman M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 2002, 12:1507-1512.
-
(2002)
Curr. Biol.
, vol.12
, pp. 1507-1512
-
-
Urban, S.1
Schlieper, D.2
Freeman, M.3
-
28
-
-
79952316125
-
Structure of rhomboid protease in a lipid environment
-
Vinothkumar K.R. Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 2011, 407:232-247.
-
(2011)
J. Mol. Biol.
, vol.407
, pp. 232-247
-
-
Vinothkumar, K.R.1
-
29
-
-
78449268297
-
The structural basis for catalysis and substrate specificity of a rhomboid protease
-
Vinothkumar K.R., Strisovsky K., Andreeva A., Christova Y., Verhelst S., Freeman M. The structural basis for catalysis and substrate specificity of a rhomboid protease. EMBO J. 2010, 29:3797-3809.
-
(2010)
EMBO J.
, vol.29
, pp. 3797-3809
-
-
Vinothkumar, K.R.1
Strisovsky, K.2
Andreeva, A.3
Christova, Y.4
Verhelst, S.5
Freeman, M.6
-
30
-
-
84878826702
-
Structure of rhomboid protease in complex with β-lactam inhibitors defines the S2' cavity
-
Vinothkumar K.R., Pierrat O.A., Large J.M., Freeman M. Structure of rhomboid protease in complex with β-lactam inhibitors defines the S2' cavity. Structure 2013, 21:1051-1058.
-
(2013)
Structure
, vol.21
, pp. 1051-1058
-
-
Vinothkumar, K.R.1
Pierrat, O.A.2
Large, J.M.3
Freeman, M.4
-
31
-
-
84873742188
-
Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay
-
Vosyka O., Vinothkumar K.R., Wolf E.V., Brouwer A.J., Liskamp R.M., Verhelst S.H. Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay. Proc. Natl. Acad. Sci. U S A 2013, 110:2472-2477.
-
(2013)
Proc. Natl. Acad. Sci. U S A
, vol.110
, pp. 2472-2477
-
-
Vosyka, O.1
Vinothkumar, K.R.2
Wolf, E.V.3
Brouwer, A.J.4
Liskamp, R.M.5
Verhelst, S.H.6
-
32
-
-
65249188697
-
Intramembrane proteolysis
-
Wolfe M.S. Intramembrane proteolysis. Chem. Rev. 2009, 109:1599-1612.
-
(2009)
Chem. Rev.
, vol.109
, pp. 1599-1612
-
-
Wolfe, M.S.1
-
33
-
-
84856292019
-
Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate
-
Xue Y., Ha Y. Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. J. Biol. Chem. 2012, 287:3099-3107.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 3099-3107
-
-
Xue, Y.1
Ha, Y.2
-
34
-
-
84860711067
-
Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites
-
Xue Y., Chowdhury S., Liu X., Akiyama Y., Ellman J., Ha Y. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. Biochemistry 2012, 51:3723-3731.
-
(2012)
Biochemistry
, vol.51
, pp. 3723-3731
-
-
Xue, Y.1
Chowdhury, S.2
Liu, X.3
Akiyama, Y.4
Ellman, J.5
Ha, Y.6
-
35
-
-
84863534125
-
An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency
-
Zhou Y., Moin S.M., Urban S., Zhang Y. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency. Structure 2012, 20:1255-1263.
-
(2012)
Structure
, vol.20
, pp. 1255-1263
-
-
Zhou, Y.1
Moin, S.M.2
Urban, S.3
Zhang, Y.4
-
36
-
-
84911500001
-
Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures
-
Zoll S., Stanchev S., Began J., Skerle J., Lepšík M., Peclinovská L., Majer P., Strisovsky K. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014, 33:2408-2421.
-
(2014)
EMBO J.
, vol.33
, pp. 2408-2421
-
-
Zoll, S.1
Stanchev, S.2
Began, J.3
Skerle, J.4
Lepšík, M.5
Peclinovská, L.6
Majer, P.7
Strisovsky, K.8
|