메뉴 건너뛰기




Volumn 61, Issue 3, 2016, Pages 329-340

Crystal Structures and Inhibition Kinetics Reveal a Two-Stage Catalytic Mechanism with Drug Design Implications for Rhomboid Proteolysis

Author keywords

[No Author keywords available]

Indexed keywords

PROTEINASE; RHOMBOID PROTEASE; SERINE; UNCLASSIFIED DRUG; ALDEHYDE; ANTIINFECTIVE AGENT; DNA BINDING PROTEIN; ESCHERICHIA COLI PROTEIN; GLPG PROTEIN, E COLI; MEMBRANE PROTEIN; PEPTIDE; PROTEIN BINDING; PROTEINASE INHIBITOR; RECOMBINANT PROTEIN;

EID: 84957437306     PISSN: 10972765     EISSN: 10974164     Source Type: Journal    
DOI: 10.1016/j.molcel.2015.12.022     Document Type: Article
Times cited : (59)

References (36)
  • 1
    • 34248371981 scopus 로고    scopus 로고
    • Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease
    • Akiyama Y., Maegawa S. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol. Microbiol. 2007, 64:1028-1037.
    • (2007) Mol. Microbiol. , vol.64 , pp. 1028-1037
    • Akiyama, Y.1    Maegawa, S.2
  • 2
    • 84865328335 scopus 로고    scopus 로고
    • Architectural and thermodynamic principles underlying intramembrane protease function
    • Baker R.P., Urban S. Architectural and thermodynamic principles underlying intramembrane protease function. Nat. Chem. Biol. 2012, 8:759-768.
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 759-768
    • Baker, R.P.1    Urban, S.2
  • 3
    • 61549125968 scopus 로고    scopus 로고
    • Rhomboid protease dynamics and lipid interactions
    • Bondar A.N., del Val C., White S.H. Rhomboid protease dynamics and lipid interactions. Structure 2009, 17:395-405.
    • (2009) Structure , vol.17 , pp. 395-405
    • Bondar, A.N.1    del Val, C.2    White, S.H.3
  • 4
    • 84885161299 scopus 로고    scopus 로고
    • Untangling structure-function relationships in the rhomboid family of intramembrane proteases
    • Brooks C.L., Lemieux M.J. Untangling structure-function relationships in the rhomboid family of intramembrane proteases. Biochim. Biophys. Acta 2013, 1828:2862-2872.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 2862-2872
    • Brooks, C.L.1    Lemieux, M.J.2
  • 5
    • 0034681260 scopus 로고    scopus 로고
    • Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans
    • Brown M.S., Ye J., Rawson R.B., Goldstein J.L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 2000, 100:391-398.
    • (2000) Cell , vol.100 , pp. 391-398
    • Brown, M.S.1    Ye, J.2    Rawson, R.B.3    Goldstein, J.L.4
  • 6
    • 84885100166 scopus 로고    scopus 로고
    • The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes
    • Chan E.Y., McQuibban G.A. The mitochondrial rhomboid protease: its rise from obscurity to the pinnacle of disease-relevant genes. Biochim. Biophys. Acta 2013, 1828:2916-2925.
    • (2013) Biochim. Biophys. Acta , vol.1828 , pp. 2916-2925
    • Chan, E.Y.1    McQuibban, G.A.2
  • 7
    • 78049374467 scopus 로고    scopus 로고
    • Novel research horizons for presenilins and γ-secretases in cell biology and disease
    • De Strooper B., Annaert W. Novel research horizons for presenilins and γ-secretases in cell biology and disease. Annu. Rev. Cell Dev. Biol. 2010, 26:235-260.
    • (2010) Annu. Rev. Cell Dev. Biol. , vol.26 , pp. 235-260
    • De Strooper, B.1    Annaert, W.2
  • 8
    • 84890087383 scopus 로고    scopus 로고
    • Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity
    • Dickey S.W., Baker R.P., Cho S., Urban S. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity. Cell 2013, 155:1270-1281.
    • (2013) Cell , vol.155 , pp. 1270-1281
    • Dickey, S.W.1    Baker, R.P.2    Cho, S.3    Urban, S.4
  • 9
    • 77956310878 scopus 로고    scopus 로고
    • Emerging principles in protease-based drug discovery
    • Drag M., Salvesen G.S. Emerging principles in protease-based drug discovery. Nat. Rev. 2010, 9:690-701.
    • (2010) Nat. Rev. , vol.9 , pp. 690-701
    • Drag, M.1    Salvesen, G.S.2
  • 10
    • 0036301007 scopus 로고    scopus 로고
    • Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure
    • Faham S., Bowie J.U. Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 2002, 316:1-6.
    • (2002) J. Mol. Biol. , vol.316 , pp. 1-6
    • Faham, S.1    Bowie, J.U.2
  • 11
    • 77953654163 scopus 로고    scopus 로고
    • Detection of damaged DNA bases by DNA glycosylase enzymes
    • Friedman J.I., Stivers J.T. Detection of damaged DNA bases by DNA glycosylase enzymes. Biochemistry 2010, 49:4957-4967.
    • (2010) Biochemistry , vol.49 , pp. 4957-4967
    • Friedman, J.I.1    Stivers, J.T.2
  • 13
    • 0036882394 scopus 로고    scopus 로고
    • Serine protease mechanism and specificity
    • Hedstrom L. Serine protease mechanism and specificity. Chem. Rev. 2002, 102:4501-4524.
    • (2002) Chem. Rev. , vol.102 , pp. 4501-4524
    • Hedstrom, L.1
  • 14
    • 0014945734 scopus 로고
    • Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme
    • Henderson R. Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J. Mol. Biol. 1970, 54:341-354.
    • (1970) J. Mol. Biol. , vol.54 , pp. 341-354
    • Henderson, R.1
  • 15
    • 84924940607 scopus 로고    scopus 로고
    • Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process
    • Kamp F., Winkler E., Trambauer J., Ebke A., Fluhrer R., Steiner H. Intramembrane proteolysis of β-amyloid precursor protein by γ-secretase is an unusually slow process. Biophys. J. 2015, 108:1229-1237.
    • (2015) Biophys. J. , vol.108 , pp. 1229-1237
    • Kamp, F.1    Winkler, E.2    Trambauer, J.3    Ebke, A.4    Fluhrer, R.5    Steiner, H.6
  • 17
    • 84878843045 scopus 로고    scopus 로고
    • Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics
    • Moin S.M., Urban S. Membrane immersion allows rhomboid proteases to achieve specificity by reading transmembrane segment dynamics. eLife 2012, 1:e00173.
    • (2012) eLife , vol.1 , pp. e00173
    • Moin, S.M.1    Urban, S.2
  • 18
    • 84947927493 scopus 로고    scopus 로고
    • Chemical Tools for the Study of Intramembrane Proteases
    • Nguyen M.T., Kersavond T.V., Verhelst S.H. Chemical Tools for the Study of Intramembrane Proteases. ACS Chem. Biol. 2015, 10:2423-2434.
    • (2015) ACS Chem. Biol. , vol.10 , pp. 2423-2434
    • Nguyen, M.T.1    Kersavond, T.V.2    Verhelst, S.H.3
  • 19
    • 84860798774 scopus 로고    scopus 로고
    • Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication
    • Parussini F., Tang Q., Moin S.M., Mital J., Urban S., Ward G.E. Intramembrane proteolysis of Toxoplasma apical membrane antigen 1 facilitates host-cell invasion but is dispensable for replication. Proc. Natl. Acad. Sci. U S A 2012, 109:7463-7468.
    • (2012) Proc. Natl. Acad. Sci. U S A , vol.109 , pp. 7463-7468
    • Parussini, F.1    Tang, Q.2    Moin, S.M.3    Mital, J.4    Urban, S.5    Ward, G.E.6
  • 21
    • 0036882396 scopus 로고    scopus 로고
    • Irreversible inhibitors of serine, cysteine, and threonine proteases
    • Powers J.C., Asgian J.L., Ekici O.D., James K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 2002, 102:4639-4750.
    • (2002) Chem. Rev. , vol.102 , pp. 4639-4750
    • Powers, J.C.1    Asgian, J.L.2    Ekici, O.D.3    James, K.E.4
  • 22
    • 17444385981 scopus 로고    scopus 로고
    • Chemical conditionality: a genetic strategy to probe organelle assembly
    • Ruiz N., Falcone B., Kahne D., Silhavy T.J. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 2005, 121:307-317.
    • (2005) Cell , vol.121 , pp. 307-317
    • Ruiz, N.1    Falcone, B.2    Kahne, D.3    Silhavy, T.J.4
  • 23
    • 72149124813 scopus 로고    scopus 로고
    • Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates
    • Strisovsky K., Sharpe H.J., Freeman M. Sequence-specific intramembrane proteolysis: identification of a recognition motif in rhomboid substrates. Mol. Cell 2009, 36:1048-1059.
    • (2009) Mol. Cell , vol.36 , pp. 1048-1059
    • Strisovsky, K.1    Sharpe, H.J.2    Freeman, M.3
  • 24
    • 67349117281 scopus 로고    scopus 로고
    • Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms
    • Urban S. Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Nat. Rev. Microbiol. 2009, 7:411-423.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 411-423
    • Urban, S.1
  • 25
    • 84922523232 scopus 로고    scopus 로고
    • A subset of membrane-altering agents and γ-secretase modulators provoke nonsubstrate cleavage by rhomboid proteases
    • Urban S., Moin S.M. A subset of membrane-altering agents and γ-secretase modulators provoke nonsubstrate cleavage by rhomboid proteases. Cell Rep. 2014, 8:1241-1247.
    • (2014) Cell Rep. , vol.8 , pp. 1241-1247
    • Urban, S.1    Moin, S.M.2
  • 26
    • 0035913908 scopus 로고    scopus 로고
    • Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases
    • Urban S., Lee J.R., Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001, 107:173-182.
    • (2001) Cell , vol.107 , pp. 173-182
    • Urban, S.1    Lee, J.R.2    Freeman, M.3
  • 27
    • 0037015265 scopus 로고    scopus 로고
    • Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids
    • Urban S., Schlieper D., Freeman M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 2002, 12:1507-1512.
    • (2002) Curr. Biol. , vol.12 , pp. 1507-1512
    • Urban, S.1    Schlieper, D.2    Freeman, M.3
  • 28
    • 79952316125 scopus 로고    scopus 로고
    • Structure of rhomboid protease in a lipid environment
    • Vinothkumar K.R. Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 2011, 407:232-247.
    • (2011) J. Mol. Biol. , vol.407 , pp. 232-247
    • Vinothkumar, K.R.1
  • 30
    • 84878826702 scopus 로고    scopus 로고
    • Structure of rhomboid protease in complex with β-lactam inhibitors defines the S2' cavity
    • Vinothkumar K.R., Pierrat O.A., Large J.M., Freeman M. Structure of rhomboid protease in complex with β-lactam inhibitors defines the S2' cavity. Structure 2013, 21:1051-1058.
    • (2013) Structure , vol.21 , pp. 1051-1058
    • Vinothkumar, K.R.1    Pierrat, O.A.2    Large, J.M.3    Freeman, M.4
  • 32
    • 65249188697 scopus 로고    scopus 로고
    • Intramembrane proteolysis
    • Wolfe M.S. Intramembrane proteolysis. Chem. Rev. 2009, 109:1599-1612.
    • (2009) Chem. Rev. , vol.109 , pp. 1599-1612
    • Wolfe, M.S.1
  • 33
    • 84856292019 scopus 로고    scopus 로고
    • Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate
    • Xue Y., Ha Y. Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. J. Biol. Chem. 2012, 287:3099-3107.
    • (2012) J. Biol. Chem. , vol.287 , pp. 3099-3107
    • Xue, Y.1    Ha, Y.2
  • 34
    • 84860711067 scopus 로고    scopus 로고
    • Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites
    • Xue Y., Chowdhury S., Liu X., Akiyama Y., Ellman J., Ha Y. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. Biochemistry 2012, 51:3723-3731.
    • (2012) Biochemistry , vol.51 , pp. 3723-3731
    • Xue, Y.1    Chowdhury, S.2    Liu, X.3    Akiyama, Y.4    Ellman, J.5    Ha, Y.6
  • 35
    • 84863534125 scopus 로고    scopus 로고
    • An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency
    • Zhou Y., Moin S.M., Urban S., Zhang Y. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency. Structure 2012, 20:1255-1263.
    • (2012) Structure , vol.20 , pp. 1255-1263
    • Zhou, Y.1    Moin, S.M.2    Urban, S.3    Zhang, Y.4
  • 36
    • 84911500001 scopus 로고    scopus 로고
    • Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures
    • Zoll S., Stanchev S., Began J., Skerle J., Lepšík M., Peclinovská L., Majer P., Strisovsky K. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. EMBO J. 2014, 33:2408-2421.
    • (2014) EMBO J. , vol.33 , pp. 2408-2421
    • Zoll, S.1    Stanchev, S.2    Began, J.3    Skerle, J.4    Lepšík, M.5    Peclinovská, L.6    Majer, P.7    Strisovsky, K.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.