메뉴 건너뛰기




Volumn 32, Issue 4, 2016, Pages 225-237

Breaking TADs: How Alterations of Chromatin Domains Result in Disease

Author keywords

CRISPR Cas; Disease; Long range regulation; Structural variations; TAD; Topologically associating domains

Indexed keywords

CDK5 REGULATORY SUBUNIT ASSOCIATED PROTEIN 1 LIKE 1; COHESIN; DNA; EPHRIN RECEPTOR A4; FORKHEAD TRANSCRIPTION FACTOR; MEMBRANE BOUND O ACYLTRANSFERASE DOMAIN CONTAINING 1; OSTEOGENIC PROTEIN 1; PROTEIN; RNA POLYMERASE II; SONIC HEDGEHOG PROTEIN; TRANSCRIPTION FACTOR AP 2; TRANSCRIPTION FACTOR CTCF; TRANSCRIPTION FACTOR E2F3; TRANSCRIPTION FACTOR FOXG1; TRANSCRIPTION FACTOR PAX3; TRANSCRIPTION FACTOR SOX4; UNCLASSIFIED DRUG; WNT6 PROTEIN; CHROMATIN;

EID: 84956894592     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2016.01.003     Document Type: Review
Times cited : (308)

References (95)
  • 1
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74. ENCODE Project Consortium.
    • (2012) Nature , vol.489 , pp. 57-74
  • 2
    • 0023747623 scopus 로고
    • A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube
    • Kothary R., et al. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature 1988, 335:435-437.
    • (1988) Nature , vol.335 , pp. 435-437
    • Kothary, R.1
  • 3
    • 0024584093 scopus 로고
    • Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice
    • Kothary R., et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 1989, 105:707-714.
    • (1989) Development , vol.105 , pp. 707-714
    • Kothary, R.1
  • 4
    • 33846112470 scopus 로고    scopus 로고
    • VISTA Enhancer Browser - a database of tissue-specific human enhancers
    • Visel A., et al. VISTA Enhancer Browser - a database of tissue-specific human enhancers. Nucleic Acids Res. 2007, 35:D88-D92.
    • (2007) Nucleic Acids Res. , vol.35 , pp. D88-D92
    • Visel, A.1
  • 5
    • 84886853624 scopus 로고    scopus 로고
    • Topology of mammalian developmental enhancers and their regulatory landscapes
    • de Laat W., Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 2013, 502:499-506.
    • (2013) Nature , vol.502 , pp. 499-506
    • de Laat, W.1    Duboule, D.2
  • 6
    • 79551655285 scopus 로고    scopus 로고
    • Functional and mechanistic diversity of distal transcription enhancers
    • Bulger M., Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell 2011, 144:327-339.
    • (2011) Cell , vol.144 , pp. 327-339
    • Bulger, M.1    Groudine, M.2
  • 8
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 9
    • 84875190221 scopus 로고    scopus 로고
    • Genome architecture: domain organization of interphase chromosomes
    • Bickmore W.A., van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell 2013, 152:1270-1284.
    • (2013) Cell , vol.152 , pp. 1270-1284
    • Bickmore, W.A.1    van Steensel, B.2
  • 10
    • 84876838711 scopus 로고    scopus 로고
    • The hierarchy of the 3D genome
    • Gibcus J.H., Dekker J. The hierarchy of the 3D genome. Mol. Cell 2013, 49:773-782.
    • (2013) Mol. Cell , vol.49 , pp. 773-782
    • Gibcus, J.H.1    Dekker, J.2
  • 11
    • 84855297335 scopus 로고    scopus 로고
    • A decade of 3C technologies: insights into nuclear organization
    • de Wit E., de Laat W. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 2012, 26:11-24.
    • (2012) Genes Dev. , vol.26 , pp. 11-24
    • de Wit, E.1    de Laat, W.2
  • 12
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker J., et al. Capturing chromosome conformation. Science 2002, 295:1306-1311.
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1
  • 13
    • 0141730403 scopus 로고    scopus 로고
    • The beta-globin nuclear compartment in development and erythroid differentiation
    • Palstra R.J., et al. The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 2003, 35:190-194.
    • (2003) Nat. Genet. , vol.35 , pp. 190-194
    • Palstra, R.J.1
  • 14
    • 0042810698 scopus 로고    scopus 로고
    • A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly
    • Lettice L.A., et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet. 2003, 12:1725-1735.
    • (2003) Hum. Mol. Genet. , vol.12 , pp. 1725-1735
    • Lettice, L.A.1
  • 15
    • 14844341770 scopus 로고    scopus 로고
    • Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb
    • Sagai T., et al. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 2005, 132:797-803.
    • (2005) Development , vol.132 , pp. 797-803
    • Sagai, T.1
  • 16
    • 84875249885 scopus 로고    scopus 로고
    • An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape
    • Marinic M., et al. An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev. Cell 2013, 24:530-542.
    • (2013) Dev. Cell , vol.24 , pp. 530-542
    • Marinic, M.1
  • 17
    • 81855227640 scopus 로고    scopus 로고
    • A regulatory archipelago controls Hox genes transcription in digits
    • Montavon T., et al. A regulatory archipelago controls Hox genes transcription in digits. Cell 2011, 147:1132-1145.
    • (2011) Cell , vol.147 , pp. 1132-1145
    • Montavon, T.1
  • 18
    • 84865800494 scopus 로고    scopus 로고
    • The long-range interaction landscape of gene promoters
    • Sanyal A., et al. The long-range interaction landscape of gene promoters. Nature 2012, 489:109-113.
    • (2012) Nature , vol.489 , pp. 109-113
    • Sanyal, A.1
  • 19
    • 58149463874 scopus 로고    scopus 로고
    • Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription
    • Amano T., et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 2009, 16:47-57.
    • (2009) Dev. Cell , vol.16 , pp. 47-57
    • Amano, T.1
  • 20
    • 84905593782 scopus 로고    scopus 로고
    • Enhancer loops appear stable during development and are associated with paused polymerase
    • Ghavi-Helm Y., et al. Enhancer loops appear stable during development and are associated with paused polymerase. Nature 2014, 512:96-100.
    • (2014) Nature , vol.512 , pp. 96-100
    • Ghavi-Helm, Y.1
  • 21
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano T., et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502:59-64.
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 22
    • 84900297485 scopus 로고    scopus 로고
    • Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription
    • Giorgetti L., et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 2014, 157:950-963.
    • (2014) Cell , vol.157 , pp. 950-963
    • Giorgetti, L.1
  • 23
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon J.R., et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 24
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora E.P., et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012, 485:381-385.
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1
  • 25
    • 84856747483 scopus 로고    scopus 로고
    • Three-dimensional folding and functional organization principles of the Drosophila genome
    • Sexton T., et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012, 148:458-472.
    • (2012) Cell , vol.148 , pp. 458-472
    • Sexton, T.1
  • 26
    • 84919949716 scopus 로고    scopus 로고
    • A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
    • Rao S.S., et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159:1665-1680.
    • (2014) Cell , vol.159 , pp. 1665-1680
    • Rao, S.S.1
  • 27
    • 84864462544 scopus 로고    scopus 로고
    • A map of the cis-regulatory sequences in the mouse genome
    • Shen Y., et al. A map of the cis-regulatory sequences in the mouse genome. Nature 2012, 488:116-120.
    • (2012) Nature , vol.488 , pp. 116-120
    • Shen, Y.1
  • 28
    • 84907512608 scopus 로고    scopus 로고
    • Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation
    • Le Dily F., et al. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation. Genes Dev. 2014, 28:2151-2162.
    • (2014) Genes Dev. , vol.28 , pp. 2151-2162
    • Le Dily, F.1
  • 29
    • 84895522959 scopus 로고    scopus 로고
    • Functional and topological characteristics of mammalian regulatory domains
    • Symmons O., et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 2014, 24:390-400.
    • (2014) Genome Res. , vol.24 , pp. 390-400
    • Symmons, O.1
  • 30
    • 84930091577 scopus 로고    scopus 로고
    • Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions
    • Lupianez D.G., et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 2015, 161:1012-1025.
    • (2015) Cell , vol.161 , pp. 1012-1025
    • Lupianez, D.G.1
  • 31
    • 84911478490 scopus 로고    scopus 로고
    • Topologically associating domains are stable units of replication-timing regulation
    • Pope B.D., et al. Topologically associating domains are stable units of replication-timing regulation. Nature 2014, 515:402-405.
    • (2014) Nature , vol.515 , pp. 402-405
    • Pope, B.D.1
  • 32
    • 84937042919 scopus 로고    scopus 로고
    • Characterization and dynamics of pericentromere-associated domains in mice
    • Wijchers P.J., et al. Characterization and dynamics of pericentromere-associated domains in mice. Genome Res. 2015, 25:958-969.
    • (2015) Genome Res. , vol.25 , pp. 958-969
    • Wijchers, P.J.1
  • 33
    • 84881613036 scopus 로고    scopus 로고
    • Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?
    • Nora E.P., et al. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?. Bioessays 2013, 35:818-828.
    • (2013) Bioessays , vol.35 , pp. 818-828
    • Nora, E.P.1
  • 34
    • 81255146230 scopus 로고    scopus 로고
    • The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation
    • Umbarger M.A., et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell 2011, 44:252-264.
    • (2011) Mol. Cell , vol.44 , pp. 252-264
    • Umbarger, M.A.1
  • 35
    • 77952744854 scopus 로고    scopus 로고
    • A three-dimensional model of the yeast genome
    • Duan Z., et al. A three-dimensional model of the yeast genome. Nature 2010, 465:363-367.
    • (2010) Nature , vol.465 , pp. 363-367
    • Duan, Z.1
  • 36
    • 84921685857 scopus 로고    scopus 로고
    • Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis
    • Feng S., et al. Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 2014, 55:694-707.
    • (2014) Mol. Cell , vol.55 , pp. 694-707
    • Feng, S.1
  • 37
    • 84921643810 scopus 로고    scopus 로고
    • Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila
    • Grob S., et al. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol. Cell 2014, 55:678-693.
    • (2014) Mol. Cell , vol.55 , pp. 678-693
    • Grob, S.1
  • 38
    • 84911895715 scopus 로고    scopus 로고
    • Convergent evolution of complex regulatory landscapes and pleiotropy at Hox loci
    • Lonfat N., et al. Convergent evolution of complex regulatory landscapes and pleiotropy at Hox loci. Science 2014, 346:1004-1006.
    • (2014) Science , vol.346 , pp. 1004-1006
    • Lonfat, N.1
  • 39
    • 84893777034 scopus 로고    scopus 로고
    • Conservation and divergence of regulatory strategies at Hox loci and the origin of tetrapod digits
    • Woltering J.M., et al. Conservation and divergence of regulatory strategies at Hox loci and the origin of tetrapod digits. PLoS Biol. 2014, 12:e1001773.
    • (2014) PLoS Biol. , vol.12 , pp. e1001773
    • Woltering, J.M.1
  • 40
    • 84943348158 scopus 로고    scopus 로고
    • Structure, function and evolution of topologically associating domains (TADs) at HOX loci
    • Lonfat N., Duboule D. Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett. 2015, 589:2869-2876.
    • (2015) FEBS Lett. , vol.589 , pp. 2869-2876
    • Lonfat, N.1    Duboule, D.2
  • 41
    • 84857190176 scopus 로고    scopus 로고
    • Human tRNA genes function as chromatin insulators
    • Raab J.R., et al. Human tRNA genes function as chromatin insulators. EMBO J. 2012, 31:330-350.
    • (2012) EMBO J. , vol.31 , pp. 330-350
    • Raab, J.R.1
  • 42
    • 84869003748 scopus 로고    scopus 로고
    • Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains
    • Hou C., et al. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 2012, 48:471-484.
    • (2012) Mol. Cell , vol.48 , pp. 471-484
    • Hou, C.1
  • 43
    • 85006305723 scopus 로고    scopus 로고
    • Insulator function and topological domain border strength scale with architectural protein occupancy
    • Van Bortle K., et al. Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol. 2014, 15:R82.
    • (2014) Genome Biol. , vol.15 , pp. R82
    • Van Bortle, K.1
  • 44
    • 67650997080 scopus 로고    scopus 로고
    • Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus
    • Hadjur S., et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 2009, 460:410-413.
    • (2009) Nature , vol.460 , pp. 410-413
    • Hadjur, S.1
  • 45
    • 77649261872 scopus 로고    scopus 로고
    • Cell type specificity of chromatin organization mediated by CTCF and cohesin
    • Hou C., et al. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:3651-3656.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 3651-3656
    • Hou, C.1
  • 46
    • 33746063711 scopus 로고    scopus 로고
    • CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2
    • Kurukuti S., et al. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10684-10689.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10684-10689
    • Kurukuti, S.1
  • 47
    • 65649123756 scopus 로고    scopus 로고
    • Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster
    • Mishiro T., et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 2009, 28:1234-1245.
    • (2009) EMBO J. , vol.28 , pp. 1234-1245
    • Mishiro, T.1
  • 48
    • 73649145481 scopus 로고    scopus 로고
    • Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus
    • Nativio R., et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 2009, 5:e1000739.
    • (2009) PLoS Genet. , vol.5 , pp. e1000739
    • Nativio, R.1
  • 49
    • 33748259774 scopus 로고    scopus 로고
    • CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus
    • Splinter E., et al. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 2006, 20:2349-2354.
    • (2006) Genes Dev. , vol.20 , pp. 2349-2354
    • Splinter, E.1
  • 50
    • 84892934183 scopus 로고    scopus 로고
    • Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells
    • Zuin J., et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:996-1001.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 996-1001
    • Zuin, J.1
  • 51
    • 46149113242 scopus 로고    scopus 로고
    • CTCF physically links cohesin to chromatin
    • Rubio E.D., et al. CTCF physically links cohesin to chromatin. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8309-8314.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 8309-8314
    • Rubio, E.D.1
  • 52
    • 84878860751 scopus 로고    scopus 로고
    • Architectural protein subclasses shape 3D organization of genomes during lineage commitment
    • Phillips-Cremins J.E., et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 2013, 153:1281-1295.
    • (2013) Cell , vol.153 , pp. 1281-1295
    • Phillips-Cremins, J.E.1
  • 53
    • 38849121606 scopus 로고    scopus 로고
    • Cohesins functionally associate with CTCF on mammalian chromosome arms
    • Parelho V., et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 2008, 132:422-433.
    • (2008) Cell , vol.132 , pp. 422-433
    • Parelho, V.1
  • 54
    • 39149121436 scopus 로고    scopus 로고
    • Cohesin mediates transcriptional insulation by CCCTC-binding factor
    • Wendt K.S., et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 2008, 451:796-801.
    • (2008) Nature , vol.451 , pp. 796-801
    • Wendt, K.S.1
  • 55
    • 84890504911 scopus 로고    scopus 로고
    • Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments
    • Seitan V.C., et al. Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments. Genome Res. 2013, 23:2066-2077.
    • (2013) Genome Res. , vol.23 , pp. 2066-2077
    • Seitan, V.C.1
  • 56
    • 84890566970 scopus 로고    scopus 로고
    • Cohesin-mediated interactions organize chromosomal domain architecture
    • Sofueva S., et al. Cohesin-mediated interactions organize chromosomal domain architecture. EMBO J. 2013, 32:3119-3129.
    • (2013) EMBO J. , vol.32 , pp. 3119-3129
    • Sofueva, S.1
  • 57
    • 84924533047 scopus 로고    scopus 로고
    • Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
    • Vietri Rudan M., et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 2015, 10:1297-1309.
    • (2015) Cell Rep. , vol.10 , pp. 1297-1309
    • Vietri Rudan, M.1
  • 58
    • 2942537834 scopus 로고    scopus 로고
    • The 5'-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element
    • Yusufzai T.M., Felsenfeld G. The 5'-HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:8620-8624.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 8620-8624
    • Yusufzai, T.M.1    Felsenfeld, G.2
  • 59
    • 84939246295 scopus 로고    scopus 로고
    • CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function
    • Guo Y., et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 2015, 162:900-910.
    • (2015) Cell , vol.162 , pp. 900-910
    • Guo, Y.1
  • 60
    • 84935924135 scopus 로고    scopus 로고
    • Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders
    • Gomez-Marin C., et al. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:7542-7547.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 7542-7547
    • Gomez-Marin, C.1
  • 61
    • 84923771297 scopus 로고    scopus 로고
    • Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation
    • Narendra V., et al. Transcription. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 2015, 347:1017-1021.
    • (2015) Science , vol.347 , pp. 1017-1021
    • Narendra, V.1
  • 62
    • 84924366664 scopus 로고    scopus 로고
    • A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes
    • Tsujimura T., et al. A discrete transition zone organizes the topological and regulatory autonomy of the adjacent tfap2c and bmp7 genes. PLoS Genet. 2015, 11:e1004897.
    • (2015) PLoS Genet. , vol.11 , pp. e1004897
    • Tsujimura, T.1
  • 63
    • 84904465224 scopus 로고    scopus 로고
    • Genome sequencing identifies major causes of severe intellectual disability
    • Gilissen C., et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014, 511:344-347.
    • (2014) Nature , vol.511 , pp. 344-347
    • Gilissen, C.1
  • 64
    • 84856009018 scopus 로고    scopus 로고
    • Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development
    • Benko S., et al. Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J. Med. Genet. 2011, 48:825-830.
    • (2011) J. Med. Genet. , vol.48 , pp. 825-830
    • Benko, S.1
  • 65
    • 25144494284 scopus 로고    scopus 로고
    • Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature
    • Fernandez B.A., et al. Holoprosencephaly and cleidocranial dysplasia in a patient due to two position-effect mutations: case report and review of the literature. Clin. Genet. 2005, 68:349-359.
    • (2005) Clin. Genet. , vol.68 , pp. 349-359
    • Fernandez, B.A.1
  • 66
    • 0034610337 scopus 로고    scopus 로고
    • 3' Deletions cause aniridia by preventing PAX6 gene expression
    • Lauderdale J.D., et al. 3' Deletions cause aniridia by preventing PAX6 gene expression. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:13755-13759.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 13755-13759
    • Lauderdale, J.D.1
  • 67
    • 0028589588 scopus 로고
    • Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9
    • Wagner T., et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994, 79:1111-1120.
    • (1994) Cell , vol.79 , pp. 1111-1120
    • Wagner, T.1
  • 68
    • 84877917486 scopus 로고    scopus 로고
    • Structural variations, the regulatory landscape of the genome and their alteration in human disease
    • Spielmann M., Mundlos S. Structural variations, the regulatory landscape of the genome and their alteration in human disease. Bioessays 2013, 35:533-543.
    • (2013) Bioessays , vol.35 , pp. 533-543
    • Spielmann, M.1    Mundlos, S.2
  • 69
    • 20144387066 scopus 로고    scopus 로고
    • An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression
    • Niedermaier M., et al. An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression. J. Clin. Invest. 2005, 115:900-909.
    • (2005) J. Clin. Invest. , vol.115 , pp. 900-909
    • Niedermaier, M.1
  • 70
    • 81355148487 scopus 로고    scopus 로고
    • Enhancer-adoption as a mechanism of human developmental disease
    • Lettice L.A., et al. Enhancer-adoption as a mechanism of human developmental disease. Hum. Mutat. 2011, 32:1492-1499.
    • (2011) Hum. Mutat. , vol.32 , pp. 1492-1499
    • Lettice, L.A.1
  • 71
    • 84867276487 scopus 로고    scopus 로고
    • Homeotic arm-to-leg transformation associated with genomic rearrangements at the PITX1 locus
    • Spielmann M., et al. Homeotic arm-to-leg transformation associated with genomic rearrangements at the PITX1 locus. Am. J. Hum. Genet. 2012, 91:629-635.
    • (2012) Am. J. Hum. Genet. , vol.91 , pp. 629-635
    • Spielmann, M.1
  • 72
    • 84911436065 scopus 로고    scopus 로고
    • A chromosomal 5q31.1 gain involving PITX1 causes Liebenberg syndrome
    • Seoighe D.M., et al. A chromosomal 5q31.1 gain involving PITX1 causes Liebenberg syndrome. Am. J. Med. Genet. A 2014, 164A:2958-2960.
    • (2014) Am. J. Med. Genet. A , vol.164A , pp. 2958-2960
    • Seoighe, D.M.1
  • 73
    • 85003044117 scopus 로고    scopus 로고
    • Deletions of chromosomal regulatory boundaries are associated with congenital disease
    • Ibn-Salem J., et al. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol. 2014, 15:423.
    • (2014) Genome Biol. , vol.15 , pp. 423
    • Ibn-Salem, J.1
  • 74
    • 46149122036 scopus 로고    scopus 로고
    • FOXG1 is responsible for the congenital variant of Rett syndrome
    • Ariani F., et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 2008, 83:89-93.
    • (2008) Am. J. Hum. Genet. , vol.83 , pp. 89-93
    • Ariani, F.1
  • 75
    • 79958061872 scopus 로고    scopus 로고
    • The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis
    • Kortum F., et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J. Med. Genet. 2011, 48:396-406.
    • (2011) J. Med. Genet. , vol.48 , pp. 396-406
    • Kortum, F.1
  • 76
    • 84869215151 scopus 로고    scopus 로고
    • 14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements
    • Allou L., et al. 14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements. Eur. J. Hum. Genet. 2012, 20:1216-1223.
    • (2012) Eur. J. Hum. Genet. , vol.20 , pp. 1216-1223
    • Allou, L.1
  • 77
    • 84930714663 scopus 로고    scopus 로고
    • A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD)
    • Giorgio E., et al. A large genomic deletion leads to enhancer adoption by the lamin B1 gene: a second path to autosomal dominant adult-onset demyelinating leukodystrophy (ADLD). Hum. Mol. Genet. 2015, 24:3143-3154.
    • (2015) Hum. Mol. Genet. , vol.24 , pp. 3143-3154
    • Giorgio, E.1
  • 78
    • 77949623995 scopus 로고    scopus 로고
    • A family with autosomal dominant leukodystrophy linked to 5q23.2-q23.3 without lamin B1 mutations
    • Brussino A., et al. A family with autosomal dominant leukodystrophy linked to 5q23.2-q23.3 without lamin B1 mutations. Eur. J. Neurol. 2010, 17:541-549.
    • (2010) Eur. J. Neurol. , vol.17 , pp. 541-549
    • Brussino, A.1
  • 79
    • 84934758183 scopus 로고    scopus 로고
    • Microdeletions on 6p22.3 are associated with mesomelic dysplasia Savarirayan type
    • Flottmann R., et al. Microdeletions on 6p22.3 are associated with mesomelic dysplasia Savarirayan type. J. Med. Genet. 2015, 52:476-483.
    • (2015) J. Med. Genet. , vol.52 , pp. 476-483
    • Flottmann, R.1
  • 80
    • 84898494315 scopus 로고    scopus 로고
    • A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia
    • Groschel S., et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 2014, 157:369-381.
    • (2014) Cell , vol.157 , pp. 369-381
    • Groschel, S.1
  • 81
    • 84904816744 scopus 로고    scopus 로고
    • Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma
    • Northcott P.A., et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 2014, 511:428-434.
    • (2014) Nature , vol.511 , pp. 428-434
    • Northcott, P.A.1
  • 82
    • 84927641804 scopus 로고    scopus 로고
    • In search of the determinants of enhancer-promoter interaction specificity
    • van Arensbergen J., et al. In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 2014, 24:695-702.
    • (2014) Trends Cell Biol. , vol.24 , pp. 695-702
    • van Arensbergen, J.1
  • 83
    • 84925543087 scopus 로고    scopus 로고
    • Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation
    • Zabidi M.A., et al. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature 2014, 518:556-559.
    • (2014) Nature , vol.518 , pp. 556-559
    • Zabidi, M.A.1
  • 84
    • 79960980390 scopus 로고    scopus 로고
    • Variegated gene expression caused by cell-specific long-range DNA interactions
    • Noordermeer D., et al. Variegated gene expression caused by cell-specific long-range DNA interactions. Nat. Cell Biol. 2011, 13:944-951.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 944-951
    • Noordermeer, D.1
  • 85
    • 0036923833 scopus 로고    scopus 로고
    • Looping and interaction between hypersensitive sites in the active beta-globin locus
    • Tolhuis B., et al. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 2002, 10:1453-1465.
    • (2002) Mol. Cell , vol.10 , pp. 1453-1465
    • Tolhuis, B.1
  • 86
    • 84877707375 scopus 로고    scopus 로고
    • One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
    • Wang H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153:910-918.
    • (2013) Cell , vol.153 , pp. 910-918
    • Wang, H.1
  • 87
    • 84929133780 scopus 로고    scopus 로고
    • The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals
    • Seruggia D., Montoliu L. The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Res. 2014, 23:707-716.
    • (2014) Transgenic Res. , vol.23 , pp. 707-716
    • Seruggia, D.1    Montoliu, L.2
  • 88
    • 84923384373 scopus 로고    scopus 로고
    • Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice
    • Kraft K., et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 2015, 10:833-839.
    • (2015) Cell Rep. , vol.10 , pp. 833-839
    • Kraft, K.1
  • 89
    • 84884856342 scopus 로고    scopus 로고
    • Cas9 as a versatile tool for engineering biology
    • Mali P., et al. Cas9 as a versatile tool for engineering biology. Nat. Methods 2013, 10:957-963.
    • (2013) Nat. Methods , vol.10 , pp. 957-963
    • Mali, P.1
  • 90
    • 84929666410 scopus 로고    scopus 로고
    • Expanding the biologist's toolkit with CRISPR-Cas9
    • Sternberg S.H., Doudna J.A. Expanding the biologist's toolkit with CRISPR-Cas9. Mol. Cell 2015, 58:568-574.
    • (2015) Mol. Cell , vol.58 , pp. 568-574
    • Sternberg, S.H.1    Doudna, J.A.2
  • 91
    • 70350735949 scopus 로고    scopus 로고
    • High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology
    • Simonis M., et al. High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat. Methods 2009, 6:837-842.
    • (2009) Nat. Methods , vol.6 , pp. 837-842
    • Simonis, M.1
  • 92
    • 84890023970 scopus 로고    scopus 로고
    • Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing
    • Selvaraj S., et al. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 2013, 31:1111-1118.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1111-1118
    • Selvaraj, S.1
  • 93
    • 84870310006 scopus 로고    scopus 로고
    • Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation
    • Splinter E., et al. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 2012, 58:221-230.
    • (2012) Methods , vol.58 , pp. 221-230
    • Splinter, E.1
  • 94
    • 84899819486 scopus 로고    scopus 로고
    • FourSig: a method for determining chromosomal interactions in 4C-seq data
    • Williams R.L., et al. fourSig: a method for determining chromosomal interactions in 4C-seq data. Nucleic Acids Res. 2014, 42:e68.
    • (2014) Nucleic Acids Res. , vol.42 , pp. e68
    • Williams, R.L.1
  • 95
    • 84893155197 scopus 로고    scopus 로고
    • Structural variation-associated expression changes are paralleled by chromatin architecture modifications
    • Gheldof N., et al. Structural variation-associated expression changes are paralleled by chromatin architecture modifications. PLoS ONE 2013, 8:e79973.
    • (2013) PLoS ONE , vol.8 , pp. e79973
    • Gheldof, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.