-
1
-
-
28444479505
-
Role of cholesterol and lipid organization in disease
-
[1] Maxfield, F.R., Tabas, I., Role of cholesterol and lipid organization in disease. Nature 438 (2005), 612–621.
-
(2005)
Nature
, vol.438
, pp. 612-621
-
-
Maxfield, F.R.1
Tabas, I.2
-
2
-
-
84890699334
-
The role of signalling in cellular cholesterol homeostasis
-
[2] Luu, W., Sharpe, L.J., Gelissen, I.C., Brown, A.J., The role of signalling in cellular cholesterol homeostasis. IUBMB Life 65 (2013), 675–684.
-
(2013)
IUBMB Life
, vol.65
, pp. 675-684
-
-
Luu, W.1
Sharpe, L.J.2
Gelissen, I.C.3
Brown, A.J.4
-
3
-
-
84858776574
-
MicroRNAs in metabolism and metabolic disorders
-
[3] Rottiers, V., Naar, A.M., MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 13 (2012), 239–250.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 239-250
-
-
Rottiers, V.1
Naar, A.M.2
-
4
-
-
72749086098
-
Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been
-
[4] Osborne, T.F., Espenshade, P.J., Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been. Genes Dev. 23 (2009), 2578–2591.
-
(2009)
Genes Dev.
, vol.23
, pp. 2578-2591
-
-
Osborne, T.F.1
Espenshade, P.J.2
-
5
-
-
0034693259
-
Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action
-
[5] Osborne, T.F., Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J. Biol. Chem. 275 (2000), 32379–32382.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 32379-32382
-
-
Osborne, T.F.1
-
6
-
-
84856471735
-
SREBPs: metabolic integrators in physiology and metabolism
-
[6] Jeon, T.I., Osborne, T.F., SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol. Metab. 23 (2012), 65–72.
-
(2012)
Trends Endocrinol. Metab.
, vol.23
, pp. 65-72
-
-
Jeon, T.I.1
Osborne, T.F.2
-
7
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
[7] Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell 136 (2009), 215–233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
8
-
-
78751477191
-
Gene silencing by microRNAs: contributions of translational repression and mRNA decay
-
[8] Huntzinger, E., Izaurralde, E., Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12 (2011), 99–110.
-
(2011)
Nat. Rev. Genet.
, vol.12
, pp. 99-110
-
-
Huntzinger, E.1
Izaurralde, E.2
-
9
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
[9] Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 (2004), 281–297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
10
-
-
33845370280
-
RNA polymerase III transcribes human microRNAs
-
[10] Borchert, G.M., Lanier, W., Davidson, B.L., RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13 (2006), 1097–1101.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 1097-1101
-
-
Borchert, G.M.1
Lanier, W.2
Davidson, B.L.3
-
11
-
-
58849112575
-
Biogenesis of small RNAs in animals
-
[11] Kim, V.N., Han, J., Siomi, M.C., Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10 (2009), 126–139.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 126-139
-
-
Kim, V.N.1
Han, J.2
Siomi, M.C.3
-
12
-
-
36749026287
-
Genomic analysis of human microRNA transcripts
-
[12] Saini, H.K., Griffiths-Jones, S., Enright, A.J., Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 17719–17724.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 17719-17724
-
-
Saini, H.K.1
Griffiths-Jones, S.2
Enright, A.J.3
-
13
-
-
77149153066
-
Structure and activity of putative intronic miRNA promoters
-
[13] Monteys, A.M., Spengler, R.M., Wan, J., Tecedor, L., Lennox, K.A., Xing, Y., Davidson, B.L., Structure and activity of putative intronic miRNA promoters. RNA 16 (2010), 495–505.
-
(2010)
RNA
, vol.16
, pp. 495-505
-
-
Monteys, A.M.1
Spengler, R.M.2
Wan, J.3
Tecedor, L.4
Lennox, K.A.5
Xing, Y.6
Davidson, B.L.7
-
14
-
-
84904985459
-
Regulation of microRNA biogenesis
-
[14] Ha, M., Kim, V.N., Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15 (2014), 509–524.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 509-524
-
-
Ha, M.1
Kim, V.N.2
-
15
-
-
8144225486
-
MicroRNA genes are transcribed by RNA polymerase II
-
[15] Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., Kim, V.N., MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23 (2004), 4051–4060.
-
(2004)
EMBO J.
, vol.23
, pp. 4051-4060
-
-
Lee, Y.1
Kim, M.2
Han, J.3
Yeom, K.H.4
Lee, S.5
Baek, S.H.6
Kim, V.N.7
-
16
-
-
56549129538
-
Chromatin structure analyses identify miRNA promoters
-
[16] Ozsolak, F., Poling, L.L., Wang, Z., Liu, H., Liu, X.S., Roeder, R.G., Zhang, X., Song, J.S., Fisher, D.E., Chromatin structure analyses identify miRNA promoters. Genes Dev. 22 (2008), 3172–3183.
-
(2008)
Genes Dev.
, vol.22
, pp. 3172-3183
-
-
Ozsolak, F.1
Poling, L.L.2
Wang, Z.3
Liu, H.4
Liu, X.S.5
Roeder, R.G.6
Zhang, X.7
Song, J.S.8
Fisher, D.E.9
-
17
-
-
34247637277
-
Regulatory circuit of human microRNA biogenesis
-
e67
-
[17] Lee, J., Li, Z., Brower-Sinning, R., John, B., Regulatory circuit of human microRNA biogenesis. PLoS Comput. Biol., 3, 2007, e67.
-
(2007)
PLoS Comput. Biol.
, vol.3
-
-
Lee, J.1
Li, Z.2
Brower-Sinning, R.3
John, B.4
-
18
-
-
48449084118
-
Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells
-
[18] Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., Calabrese, J.M., Dennis, L.M., Volkert, T.L., Gupta, S., Love, J., Hannett, N., Sharp, P.A., Bartel, D.P., Jaenisch, R., Young, R.A., Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134 (2008), 521–533.
-
(2008)
Cell
, vol.134
, pp. 521-533
-
-
Marson, A.1
Levine, S.S.2
Cole, M.F.3
Frampton, G.M.4
Brambrink, T.5
Johnstone, S.6
Guenther, M.G.7
Johnston, W.K.8
Wernig, M.9
Newman, J.10
Calabrese, J.M.11
Dennis, L.M.12
Volkert, T.L.13
Gupta, S.14
Love, J.15
Hannett, N.16
Sharp, P.A.17
Bartel, D.P.18
Jaenisch, R.19
Young, R.A.20
more..
-
19
-
-
56449110891
-
Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance
-
[19] Radhakrishnan, A., Goldstein, J.L., McDonald, J.G., Brown, M.S., Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 8 (2008), 512–521.
-
(2008)
Cell Metab.
, vol.8
, pp. 512-521
-
-
Radhakrishnan, A.1
Goldstein, J.L.2
McDonald, J.G.3
Brown, M.S.4
-
20
-
-
84879852051
-
An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis
-
[20] Jeon, T.I., Esquejo, R.M., Roqueta-Rivera, M., Phelan, P.E., Moon, Y.A., Govindarajan, S.S., Esau, C.C., Osborne, T.F., An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 18 (2013), 51–61.
-
(2013)
Cell Metab.
, vol.18
, pp. 51-61
-
-
Jeon, T.I.1
Esquejo, R.M.2
Roqueta-Rivera, M.3
Phelan, P.E.4
Moon, Y.A.5
Govindarajan, S.S.6
Esau, C.C.7
Osborne, T.F.8
-
21
-
-
84927126803
-
Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis
-
[21] Miao, J., Ling, A.V., Manthena, P.V., Gearing, M.E., Graham, M.J., Crooke, R.M., Croce, K.J., Esquejo, R.M., Clish, C.B., G. Morbid Obesity Study, Vicent, D., Biddinger, S.B., Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun., 6, 2015, 6498.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6498
-
-
Miao, J.1
Ling, A.V.2
Manthena, P.V.3
Gearing, M.E.4
Graham, M.J.5
Crooke, R.M.6
Croce, K.J.7
Esquejo, R.M.8
Clish, C.B.9
G. Morbid Obesity Study10
Vicent, D.11
Biddinger, S.B.12
-
22
-
-
84904739790
-
Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia
-
[22] Ng, R., Wu, H., Xiao, H., Chen, X., Willenbring, H., Steer, C.J., Song, G., Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia. Hepatology 60 (2014), 554–564.
-
(2014)
Hepatology
, vol.60
, pp. 554-564
-
-
Ng, R.1
Wu, H.2
Xiao, H.3
Chen, X.4
Willenbring, H.5
Steer, C.J.6
Song, G.7
-
23
-
-
58149386462
-
Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression
-
[23] Cheung, O., Puri, P., Eicken, C., Contos, M.J., Mirshahi, F., Maher, J.W., Kellum, J.M., Min, H., Luketic, V.A., Sanyal, A.J., Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48 (2008), 1810–1820.
-
(2008)
Hepatology
, vol.48
, pp. 1810-1820
-
-
Cheung, O.1
Puri, P.2
Eicken, C.3
Contos, M.J.4
Mirshahi, F.5
Maher, J.W.6
Kellum, J.M.7
Min, H.8
Luketic, V.A.9
Sanyal, A.J.10
-
24
-
-
77950612091
-
INSIG1 influences obesity-related hypertriglyceridemia in humans
-
[24] Smith, E.M., Zhang, Y., Baye, T.M., Gawrieh, S., Cole, R., Blangero, J., Carless, M.A., Curran, J.E., Dyer, T.D., Abraham, L.J., Moses, E.K., Kissebah, A.H., Martin, L.J., Olivier, M., INSIG1 influences obesity-related hypertriglyceridemia in humans. J. Lipid Res. 51 (2010), 701–708.
-
(2010)
J. Lipid Res.
, vol.51
, pp. 701-708
-
-
Smith, E.M.1
Zhang, Y.2
Baye, T.M.3
Gawrieh, S.4
Cole, R.5
Blangero, J.6
Carless, M.A.7
Curran, J.E.8
Dyer, T.D.9
Abraham, L.J.10
Moses, E.K.11
Kissebah, A.H.12
Martin, L.J.13
Olivier, M.14
-
25
-
-
84893357948
-
Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake
-
[25] Yang, M., Liu, W., Pellicane, C., Sahyoun, C., Joseph, B.K., Gallo-Ebert, C., Donigan, M., Pandya, D., Giordano, C., Bata, A., Nickels, J.T. Jr., Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 55 (2014), 226–238.
-
(2014)
J. Lipid Res.
, vol.55
, pp. 226-238
-
-
Yang, M.1
Liu, W.2
Pellicane, C.3
Sahyoun, C.4
Joseph, B.K.5
Gallo-Ebert, C.6
Donigan, M.7
Pandya, D.8
Giordano, C.9
Bata, A.10
Nickels, J.T.11
-
26
-
-
28444469246
-
Silencing of microRNAs in vivo with ‘antagomirs’
-
[26] Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., Stoffel, M., Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438 (2005), 685–689.
-
(2005)
Nature
, vol.438
, pp. 685-689
-
-
Krutzfeldt, J.1
Rajewsky, N.2
Braich, R.3
Rajeev, K.G.4
Tuschl, T.5
Manoharan, M.6
Stoffel, M.7
-
27
-
-
33645075443
-
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
-
[27] Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M., Watts, L., Booten, S.L., Graham, M., McKay, R., Subramaniam, A., Propp, S., Lollo, B.A., Freier, S., Bennett, C.F., Bhanot, S., Monia, B.P., miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3 (2006), 87–98.
-
(2006)
Cell Metab.
, vol.3
, pp. 87-98
-
-
Esau, C.1
Davis, S.2
Murray, S.F.3
Yu, X.X.4
Pandey, S.K.5
Pear, M.6
Watts, L.7
Booten, S.L.8
Graham, M.9
McKay, R.10
Subramaniam, A.11
Propp, S.12
Lollo, B.A.13
Freier, S.14
Bennett, C.F.15
Bhanot, S.16
Monia, B.P.17
-
28
-
-
42249093319
-
LNA-mediated microRNA silencing in non-human primates
-
[28] Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., Lindholm, M., Hedtjarn, M., Hansen, H.F., Berger, U., Gullans, S., Kearney, P., Sarnow, P., Straarup, E.M., Kauppinen, S., LNA-mediated microRNA silencing in non-human primates. Nature, 452, 2008, 896-U810.
-
(2008)
Nature
, vol.452
, pp. 896-U810
-
-
Elmen, J.1
Lindow, M.2
Schutz, S.3
Lawrence, M.4
Petri, A.5
Obad, S.6
Lindholm, M.7
Hedtjarn, M.8
Hansen, H.F.9
Berger, U.10
Gullans, S.11
Kearney, P.12
Sarnow, P.13
Straarup, E.M.14
Kauppinen, S.15
-
29
-
-
84860469242
-
Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease
-
[29] Min, H.K., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., Kellum, J., Warnick, R., Contos, M.J., Sanyal, A.J., Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15 (2012), 665–674.
-
(2012)
Cell Metab.
, vol.15
, pp. 665-674
-
-
Min, H.K.1
Kapoor, A.2
Fuchs, M.3
Mirshahi, F.4
Zhou, H.5
Maher, J.6
Kellum, J.7
Warnick, R.8
Contos, M.J.9
Sanyal, A.J.10
-
30
-
-
51649115553
-
miR-34a repression of SIRT1 regulates apoptosis
-
[30] Yamakuchi, M., Ferlito, M., Lowenstein, C.J., miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 13421–13426.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 13421-13426
-
-
Yamakuchi, M.1
Ferlito, M.2
Lowenstein, C.J.3
-
31
-
-
77954488637
-
Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
-
[31] Walker, A.K., Yang, F., Jiang, K., Ji, J.Y., Watts, J.L., Purushotham, A., Boss, O., Hirsch, M.L., Ribich, S., Smith, J.J., Israelian, K., Westphal, C.H., Rodgers, J.T., Shioda, T., Elson, S.L., Mulligan, P., Najafi-Shoushtari, H., Black, J.C., Thakur, J.K., Kadyk, L.C., Whetstine, J.R., Mostoslavsky, R., Puigserver, P., Li, X., Dyson, N.J., Hart, A.C., Naar, A.M., Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 24 (2010), 1403–1417.
-
(2010)
Genes Dev.
, vol.24
, pp. 1403-1417
-
-
Walker, A.K.1
Yang, F.2
Jiang, K.3
Ji, J.Y.4
Watts, J.L.5
Purushotham, A.6
Boss, O.7
Hirsch, M.L.8
Ribich, S.9
Smith, J.J.10
Israelian, K.11
Westphal, C.H.12
Rodgers, J.T.13
Shioda, T.14
Elson, S.L.15
Mulligan, P.16
Najafi-Shoushtari, H.17
Black, J.C.18
Thakur, J.K.19
Kadyk, L.C.20
Whetstine, J.R.21
Mostoslavsky, R.22
Puigserver, P.23
Li, X.24
Dyson, N.J.25
Hart, A.C.26
Naar, A.M.27
more..
-
32
-
-
77951210885
-
A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
-
[32] Lee, J., Padhye, A., Sharma, A., Song, G., Miao, J., Mo, Y.Y., Wang, L., Kemper, J.K., A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285 (2010), 12604–12611.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12604-12611
-
-
Lee, J.1
Padhye, A.2
Sharma, A.3
Song, G.4
Miao, J.5
Mo, Y.Y.6
Wang, L.7
Kemper, J.K.8
-
33
-
-
2442656430
-
p53 involvement in the pathogenesis of fatty liver disease
-
[33] Yahagi, N., Shimano, H., Matsuzaka, T., Sekiya, M., Najima, Y., Okazaki, S., Okazaki, H., Tamura, Y., Iizuka, Y., Inoue, N., Nakagawa, Y., Takeuchi, Y., Ohashi, K., Harada, K., Gotoda, T., Nagai, R., Kadowaki, T., Ishibashi, S., Osuga, J., Yamada, N., p53 involvement in the pathogenesis of fatty liver disease. J. Biol. Chem. 279 (2004), 20571–20575.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 20571-20575
-
-
Yahagi, N.1
Shimano, H.2
Matsuzaka, T.3
Sekiya, M.4
Najima, Y.5
Okazaki, S.6
Okazaki, H.7
Tamura, Y.8
Iizuka, Y.9
Inoue, N.10
Nakagawa, Y.11
Takeuchi, Y.12
Ohashi, K.13
Harada, K.14
Gotoda, T.15
Nagai, R.16
Kadowaki, T.17
Ishibashi, S.18
Osuga, J.19
Yamada, N.20
more..
-
35
-
-
84871221881
-
miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease
-
[35] Castro, R.E., Ferreira, D.M., Afonso, M.B., Borralho, P.M., Machado, M.V., Cortez-Pinto, H., Rodrigues, C.M., miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J. Hepatol. 58 (2013), 119–125.
-
(2013)
J. Hepatol.
, vol.58
, pp. 119-125
-
-
Castro, R.E.1
Ferreira, D.M.2
Afonso, M.B.3
Borralho, P.M.4
Machado, M.V.5
Cortez-Pinto, H.6
Rodrigues, C.M.7
-
36
-
-
84919889666
-
MicroRNA-223 coordinates cholesterol homeostasis
-
[36] Vickers, K.C., Landstreet, S.R., Levin, M.G., Shoucri, B.M., Toth, C.L., Taylor, R.C., Palmisano, B.T., Tabet, F., Cui, H.L., Rye, K.A., Sethupathy, P., Remaley, A.T., MicroRNA-223 coordinates cholesterol homeostasis. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 14518–14523.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 14518-14523
-
-
Vickers, K.C.1
Landstreet, S.R.2
Levin, M.G.3
Shoucri, B.M.4
Toth, C.L.5
Taylor, R.C.6
Palmisano, B.T.7
Tabet, F.8
Cui, H.L.9
Rye, K.A.10
Sethupathy, P.11
Remaley, A.T.12
-
37
-
-
42649134146
-
HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis
-
[37] Tall, A.R., Yvan-Charvet, L., Terasaka, N., Pagler, T., Wang, N., HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 7 (2008), 365–375.
-
(2008)
Cell Metab.
, vol.7
, pp. 365-375
-
-
Tall, A.R.1
Yvan-Charvet, L.2
Terasaka, N.3
Pagler, T.4
Wang, N.5
-
38
-
-
0032813660
-
Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1
-
[38] Rust, S., Rosier, M., Funke, H., Real, J., Amoura, Z., Piette, J.C., Deleuze, J.F., Brewer, H.B., Duverger, N., Denefle, P., Assmann, G., Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat. Genet. 22 (1999), 352–355.
-
(1999)
Nat. Genet.
, vol.22
, pp. 352-355
-
-
Rust, S.1
Rosier, M.2
Funke, H.3
Real, J.4
Amoura, Z.5
Piette, J.C.6
Deleuze, J.F.7
Brewer, H.B.8
Duverger, N.9
Denefle, P.10
Assmann, G.11
-
39
-
-
20944435724
-
Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I
-
[39] Timmins, J.M., Lee, J.Y., Boudyguina, E., Kluckman, K.D., Brunham, L.R., Mulya, A., Gebre, A.K., Coutinho, J.M., Colvin, P.L., Smith, T.L., Hayden, M.R., Maeda, N., Parks, J.S., Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J. Clin. Invest. 115 (2005), 1333–1342.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1333-1342
-
-
Timmins, J.M.1
Lee, J.Y.2
Boudyguina, E.3
Kluckman, K.D.4
Brunham, L.R.5
Mulya, A.6
Gebre, A.K.7
Coutinho, J.M.8
Colvin, P.L.9
Smith, T.L.10
Hayden, M.R.11
Maeda, N.12
Parks, J.S.13
-
40
-
-
77953780835
-
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
-
[40] Najafi-Shoushtari, S.H., Kristo, F., Li, Y., Shioda, T., Cohen, D.E., Gerszten, R.E., Naar, A.M., MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328 (2010), 1566–1569.
-
(2010)
Science
, vol.328
, pp. 1566-1569
-
-
Najafi-Shoushtari, S.H.1
Kristo, F.2
Li, Y.3
Shioda, T.4
Cohen, D.E.5
Gerszten, R.E.6
Naar, A.M.7
-
41
-
-
77953787211
-
MiR-33 contributes to the regulation of cholesterol homeostasis
-
[41] Rayner, K.J., Suarez, Y., Davalos, A., Parathath, S., Fitzgerald, M.L., Tamehiro, N., Fisher, E.A., Moore, K.J., Fernandez-Hernando, C., MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328 (2010), 1570–1573.
-
(2010)
Science
, vol.328
, pp. 1570-1573
-
-
Rayner, K.J.1
Suarez, Y.2
Davalos, A.3
Parathath, S.4
Fitzgerald, M.L.5
Tamehiro, N.6
Fisher, E.A.7
Moore, K.J.8
Fernandez-Hernando, C.9
-
42
-
-
78049295975
-
MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
-
[42] Horie, T., Ono, K., Horiguchi, M., Nishi, H., Nakamura, T., Nagao, K., Kinoshita, M., Kuwabara, Y., Marusawa, H., Iwanaga, Y., Hasegawa, K., Yokode, M., Kimura, T., Kita, T., MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 17321–17326.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 17321-17326
-
-
Horie, T.1
Ono, K.2
Horiguchi, M.3
Nishi, H.4
Nakamura, T.5
Nagao, K.6
Kinoshita, M.7
Kuwabara, Y.8
Marusawa, H.9
Iwanaga, Y.10
Hasegawa, K.11
Yokode, M.12
Kimura, T.13
Kita, T.14
-
43
-
-
77955456415
-
miR-33 links SREBP-2 induction to repression of sterol transporters
-
[43] Marquart, T.J., Allen, R.M., Ory, D.S., Baldan, A., miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 12228–12232.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 12228-12232
-
-
Marquart, T.J.1
Allen, R.M.2
Ory, D.S.3
Baldan, A.4
-
44
-
-
77958553499
-
Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation
-
[44] Gerin, I., Clerbaux, L.A., Haumont, O., Lanthier, N., Das, A.K., Burant, C.F., Leclercq, I.A., MacDougald, O.A., Bommer, G.T., Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem. 285 (2010), 33652–33661.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 33652-33661
-
-
Gerin, I.1
Clerbaux, L.A.2
Haumont, O.3
Lanthier, N.4
Das, A.K.5
Burant, C.F.6
Leclercq, I.A.7
MacDougald, O.A.8
Bommer, G.T.9
-
45
-
-
79960015327
-
Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
-
[45] Rayner, K.J., Sheedy, F.J., Esau, C.C., Hussain, F.N., Temel, R.E., Parathath, S., van Gils, J.M., Rayner, A.J., Chang, A.N., Suarez, Y., Fernandez-Hernando, C., Fisher, E.A., Moore, K.J., Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest. 121 (2011), 2921–2931.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 2921-2931
-
-
Rayner, K.J.1
Sheedy, F.J.2
Esau, C.C.3
Hussain, F.N.4
Temel, R.E.5
Parathath, S.6
van Gils, J.M.7
Rayner, A.J.8
Chang, A.N.9
Suarez, Y.10
Fernandez-Hernando, C.11
Fisher, E.A.12
Moore, K.J.13
-
46
-
-
80054971110
-
Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
-
[46] Rayner, K.J., Esau, C.C., Hussain, F.N., McDaniel, A.L., Marshall, S.M., van Gils, J.M., Ray, T.D., Sheedy, F.J., Goedeke, L., Liu, X., Khatsenko, O.G., Kaimal, V., Lees, C.J., Fernandez-Hernando, C., Fisher, E.A., Temel, R.E., Moore, K.J., Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478 (2011), 404–407.
-
(2011)
Nature
, vol.478
, pp. 404-407
-
-
Rayner, K.J.1
Esau, C.C.2
Hussain, F.N.3
McDaniel, A.L.4
Marshall, S.M.5
van Gils, J.M.6
Ray, T.D.7
Sheedy, F.J.8
Goedeke, L.9
Liu, X.10
Khatsenko, O.G.11
Kaimal, V.12
Lees, C.J.13
Fernandez-Hernando, C.14
Fisher, E.A.15
Temel, R.E.16
Moore, K.J.17
-
47
-
-
84890387599
-
Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR
-
(212ra162)
-
[47] Rottiers, V., Obad, S., Petri, A., McGarrah, R., Lindholm, M.W., Black, J.C., Sinha, S., Goody, R.J., Lawrence, M.S., deLemos, A.S., Hansen, H.F., Whittaker, S., Henry, S., Brookes, R., Najafi-Shoushtari, S.H., Chung, R.T., Whetstine, J.R., Gerszten, R.E., Kauppinen, S., Naar, A.M., Pharmacological inhibition of a microRNA family in nonhuman primates by a seed-targeting 8-mer antimiR. Sci. Transl. Med., 5, 2013 (212ra162).
-
(2013)
Sci. Transl. Med.
, vol.5
-
-
Rottiers, V.1
Obad, S.2
Petri, A.3
McGarrah, R.4
Lindholm, M.W.5
Black, J.C.6
Sinha, S.7
Goody, R.J.8
Lawrence, M.S.9
deLemos, A.S.10
Hansen, H.F.11
Whittaker, S.12
Henry, S.13
Brookes, R.14
Najafi-Shoushtari, S.H.15
Chung, R.T.16
Whetstine, J.R.17
Gerszten, R.E.18
Kauppinen, S.19
Naar, A.M.20
more..
-
48
-
-
80054900644
-
MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1
-
[48] Ramirez, C.M., Davalos, A., Goedeke, L., Salerno, A.G., Warrier, N., Cirera-Salinas, D., Suarez, Y., Fernandez-Hernando, C., MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 31 (2011), 2707–2714.
-
(2011)
Arterioscler. Thromb. Vasc. Biol.
, vol.31
, pp. 2707-2714
-
-
Ramirez, C.M.1
Davalos, A.2
Goedeke, L.3
Salerno, A.G.4
Warrier, N.5
Cirera-Salinas, D.6
Suarez, Y.7
Fernandez-Hernando, C.8
-
49
-
-
34248368921
-
Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and Alzheimer's disease
-
[49] Hirsch-Reinshagen, V., Wellington, C.L., Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and Alzheimer's disease. Curr. Opin. Lipidol. 18 (2007), 325–332.
-
(2007)
Curr. Opin. Lipidol.
, vol.18
, pp. 325-332
-
-
Hirsch-Reinshagen, V.1
Wellington, C.L.2
-
50
-
-
77958594257
-
ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice
-
[50] Donkin, J.J., Stukas, S., Hirsch-Reinshagen, V., Namjoshi, D., Wilkinson, A., May, S., Chan, J., Fan, J., Collins, J., Wellington, C.L., ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J. Biol. Chem. 285 (2010), 34144–34154.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 34144-34154
-
-
Donkin, J.J.1
Stukas, S.2
Hirsch-Reinshagen, V.3
Namjoshi, D.4
Wilkinson, A.5
May, S.6
Chan, J.7
Fan, J.8
Collins, J.9
Wellington, C.L.10
-
51
-
-
84905585869
-
HDL and cholesterol handling in the brain
-
[51] Vitali, C., Wellington, C.L., Calabresi, L., HDL and cholesterol handling in the brain. Cardiovasc. Res. 103 (2014), 405–413.
-
(2014)
Cardiovasc. Res.
, vol.103
, pp. 405-413
-
-
Vitali, C.1
Wellington, C.L.2
Calabresi, L.3
-
52
-
-
84860377430
-
MiR-106b impairs cholesterol efflux and increases abeta levels by repressing ABCA1 expression
-
[52] Kim, J., Yoon, H., Ramirez, C.M., Lee, S.M., Hoe, H.S., Fernandez-Hernando, C., Kim, J., MiR-106b impairs cholesterol efflux and increases abeta levels by repressing ABCA1 expression. Exp. Neurol. 235 (2012), 476–483.
-
(2012)
Exp. Neurol.
, vol.235
, pp. 476-483
-
-
Kim, J.1
Yoon, H.2
Ramirez, C.M.3
Lee, S.M.4
Hoe, H.S.5
Fernandez-Hernando, C.6
Kim, J.7
-
53
-
-
84858796689
-
Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
-
[53] Calkin, A.C., Tontonoz, P., Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat. Rev. Mol. Cell Biol. 13 (2012), 213–224.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 213-224
-
-
Calkin, A.C.1
Tontonoz, P.2
-
54
-
-
84861183215
-
MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7
-
[54] Sun, D., Zhang, J., Xie, J., Wei, W., Chen, M., Zhao, X., MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 586 (2012), 1472–1479.
-
(2012)
FEBS Lett.
, vol.586
, pp. 1472-1479
-
-
Sun, D.1
Zhang, J.2
Xie, J.3
Wei, W.4
Chen, M.5
Zhao, X.6
-
55
-
-
84880031381
-
Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144
-
[55] Ramirez, C.M., Rotllan, N., Vlassov, A.V., Davalos, A., Li, M., Goedeke, L., Aranda, J.F., Cirera-Salinas, D., Araldi, E., Salerno, A., Wanschel, A., Zavadil, J., Castrillo, A., Kim, J., Suarez, Y., Fernandez-Hernando, C., Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ. Res. 112 (2013), 1592–1601.
-
(2013)
Circ. Res.
, vol.112
, pp. 1592-1601
-
-
Ramirez, C.M.1
Rotllan, N.2
Vlassov, A.V.3
Davalos, A.4
Li, M.5
Goedeke, L.6
Aranda, J.F.7
Cirera-Salinas, D.8
Araldi, E.9
Salerno, A.10
Wanschel, A.11
Zavadil, J.12
Castrillo, A.13
Kim, J.14
Suarez, Y.15
Fernandez-Hernando, C.16
-
56
-
-
79953737607
-
MicroRNA hsa-miR-613 targets the human LXRalpha gene and mediates a feedback loop of LXRalpha autoregulation
-
[56] Ou, Z., Wada, T., Gramignoli, R., Li, S., Strom, S.C., Huang, M., Xie, W., MicroRNA hsa-miR-613 targets the human LXRalpha gene and mediates a feedback loop of LXRalpha autoregulation. Mol. Endocrinol. 25 (2011), 584–596.
-
(2011)
Mol. Endocrinol.
, vol.25
, pp. 584-596
-
-
Ou, Z.1
Wada, T.2
Gramignoli, R.3
Li, S.4
Strom, S.C.5
Huang, M.6
Xie, W.7
-
57
-
-
84880006810
-
MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor
-
[57] de Aguiar Vallim, T.Q., Tarling, E.J., Kim, T., Civelek, M., Baldan, A., Esau, C., Edwards, P.A., MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circ. Res. 112 (2013), 1602–1612.
-
(2013)
Circ. Res.
, vol.112
, pp. 1602-1612
-
-
de Aguiar Vallim, T.Q.1
Tarling, E.J.2
Kim, T.3
Civelek, M.4
Baldan, A.5
Esau, C.6
Edwards, P.A.7
-
58
-
-
0030046797
-
Identification of scavenger receptor SR-BI as a high density lipoprotein receptor
-
[58] Acton, S., Rigotti, A., Landschulz, K.T., Xu, S., Hobbs, H.H., Krieger, M., Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271 (1996), 518–520.
-
(1996)
Science
, vol.271
, pp. 518-520
-
-
Acton, S.1
Rigotti, A.2
Landschulz, K.T.3
Xu, S.4
Hobbs, H.H.5
Krieger, M.6
-
59
-
-
66349086459
-
The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis
-
[59] Rader, D.J., Alexander, E.T., Weibel, G.L., Billheimer, J., Rothblat, G.H., The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 50:Suppl (2009), S189–S194.
-
(2009)
J. Lipid Res.
, vol.50
, pp. S189-S194
-
-
Rader, D.J.1
Alexander, E.T.2
Weibel, G.L.3
Billheimer, J.4
Rothblat, G.H.5
-
60
-
-
26444435788
-
Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo
-
[60] Zhang, Y., Da Silva, J.R., Reilly, M., Billheimer, J.T., Rothblat, G.H., Rader, D.J., Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 115 (2005), 2870–2874.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 2870-2874
-
-
Zhang, Y.1
Da Silva, J.R.2
Reilly, M.3
Billheimer, J.T.4
Rothblat, G.H.5
Rader, D.J.6
-
61
-
-
84878967914
-
MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition
-
[61] Wang, L., Jia, X.J., Jiang, H.J., Du, Y., Yang, F., Si, S.Y., Hong, B., MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol. Cell. Biol. 33 (2013), 1956–1964.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 1956-1964
-
-
Wang, L.1
Jia, X.J.2
Jiang, H.J.3
Du, Y.4
Yang, F.5
Si, S.Y.6
Hong, B.7
-
62
-
-
84871887481
-
MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells
-
[62] Hu, Z., Shen, W.J., Kraemer, F.B., Azhar, S., MicroRNAs 125a and 455 repress lipoprotein-supported steroidogenesis by targeting scavenger receptor class B type I in steroidogenic cells. Mol. Cell. Biol. 32 (2012), 5035–5045.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 5035-5045
-
-
Hu, Z.1
Shen, W.J.2
Kraemer, F.B.3
Azhar, S.4
|