메뉴 건너뛰기




Volumn 51, Issue , 2016, Pages 43-58

Improved hyperspectral image classification by active learning using pre-designed mixed pixels

Author keywords

Active learning; Classification; Hyperspectral image; Low cost; Pixel purity index; Sample design; Support vector machine

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; COSTS; DIGITAL STORAGE; HYPERSPECTRAL IMAGING; IMAGE ENHANCEMENT; ITERATIVE METHODS; LEARNING SYSTEMS; PIXELS; REMOTE SENSING; SAMPLING; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84955719716     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.08.019     Document Type: Article
Times cited : (67)

References (48)
  • 2
    • 84927582865 scopus 로고    scopus 로고
    • Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features
    • P. Du, A. Samat, B. Waske, S. Liu, and Z. Li Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features ISPRS J. Photogramm. Remote Sens. 105 2015 38 53
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 38-53
    • Du, P.1    Samat, A.2    Waske, B.3    Liu, S.4    Li, Z.5
  • 4
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regressionand Markov random fields
    • J. Li, J.M. Bioucas-Dias, and A. Plaza Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regressionand Markov random fields IEEE Trans. Geosci. Remote Sens. 50 3 2012 809 823
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 5
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • G.M. Foody, and M.K. Arora An evaluation of some factors affecting the accuracy of classification by an artificial neural network Int. J. Remote Sens. 18 4 1997 799 810
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.4 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 7
    • 0033372875 scopus 로고    scopus 로고
    • The significance of border training patterns in classification by a feedforward neural network using back propagation learning
    • G.M. Foody The significance of border training patterns in classification by a feedforward neural network using back propagation learning Int. J. Remote Sens. 20 18 1999 3549 3562
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.18 , pp. 3549-3562
    • Foody, G.M.1
  • 8
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z.H. Zhou, and M. Li Semi-supervised learning by disagreement Knowl. Informat. Syst. 24 3 2010 415 439
    • (2010) Knowl. Informat. Syst. , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.H.1    Li, M.2
  • 9
    • 4544272407 scopus 로고    scopus 로고
    • Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
    • G.M. Foody, and A. Mathur Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification Remote Sens. Environ. 93 1 2004 107 117
    • (2004) Remote Sens. Environ. , vol.93 , Issue.1 , pp. 107-117
    • Foody, G.M.1    Mathur, A.2
  • 10
    • 0021575243 scopus 로고
    • Classifying northern forests using thematic mapper simulator data
    • R.F. Nelson, R.S. Latty, and G. Mott Classifying northern forests using thematic mapper simulator data Photogramm. Eng. Remote Sens. 50 1984 607 617
    • (1984) Photogramm. Eng. Remote Sens. , vol.50 , pp. 607-617
    • Nelson, R.F.1    Latty, R.S.2    Mott, G.3
  • 12
    • 0027067290 scopus 로고
    • Variability and bias in experimentally measured classifier error rates
    • J. Piper Variability and bias in experimentally measured classifier error rates Pattern Recognit. Lett. 13 10 1992 685 692
    • (1992) Pattern Recognit. Lett. , vol.13 , Issue.10 , pp. 685-692
    • Piper, J.1
  • 14
    • 0033586922 scopus 로고    scopus 로고
    • Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach
    • P.C. Smits, S.G. Dellepiane, and R.A. Schowengerdt Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach Int. J. Remote Sens. 20 8 1999 1461 1486
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.8 , pp. 1461-1486
    • Smits, P.C.1    Dellepiane, S.G.2    Schowengerdt, R.A.3
  • 15
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. Cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
    • V. López, A. Fernández, J.G. Moreno-Torres, and F. Herrera Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics Expert Syst. Appl. 39 7 2012 6585 6608
    • (2012) Expert Syst. Appl. , vol.39 , Issue.7 , pp. 6585-6608
    • López, V.1    Fernández, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 16
    • 79955570365 scopus 로고    scopus 로고
    • Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data
    • A.M. Palacios, L. Sánchez, and I. Couso Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data Int. J. Approx. Reason. 52 6 2011 841 862
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.6 , pp. 841-862
    • Palacios, A.M.1    Sánchez, L.2    Couso, I.3
  • 17
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • D. Tuia, E. Pasolli, and W.J. Emery Using active learning to adapt remote sensing image classifiers Remote Sens. Environ. 115 9 2011 2232 2242
    • (2011) Remote Sens. Environ. , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.J.3
  • 18
    • 79955632976 scopus 로고    scopus 로고
    • A fast cluster-assumption based active-learning technique for classification of remote sensing images
    • S. Patra, and L. Bruzzone A fast cluster-assumption based active-learning technique for classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 49 5 2011 1617 1626
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1617-1626
    • Patra, S.1    Bruzzone, L.2
  • 19
    • 84924424041 scopus 로고    scopus 로고
    • Active extreme learning machines for quad-polarimetric SAR imagery classification
    • A. Samat, P. Gamba, P. Du, and J. Luo Active extreme learning machines for quad-polarimetric SAR imagery classification Int. J. Appl. Earth Observ. Geoinf. 35 2015 305 319
    • (2015) Int. J. Appl. Earth Observ. Geoinf. , vol.35 , pp. 305-319
    • Samat, A.1    Gamba, P.2    Du, P.3    Luo, J.4
  • 20
    • 84927624381 scopus 로고    scopus 로고
    • A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination
    • K. Tan, J. Hu, J. Li, and P. Du A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination ISPRS J. Photogramm. Remote Sens. 105 2015 19 29
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 19-29
    • Tan, K.1    Hu, J.2    Li, J.3    Du, P.4
  • 21
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari A survey of active learning algorithms for supervised remote sensing image classification IEEE J. Sel. Topics Signal Process. 5 3 2011 606 617
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 22
    • 85162011798 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • S.J. Huang, R. Jin, and Z.H. Zhou Active learning by querying informative and representative examples Adv. Neural Inf. Process. Syst. 2010 892 900
    • (2010) Adv. Neural Inf. Process. Syst. , pp. 892-900
    • Huang, S.J.1    Jin, R.2    Zhou, Z.H.3
  • 23
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • R.G. Congalton A review of assessing the accuracy of classifications of remotely sensed data Remote Sens. Environ. 37 1 1991 35 46
    • (1991) Remote Sens. Environ. , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 24
    • 84901851364 scopus 로고    scopus 로고
    • Cost-sensitive active learning with lookahead: Optimizing field surveys for remote sensing data classification
    • P. Claudio, B. Abdeslam, D. Michele, G. Terje, N. Erik, and S. Bernhard Cost-sensitive active learning with lookahead: optimizing field surveys for remote sensing data classification IEEE Trans. Geosci. Remote Sens. 52 10 2014 6652 6664
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6652-6664
    • Claudio, P.1    Abdeslam, B.2    Michele, D.3    Terje, G.4    Erik, N.5    Bernhard, S.6
  • 25
    • 68949155363 scopus 로고    scopus 로고
    • A self-training approach to cost sensitive uncertainty sampling
    • A. Liu, G. Jun, and J. Ghosh A self-training approach to cost sensitive uncertainty sampling Mach. Learn. 76 2-3 2009 257 270
    • (2009) Mach. Learn. , vol.76 , Issue.2-3 , pp. 257-270
    • Liu, A.1    Jun, G.2    Ghosh, J.3
  • 26
    • 84902080705 scopus 로고    scopus 로고
    • Active and semisupervised learning for the classification of remote sensing images
    • C. Persello, and L. Bruzzone Active and semisupervised learning for the classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 54 11 2014 6937 6956
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.11 , pp. 6937-6956
    • Persello, C.1    Bruzzone, L.2
  • 27
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
    • G.M. Foody, and A. Mathur The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM Remote Sens. Environ. 103 2 2006 179 189
    • (2006) Remote Sens. Environ. , vol.103 , Issue.2 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 28
    • 0030292025 scopus 로고    scopus 로고
    • Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications
    • G.M. Foody, and M.K. Arora Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications Pattern Recognit. Lett. 17 13 1996 1389 1398
    • (1996) Pattern Recognit. Lett. , vol.17 , Issue.13 , pp. 1389-1398
    • Foody, G.M.1    Arora, M.K.2
  • 29
    • 0025402179 scopus 로고
    • Fuzzy supervised classification of remote sensing images
    • F. Wang Fuzzy supervised classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 28 2 1990 194 201
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , Issue.2 , pp. 194-201
    • Wang, F.1
  • 31
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • Stanford, CA, June
    • G. Schohn, D. Cohn, Less is more: active learning with support vector machines, in: Proceedings of the 17th ICML, Stanford, CA, June 2000, pp. 839-846.
    • (2000) Proceedings of the 17th ICML , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 32
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • B. Demir, C. Persello, and L. Bruzzone Batch-mode active-learning methods for the interactive classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 49 3 2011 1014 1031
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 33
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • W. Di, and M.M. Crawford View generation for multiview maximum disagreement based active learning for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 50 5 2012 1942 1954
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 35
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • D. Angluin, and P. Laird Learning from noisy examples Mach. Learn. 2 4 1988 343 370
    • (1988) Mach. Learn. , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 36
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M. Tax, and R.P. Duin Support vector data description Mach. Learn. 54 1 2004 45 66
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 37
    • 21844445229 scopus 로고    scopus 로고
    • Efficient margin maximizing with boosting
    • G. Rätsch, and M.K. Warmuth Efficient margin maximizing with boosting J. Mach. Learn. Res. 6 2005 2131 2152
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2131-2152
    • Rätsch, G.1    Warmuth, M.K.2
  • 38
    • 84893677824 scopus 로고    scopus 로고
    • Ensemble-based noise detection: Noise ranking and visual performance evaluation
    • B. Sluban, D. Gamberger, and N. Lavrač Ensemble-based noise detection: noise ranking and visual performance evaluation Data Min. Knowl. Discov. 28 2 2014 265 303
    • (2014) Data Min. Knowl. Discov. , vol.28 , Issue.2 , pp. 265-303
    • Sluban, B.1    Gamberger, D.2    Lavrač, N.3
  • 40
    • 84901857500 scopus 로고    scopus 로고
    • Spectral-Spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
    • M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J.M. Bioucas-Dias, and X. Li Spectral-Spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization IEEE Trans. Geosci. Remote Sens. 52 10 2014 6298 6314
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.10 , pp. 6298-6314
    • Khodadadzadeh, M.1    Li, J.2    Plaza, A.3    Ghassemian, H.4    Bioucas-Dias, J.M.5    Li, X.6
  • 41
    • 84955755893 scopus 로고    scopus 로고
    • Complementarity of discriminative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images
    • J. Li, I. Dópido, P. Gamba, A. Plaza, Complementarity of discriminative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images. IEEE Trans. Geosci. Remote Sens. (2009) 1-14.
    • (2009) IEEE Trans. Geosci. Remote Sens. , pp. 1-14
    • Li, J.1
  • 42
    • 84955626785 scopus 로고    scopus 로고
    • A new hybrid strategy combining semisupervised classification and unmixing of hyperspectral data
    • I. Dópido, J. Li, P. Gamba, and A. Plaza A new hybrid strategy combining semisupervised classification and unmixing of hyperspectral data IEEE J. Sel. Topics Appl. Earth Observ. 2004 1 11
    • (2004) IEEE J. Sel. Topics Appl. Earth Observ. , pp. 1-11
    • Dópido, I.1    Li, J.2    Gamba, P.3    Plaza, A.4
  • 43
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • J.M. Nascimento, and J.M. Bioucas Dias Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Trans. Geosci. Remote Sens. 43 4 2005 898 910
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas Dias, J.M.2
  • 44
    • 2942522160 scopus 로고    scopus 로고
    • Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE
    • P.E. Dennison, and D.A. Roberts Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE Remote Sens. Environ. 87 2 2003 123 135
    • (2003) Remote Sens. Environ. , vol.87 , Issue.2 , pp. 123-135
    • Dennison, P.E.1    Roberts, D.A.2
  • 45
    • 84880054014 scopus 로고    scopus 로고
    • Multidimensional pixel purity index for convex hull estimation and endmember extraction
    • R. Heylen, and P. Scheunders Multidimensional pixel purity index for convex hull estimation and endmember extraction IEEE Trans. Geosci. Remote Sens. 51 7 2013 4059 4069
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.7 , pp. 4059-4069
    • Heylen, R.1    Scheunders, P.2
  • 46
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • J.M. Nascimento, and J.M. Bioucas Dias Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Trans. Geosci. Remote Sens. 43 4 2005 898 910
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas Dias, J.M.2
  • 48
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • L. Zhang, L. Zhang, D. Tao, and X. Huang On combining multiple features for hyperspectral remote sensing image classification IEEE Trans. Geosci. Remote Sens. 50 3 2012 879 893
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.