-
1
-
-
44049084715
-
Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection
-
G. Camps-Valls, L. Gómez-Chova, J. Muñoz-Marí, J.L. Rojo-Álvarez, and M. Martínez-Ramón Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection IEEE Trans. Geosci. Remote Sens. 46 6 2008 1822 1835
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.6
, pp. 1822-1835
-
-
Camps-Valls, G.1
Gómez-Chova, L.2
Muñoz-Marí, J.3
Rojo-Álvarez, J.L.4
Martínez-Ramón, M.5
-
2
-
-
84927582865
-
Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features
-
P. Du, A. Samat, B. Waske, S. Liu, and Z. Li Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features ISPRS J. Photogramm. Remote Sens. 105 2015 38 53
-
(2015)
ISPRS J. Photogramm. Remote Sens.
, vol.105
, pp. 38-53
-
-
Du, P.1
Samat, A.2
Waske, B.3
Liu, S.4
Li, Z.5
-
4
-
-
80052087931
-
Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regressionand Markov random fields
-
J. Li, J.M. Bioucas-Dias, and A. Plaza Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regressionand Markov random fields IEEE Trans. Geosci. Remote Sens. 50 3 2012 809 823
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.3
, pp. 809-823
-
-
Li, J.1
Bioucas-Dias, J.M.2
Plaza, A.3
-
5
-
-
0031105722
-
An evaluation of some factors affecting the accuracy of classification by an artificial neural network
-
G.M. Foody, and M.K. Arora An evaluation of some factors affecting the accuracy of classification by an artificial neural network Int. J. Remote Sens. 18 4 1997 799 810
-
(1997)
Int. J. Remote Sens.
, vol.18
, Issue.4
, pp. 799-810
-
-
Foody, G.M.1
Arora, M.K.2
-
6
-
-
84897951081
-
Good practices for estimating area and assessing accuracy of land change
-
P. Olofsson, G.M. Foody, M. Herold, S.V. Stehman, C.E. Woodcock, and M.A. Wulder Good practices for estimating area and assessing accuracy of land change Remote Sens. Environ. 148 2014 42 57
-
(2014)
Remote Sens. Environ.
, vol.148
, pp. 42-57
-
-
Olofsson, P.1
Foody, G.M.2
Herold, M.3
Stehman, S.V.4
Woodcock, C.E.5
Wulder, M.A.6
-
7
-
-
0033372875
-
The significance of border training patterns in classification by a feedforward neural network using back propagation learning
-
G.M. Foody The significance of border training patterns in classification by a feedforward neural network using back propagation learning Int. J. Remote Sens. 20 18 1999 3549 3562
-
(1999)
Int. J. Remote Sens.
, vol.20
, Issue.18
, pp. 3549-3562
-
-
Foody, G.M.1
-
8
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Z.H. Zhou, and M. Li Semi-supervised learning by disagreement Knowl. Informat. Syst. 24 3 2010 415 439
-
(2010)
Knowl. Informat. Syst.
, vol.24
, Issue.3
, pp. 415-439
-
-
Zhou, Z.H.1
Li, M.2
-
9
-
-
4544272407
-
Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification
-
G.M. Foody, and A. Mathur Toward intelligent training of supervised image classifications: directing training data acquisition for SVM classification Remote Sens. Environ. 93 1 2004 107 117
-
(2004)
Remote Sens. Environ.
, vol.93
, Issue.1
, pp. 107-117
-
-
Foody, G.M.1
Mathur, A.2
-
10
-
-
0021575243
-
Classifying northern forests using thematic mapper simulator data
-
R.F. Nelson, R.S. Latty, and G. Mott Classifying northern forests using thematic mapper simulator data Photogramm. Eng. Remote Sens. 50 1984 607 617
-
(1984)
Photogramm. Eng. Remote Sens.
, vol.50
, pp. 607-617
-
-
Nelson, R.F.1
Latty, R.S.2
Mott, G.3
-
12
-
-
0027067290
-
Variability and bias in experimentally measured classifier error rates
-
J. Piper Variability and bias in experimentally measured classifier error rates Pattern Recognit. Lett. 13 10 1992 685 692
-
(1992)
Pattern Recognit. Lett.
, vol.13
, Issue.10
, pp. 685-692
-
-
Piper, J.1
-
13
-
-
84868488966
-
An accuracy assessment of forest disturbance mapping in the western Great Lakes
-
P.L. Zimmerman, I.W. Housman, C.H. Perry, R.A. Chastain, J.B. Webb, and M.V. Finco An accuracy assessment of forest disturbance mapping in the western Great Lakes Remote Sens. Environ. 128 2013 176 185
-
(2013)
Remote Sens. Environ.
, vol.128
, pp. 176-185
-
-
Zimmerman, P.L.1
Housman, I.W.2
Perry, C.H.3
Chastain, R.A.4
Webb, J.B.5
Finco, M.V.6
-
14
-
-
0033586922
-
Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach
-
P.C. Smits, S.G. Dellepiane, and R.A. Schowengerdt Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach Int. J. Remote Sens. 20 8 1999 1461 1486
-
(1999)
Int. J. Remote Sens.
, vol.20
, Issue.8
, pp. 1461-1486
-
-
Smits, P.C.1
Dellepiane, S.G.2
Schowengerdt, R.A.3
-
15
-
-
84856964446
-
Analysis of preprocessing vs. Cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
-
V. López, A. Fernández, J.G. Moreno-Torres, and F. Herrera Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics Expert Syst. Appl. 39 7 2012 6585 6608
-
(2012)
Expert Syst. Appl.
, vol.39
, Issue.7
, pp. 6585-6608
-
-
López, V.1
Fernández, A.2
Moreno-Torres, J.G.3
Herrera, F.4
-
16
-
-
79955570365
-
Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data
-
A.M. Palacios, L. Sánchez, and I. Couso Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data Int. J. Approx. Reason. 52 6 2011 841 862
-
(2011)
Int. J. Approx. Reason.
, vol.52
, Issue.6
, pp. 841-862
-
-
Palacios, A.M.1
Sánchez, L.2
Couso, I.3
-
17
-
-
79957460116
-
Using active learning to adapt remote sensing image classifiers
-
D. Tuia, E. Pasolli, and W.J. Emery Using active learning to adapt remote sensing image classifiers Remote Sens. Environ. 115 9 2011 2232 2242
-
(2011)
Remote Sens. Environ.
, vol.115
, Issue.9
, pp. 2232-2242
-
-
Tuia, D.1
Pasolli, E.2
Emery, W.J.3
-
18
-
-
79955632976
-
A fast cluster-assumption based active-learning technique for classification of remote sensing images
-
S. Patra, and L. Bruzzone A fast cluster-assumption based active-learning technique for classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 49 5 2011 1617 1626
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.5
, pp. 1617-1626
-
-
Patra, S.1
Bruzzone, L.2
-
19
-
-
84924424041
-
Active extreme learning machines for quad-polarimetric SAR imagery classification
-
A. Samat, P. Gamba, P. Du, and J. Luo Active extreme learning machines for quad-polarimetric SAR imagery classification Int. J. Appl. Earth Observ. Geoinf. 35 2015 305 319
-
(2015)
Int. J. Appl. Earth Observ. Geoinf.
, vol.35
, pp. 305-319
-
-
Samat, A.1
Gamba, P.2
Du, P.3
Luo, J.4
-
20
-
-
84927624381
-
A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination
-
K. Tan, J. Hu, J. Li, and P. Du A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination ISPRS J. Photogramm. Remote Sens. 105 2015 19 29
-
(2015)
ISPRS J. Photogramm. Remote Sens.
, vol.105
, pp. 19-29
-
-
Tan, K.1
Hu, J.2
Li, J.3
Du, P.4
-
21
-
-
79957456032
-
A survey of active learning algorithms for supervised remote sensing image classification
-
D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari A survey of active learning algorithms for supervised remote sensing image classification IEEE J. Sel. Topics Signal Process. 5 3 2011 606 617
-
(2011)
IEEE J. Sel. Topics Signal Process.
, vol.5
, Issue.3
, pp. 606-617
-
-
Tuia, D.1
Volpi, M.2
Copa, L.3
Kanevski, M.4
Munoz-Mari, J.5
-
22
-
-
85162011798
-
Active learning by querying informative and representative examples
-
S.J. Huang, R. Jin, and Z.H. Zhou Active learning by querying informative and representative examples Adv. Neural Inf. Process. Syst. 2010 892 900
-
(2010)
Adv. Neural Inf. Process. Syst.
, pp. 892-900
-
-
Huang, S.J.1
Jin, R.2
Zhou, Z.H.3
-
23
-
-
0026278621
-
A review of assessing the accuracy of classifications of remotely sensed data
-
R.G. Congalton A review of assessing the accuracy of classifications of remotely sensed data Remote Sens. Environ. 37 1 1991 35 46
-
(1991)
Remote Sens. Environ.
, vol.37
, Issue.1
, pp. 35-46
-
-
Congalton, R.G.1
-
24
-
-
84901851364
-
Cost-sensitive active learning with lookahead: Optimizing field surveys for remote sensing data classification
-
P. Claudio, B. Abdeslam, D. Michele, G. Terje, N. Erik, and S. Bernhard Cost-sensitive active learning with lookahead: optimizing field surveys for remote sensing data classification IEEE Trans. Geosci. Remote Sens. 52 10 2014 6652 6664
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.10
, pp. 6652-6664
-
-
Claudio, P.1
Abdeslam, B.2
Michele, D.3
Terje, G.4
Erik, N.5
Bernhard, S.6
-
25
-
-
68949155363
-
A self-training approach to cost sensitive uncertainty sampling
-
A. Liu, G. Jun, and J. Ghosh A self-training approach to cost sensitive uncertainty sampling Mach. Learn. 76 2-3 2009 257 270
-
(2009)
Mach. Learn.
, vol.76
, Issue.2-3
, pp. 257-270
-
-
Liu, A.1
Jun, G.2
Ghosh, J.3
-
26
-
-
84902080705
-
Active and semisupervised learning for the classification of remote sensing images
-
C. Persello, and L. Bruzzone Active and semisupervised learning for the classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 54 11 2014 6937 6956
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.11
, pp. 6937-6956
-
-
Persello, C.1
Bruzzone, L.2
-
27
-
-
33745756516
-
The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
-
G.M. Foody, and A. Mathur The use of small training sets containing mixed pixels for accurate hard image classification: training on mixed spectral responses for classification by a SVM Remote Sens. Environ. 103 2 2006 179 189
-
(2006)
Remote Sens. Environ.
, vol.103
, Issue.2
, pp. 179-189
-
-
Foody, G.M.1
Mathur, A.2
-
28
-
-
0030292025
-
Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications
-
G.M. Foody, and M.K. Arora Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications Pattern Recognit. Lett. 17 13 1996 1389 1398
-
(1996)
Pattern Recognit. Lett.
, vol.17
, Issue.13
, pp. 1389-1398
-
-
Foody, G.M.1
Arora, M.K.2
-
29
-
-
0025402179
-
Fuzzy supervised classification of remote sensing images
-
F. Wang Fuzzy supervised classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 28 2 1990 194 201
-
(1990)
IEEE Trans. Geosci. Remote Sens.
, vol.28
, Issue.2
, pp. 194-201
-
-
Wang, F.1
-
30
-
-
10044219654
-
Active learning to recognize multiple types of plankton
-
August
-
T. Luo, K. Kramer, S. Samson, A. Remsen, D.B. Goldgof, L.O. Hall, T. Hopkins, Active learning to recognize multiple types of plankton, in: Proceedings of the IEEE 17th International Conference o Pattern Recognition, ICPR 2004, August 2004, vol. 3, pp. 478-481.
-
(2004)
Proceedings of the IEEE 17th International Conference O Pattern Recognition, ICPR 2004
, vol.3
, pp. 478-481
-
-
Luo, T.1
Kramer, K.2
Samson, S.3
Remsen, A.4
Goldgof, D.B.5
Hall, L.O.6
Hopkins, T.7
-
31
-
-
0007696417
-
Less is more: Active learning with support vector machines
-
Stanford, CA, June
-
G. Schohn, D. Cohn, Less is more: active learning with support vector machines, in: Proceedings of the 17th ICML, Stanford, CA, June 2000, pp. 839-846.
-
(2000)
Proceedings of the 17th ICML
, pp. 839-846
-
-
Schohn, G.1
Cohn, D.2
-
32
-
-
79952041537
-
Batch-mode active-learning methods for the interactive classification of remote sensing images
-
B. Demir, C. Persello, and L. Bruzzone Batch-mode active-learning methods for the interactive classification of remote sensing images IEEE Trans. Geosci. Remote Sens. 49 3 2011 1014 1031
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.3
, pp. 1014-1031
-
-
Demir, B.1
Persello, C.2
Bruzzone, L.3
-
33
-
-
84860318734
-
View generation for multiview maximum disagreement based active learning for hyperspectral image classification
-
W. Di, and M.M. Crawford View generation for multiview maximum disagreement based active learning for hyperspectral image classification IEEE Trans. Geosci. Remote Sens. 50 5 2012 1942 1954
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.5
, pp. 1942-1954
-
-
Di, W.1
Crawford, M.M.2
-
34
-
-
67651183638
-
Active learning methods for remote sensing image classification
-
D. Tuia, F. Ratle, F. Pacifici, M.F. Kanevski, and W.J. Emery Active learning methods for remote sensing image classification IEEE Trans. Geosci. Remote Sens. 47 7 2009 2218 2232
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.7
, pp. 2218-2232
-
-
Tuia, D.1
Ratle, F.2
Pacifici, F.3
Kanevski, M.F.4
Emery, W.J.5
-
35
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin, and P. Laird Learning from noisy examples Mach. Learn. 2 4 1988 343 370
-
(1988)
Mach. Learn.
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
36
-
-
0942266514
-
Support vector data description
-
D.M. Tax, and R.P. Duin Support vector data description Mach. Learn. 54 1 2004 45 66
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.1
Duin, R.P.2
-
37
-
-
21844445229
-
Efficient margin maximizing with boosting
-
G. Rätsch, and M.K. Warmuth Efficient margin maximizing with boosting J. Mach. Learn. Res. 6 2005 2131 2152
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 2131-2152
-
-
Rätsch, G.1
Warmuth, M.K.2
-
38
-
-
84893677824
-
Ensemble-based noise detection: Noise ranking and visual performance evaluation
-
B. Sluban, D. Gamberger, and N. Lavrač Ensemble-based noise detection: noise ranking and visual performance evaluation Data Min. Knowl. Discov. 28 2 2014 265 303
-
(2014)
Data Min. Knowl. Discov.
, vol.28
, Issue.2
, pp. 265-303
-
-
Sluban, B.1
Gamberger, D.2
Lavrač, N.3
-
39
-
-
38049136824
-
Class noise mitigation through instance weighting
-
Springer Berlin Heidelberg
-
U. Rebbapragada, and C.E. Brodley Class noise mitigation through instance weighting In: Joost N. Kok, Jacek Koronacki, Raomon Lopez de Mantaras, Stan Matwin, Dunja Mladenič, Andrzej Skowron (Eds.), Machine Learning: ECML 2007 Springer Berlin Heidelberg 708 715
-
(2007)
Joost N. Kok, Jacek Koronacki, Raomon Lopez de Mantaras, Stan Matwin, Dunja Mladenič, Andrzej Skowron (Eds.), Machine Learning: ECML
, pp. 708-715
-
-
Rebbapragada, U.1
Brodley, C.E.2
-
40
-
-
84901857500
-
Spectral-Spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization
-
M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J.M. Bioucas-Dias, and X. Li Spectral-Spatial classification of hyperspectral data using local and global probabilities for mixed pixel characterization IEEE Trans. Geosci. Remote Sens. 52 10 2014 6298 6314
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, Issue.10
, pp. 6298-6314
-
-
Khodadadzadeh, M.1
Li, J.2
Plaza, A.3
Ghassemian, H.4
Bioucas-Dias, J.M.5
Li, X.6
-
41
-
-
84955755893
-
Complementarity of discriminative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images
-
J. Li, I. Dópido, P. Gamba, A. Plaza, Complementarity of discriminative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images. IEEE Trans. Geosci. Remote Sens. (2009) 1-14.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, pp. 1-14
-
-
Li, J.1
-
42
-
-
84955626785
-
A new hybrid strategy combining semisupervised classification and unmixing of hyperspectral data
-
I. Dópido, J. Li, P. Gamba, and A. Plaza A new hybrid strategy combining semisupervised classification and unmixing of hyperspectral data IEEE J. Sel. Topics Appl. Earth Observ. 2004 1 11
-
(2004)
IEEE J. Sel. Topics Appl. Earth Observ.
, pp. 1-11
-
-
Dópido, I.1
Li, J.2
Gamba, P.3
Plaza, A.4
-
43
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
J.M. Nascimento, and J.M. Bioucas Dias Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Trans. Geosci. Remote Sens. 43 4 2005 898 910
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.1
Bioucas Dias, J.M.2
-
44
-
-
2942522160
-
Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE
-
P.E. Dennison, and D.A. Roberts Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE Remote Sens. Environ. 87 2 2003 123 135
-
(2003)
Remote Sens. Environ.
, vol.87
, Issue.2
, pp. 123-135
-
-
Dennison, P.E.1
Roberts, D.A.2
-
45
-
-
84880054014
-
Multidimensional pixel purity index for convex hull estimation and endmember extraction
-
R. Heylen, and P. Scheunders Multidimensional pixel purity index for convex hull estimation and endmember extraction IEEE Trans. Geosci. Remote Sens. 51 7 2013 4059 4069
-
(2013)
IEEE Trans. Geosci. Remote Sens.
, vol.51
, Issue.7
, pp. 4059-4069
-
-
Heylen, R.1
Scheunders, P.2
-
46
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
J.M. Nascimento, and J.M. Bioucas Dias Vertex component analysis: a fast algorithm to unmix hyperspectral data IEEE Trans. Geosci. Remote Sens. 43 4 2005 898 910
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.1
Bioucas Dias, J.M.2
-
47
-
-
67649830104
-
Bioucas-Dias, Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
-
July
-
J. Li, J.M. Bioucas-Dias, Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data, in: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, July 2008, vol. 3, pp. 111-250.
-
(2008)
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium
, vol.3
, pp. 111-250
-
-
Li, J.1
Bioucas-Dias, J.M.2
-
48
-
-
80052087210
-
On combining multiple features for hyperspectral remote sensing image classification
-
L. Zhang, L. Zhang, D. Tao, and X. Huang On combining multiple features for hyperspectral remote sensing image classification IEEE Trans. Geosci. Remote Sens. 50 3 2012 879 893
-
(2012)
IEEE Trans. Geosci. Remote Sens.
, vol.50
, Issue.3
, pp. 879-893
-
-
Zhang, L.1
Zhang, L.2
Tao, D.3
Huang, X.4
|