메뉴 건너뛰기




Volumn 28, Issue 2, 2014, Pages 265-303

Ensemble-based noise detection: Noise ranking and visual performance evaluation

Author keywords

Ensembles; Noise detection; Noise ranking; Precision recall evaluation

Indexed keywords

DATA PREPROCESSING; ENSEMBLES; NOISE DETECTION; NOISE RANKING; OUTLIER IDENTIFICATION; PRECISION-RECALL EVALUATION; RANKING METHODOLOGIES; STANDARD EVALUATIONS;

EID: 84893677824     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10618-012-0299-1     Document Type: Article
Times cited : (70)

References (40)
  • 2
    • 0000046054 scopus 로고    scopus 로고
    • Identifying mislabeled training data
    • 0924.68158
    • Brodley CE, Friedl MA (1999) Identifying mislabeled training data. J Artif Intell Res 11:131-167
    • (1999) J Artif Intell Res , vol.11 , pp. 131-167
    • Brodley, C.E.1    Friedl, M.A.2
  • 3
    • 0021676708 scopus 로고
    • Transient st-segment depression as a marker of myocardial ischemia during daily life
    • 10.1016/S0002-9149(84)80066-1
    • Deanfield J, Shea M, Ribiero P, de Landsheere C, Wilson R, Horlock P, Selwyn A (1984) Transient st-segment depression as a marker of myocardial ischemia during daily life. Am J Cardiol 54(10):1195-1200
    • (1984) Am J Cardiol , vol.54 , Issue.10 , pp. 1195-1200
    • Deanfield, J.1    Shea, M.2    Ribiero, P.3    De Landsheere, C.4    Wilson, R.5    Horlock, P.6    Selwyn, A.7
  • 4
    • 32344434216 scopus 로고    scopus 로고
    • Orange: From experimental machine learning to interactive data mining
    • Boulicaut JF, Esposito F, Giannotti F, Pedreschi D (eds) Springer
    • Demšar J, Zupan B, Leban G, Curk T (2004) Orange: From experimental machine learning to interactive data mining. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D (eds) Knowledge discovery in databases: PKDD 2004, lecture notes in computer science. Springer, vol 3202, pp 537-539
    • (2004) Knowledge Discovery in Databases: PKDD 2004, Lecture Notes in Computer Science , vol.3202 , pp. 537-539
    • Demšar J, Z.1
  • 6
    • 0031139832 scopus 로고    scopus 로고
    • Pruning algorithms for rule learning
    • 10.1023/A:1007329424533
    • Fürnkranz J (1997) Pruning algorithms for rule learning. Mach Learn 27:139-171
    • (1997) Mach Learn , vol.27 , pp. 139-171
    • Fürnkranz, J.1
  • 8
    • 0038433995 scopus 로고    scopus 로고
    • Expert-guided subgroup discovery: Methodology and application
    • 1045.68134
    • Gamberger D, Lavrač N (2002) Expert-guided subgroup discovery: methodology and application. J Artif Intell Res 17:501-527
    • (2002) J Artif Intell Res , vol.17 , pp. 501-527
    • Gamberger, D.1    Lavrač, N.2
  • 10
    • 0034143132 scopus 로고    scopus 로고
    • Noise detection and elimination in data preprocessing: Experiments in medical domains
    • 10.1080/088395100117124
    • Gamberger D, Lavrač N, Džeroski S (2000) Noise detection and elimination in data preprocessing: experiments in medical domains. Appl Artif Intell 14(2):205-223
    • (2000) Appl Artif Intell , vol.14 , Issue.2 , pp. 205-223
    • Gamberger, D.1    Lavrač, N.2    Džeroski, S.3
  • 11
    • 0038500689 scopus 로고    scopus 로고
    • Active subgroup mining: A case study in a coronary heart disease risk group detection
    • 10.1016/S0933-3657(03)00034-4
    • Gamberger D, Lavrač N, Krstačić G (2003) Active subgroup mining: a case study in a coronary heart disease risk group detection. Artif Intell Med 28:27-57
    • (2003) Artif Intell Med , vol.28 , pp. 27-57
    • Gamberger, D.1    Lavrač, N.2    Krstačić, G.3
  • 12
    • 0026105482 scopus 로고
    • An iterative growing and pruning algorithm for classification tree design
    • 10.1109/34.67645
    • Gelfand S, Ravishankar C, Delp E (1991) An iterative growing and pruning algorithm for classification tree design. IEEE Trans Pattern Anal Mach Intell 13:163-174
    • (1991) IEEE Trans Pattern Anal Mach Intell , vol.13 , pp. 163-174
    • Gelfand, S.1    Ravishankar, C.2    Delp, E.3
  • 14
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • 10.1023/B:AIRE.0000045502.10941.a9 1101.68023
    • Hodge V, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85-126
    • (2004) Artif Intell Rev , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 17
    • 84883723652 scopus 로고    scopus 로고
    • Enhancing software quality estimation using ensemble-classifier based noise filtering
    • Khoshgoftaar TM, Zhong S, Joshi V (2005) Enhancing software quality estimation using ensemble-classifier based noise filtering. Intell Data Anal 9(1):3-27
    • (2005) Intell Data Anal , vol.9 , Issue.1 , pp. 3-27
    • Khoshgoftaar, T.M.1    Zhong, S.2    Joshi, V.3
  • 18
    • 33644969450 scopus 로고    scopus 로고
    • Detecting noisy instances with the ensemble filter: A study in software quality estimation
    • 10.1142/S0218194006002677
    • Khoshgoftaar TM, Joshi VH, Seliya N (2006) Detecting noisy instances with the ensemble filter: a study in software quality estimation. Int J Softw Eng Knowl Eng 16(1):53-76
    • (2006) Int J Softw Eng Knowl Eng , vol.16 , Issue.1 , pp. 53-76
    • Khoshgoftaar, T.M.1    Joshi, V.H.2    Seliya, N.3
  • 19
    • 84866883130 scopus 로고    scopus 로고
    • Clowdflows: A cloud based scientific workflow platform
    • Flach P, Bie T, Cristianini N (eds) Springer, Berlin
    • Kranjc J, Podpečan V, Lavrač N (2012) Clowdflows: a cloud based scientific workflow platform. In: Flach P, Bie T, Cristianini N (eds) Machine learning and knowledge discovery in databases, lecture notes in computer science. Springer, Berlin, vol 7524, pp 816-819
    • (2012) Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science , vol.7524 , pp. 816-819
    • Kranjc J, P.1
  • 22
    • 0000188209 scopus 로고    scopus 로고
    • Risk factors and the prevention of coronary heart disease
    • Wayne A, Schlant R, Fuster V (eds)
    • Maron D, Ridker P, Pearson A (1998) Risk factors and the prevention of coronary heart disease. In: Wayne A, Schlant R, Fuster V (eds) HURST'S: the Heart, pp 1175-1195
    • (1998) Hurst'S: The Heart , pp. 1175-1195
    • Maron, D.1    Ridker, P.2    Pearson, A.3
  • 23
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • 10.1023/A:1022604100933
    • Mingers J (1989) An empirical comparison of pruning methods for decision tree induction. Mach Learn 4:227-243
    • (1989) Mach Learn , vol.4 , pp. 227-243
    • Mingers, J.1
  • 25
    • 0005801045 scopus 로고
    • Learning decision rules in noisy domains
    • M. Bramer (eds) Cambridge University Press Cambridge
    • Niblett T, Bratko I (1987) Learning decision rules in noisy domains. In: Bramer M (ed) Research and development in expert systems. Cambridge University Press, Cambridge
    • (1987) Research and Development in Expert Systems
    • Niblett, T.1    Bratko, I.2
  • 27
    • 84857871448 scopus 로고    scopus 로고
    • Detecting contrast patterns in newspaper articles by combining discourse analysis and text mining
    • Pollak S, Coesemans R, Daelemans W, Lavrač N (2011) Detecting contrast patterns in newspaper articles by combining discourse analysis and text mining. Pragmatics 21(4):674-683
    • (2011) Pragmatics , vol.21 , Issue.4 , pp. 674-683
    • Pollak S, C.1
  • 28
    • 0023417432 scopus 로고
    • Simplifying decision trees
    • 10.1016/S0020-7373(87)80053-6
    • Quinlan JR (1987) Simplifying decision trees. Int J Man-Mach Stud 27:221-234
    • (1987) Int J Man-Mach Stud , vol.27 , pp. 221-234
    • Quinlan, J.R.1
  • 32
    • 41749109169 scopus 로고    scopus 로고
    • Class noise detection using frequent itemsets
    • Van Hulse JD, Khoshgoftaar TM (2006) Class noise detection using frequent itemsets. Intell Data Anal 10(6):487-507
    • (2006) Intell Data Anal , vol.10 , Issue.6 , pp. 487-507
    • Van Hulse, J.D.1    Khoshgoftaar, T.M.2
  • 33
    • 33947404760 scopus 로고    scopus 로고
    • The pairwise attribute noise detection algorithm
    • 10.1007/s10115-006-0022-x
    • Van Hulse JD, Khoshgoftaar TM, Huang H (2007) The pairwise attribute noise detection algorithm. Knowl Inf Syst 11(2):171-190
    • (2007) Knowl Inf Syst , vol.11 , Issue.2 , pp. 171-190
    • Van Hulse, J.D.1    Khoshgoftaar, T.M.2    Huang, H.3
  • 35
    • 33746071857 scopus 로고    scopus 로고
    • Ensemble methods for noise elimination in classification problems
    • Windeatt T, Roli F (eds) Springer, Berlin
    • Verbaeten S, Van Assche A (2003) Ensemble methods for noise elimination in classification problems. In: Windeatt T, Roli F (eds) Multiple classifier systems, lecture notes in computer science. Springer, Berlin, vol 2709, pp 317-325
    • (2003) Multiple Classifier Systems, Lecture Notes in Computer Science , vol.2709 , pp. 317-325
    • Verbaeten, S.1    Van Assche, A.2
  • 38
    • 80053159161 scopus 로고    scopus 로고
    • Boosted noise filters for identifying mislabeled data
    • Department of computer science and engineering, Florida Atlantic University
    • Zhong S, Tang W, Khoshgoftaar TM (2005) Boosted noise filters for identifying mislabeled data. Technical report, Department of computer science and engineering, Florida Atlantic University
    • (2005) Technical Report
    • Zhong, S.1    Tang, W.2    Khoshgoftaar, T.M.3
  • 39
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. Attribute noise: A quantitative study of their impacts
    • 10.1007/s10462-004-0751-8 1069.68587
    • Zhu X, Wu X (2004) Class noise vs. attribute noise: a quantitative study of their impacts. Artif Intell Rev 22:177-210
    • (2004) Artif Intell Rev , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.