메뉴 건너뛰기




Volumn 105, Issue , 2015, Pages 38-53

Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features

Author keywords

Ensemble learning; Image classification; Morphological profiles; Polarimetric SAR; Random Forest; Rotation Forest; Textural feature

Indexed keywords

CLASSIFICATION (OF INFORMATION); COVARIANCE MATRIX; DECISION TREES; DOMAIN DECOMPOSITION METHODS; GEOMETRICAL OPTICS; POLARIMETERS; RADAR IMAGING; REMOTE SENSING; ROTATION; SUPPORT VECTOR MACHINES; SYNTHETIC APERTURE RADAR;

EID: 84927582865     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2015.03.002     Document Type: Article
Times cited : (393)

References (46)
  • 1
    • 84899984423 scopus 로고    scopus 로고
    • A generic land-cover classification framework for polarimetric SAR images using the optimum Touzi decomposition parameter subset - an insight on mutual information-based feature selection techniques
    • Banerjee B., Bhattacharya A., Buddhiraju K.M. A generic land-cover classification framework for polarimetric SAR images using the optimum Touzi decomposition parameter subset - an insight on mutual information-based feature selection techniques. IEEE J. Selected Top. Appl. Earth Observ. Remote Sens. 2014, 7(4):1167-1176.
    • (2014) IEEE J. Selected Top. Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1167-1176
    • Banerjee, B.1    Bhattacharya, A.2    Buddhiraju, K.M.3
  • 2
    • 0142009648 scopus 로고    scopus 로고
    • Classification and feature extraction for remote sensing images from urban areas based on morphological transformations
    • Benediktsson J.A., Pesaresi M., Amason K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41(9):1940-1949.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.9 , pp. 1940-1949
    • Benediktsson, J.A.1    Pesaresi, M.2    Amason, K.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 123-140.
    • (1996) Mach. Learn. , pp. 123-140
    • Breiman, L.1
  • 4
    • 84896958540 scopus 로고    scopus 로고
    • Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada
    • Cable J.W., Kovacs J.M., Shang J., Jiao X. Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in Northeastern Ontario, Canada. Remote Sens. 2014, 6(3):2372-2392.
    • (2014) Remote Sens. , vol.6 , Issue.3 , pp. 2372-2392
    • Cable, J.W.1    Kovacs, J.M.2    Shang, J.3    Jiao, X.4
  • 5
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan J.C.W., Paelinckx D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112(6):2999-3011.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 6
    • 1242331304 scopus 로고    scopus 로고
    • Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery
    • Clausi D.A., Yue B. Comparing cooccurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42(1):215-228.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.1 , pp. 215-228
    • Clausi, D.A.1    Yue, B.2
  • 8
    • 0037244288 scopus 로고    scopus 로고
    • Texture-based characterization of urban environments on satellite SAR images
    • Dell'Acqua F., Gamba P. Texture-based characterization of urban environments on satellite SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41(1):153-159.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.1 , pp. 153-159
    • Dell'Acqua, F.1    Gamba, P.2
  • 9
    • 84872703260 scopus 로고    scopus 로고
    • Classification of forest composition using polarimetric decomposition in multiple landscapes
    • Dickinson C., Siqueira P., Clewley D., Lucas R. Classification of forest composition using polarimetric decomposition in multiple landscapes. Remote Sens. Environ. 2013, 131:206-214.
    • (2013) Remote Sens. Environ. , vol.131 , pp. 206-214
    • Dickinson, C.1    Siqueira, P.2    Clewley, D.3    Lucas, R.4
  • 10
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Fauvel M., Benediktsson J.A., Chanussot J., Sveinsson J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46(11):3804-3814.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 11
    • 33747921774 scopus 로고    scopus 로고
    • A three-component scattering model for polarimetric SAR data
    • Freeman A., Durden S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36(3):963-973.
    • (1998) IEEE Trans. Geosci. Remote Sens. , vol.36 , Issue.3 , pp. 963-973
    • Freeman, A.1    Durden, S.L.2
  • 12
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80(1):185-201.
    • (2002) Remote Sens. Environ. , vol.80 , Issue.1 , pp. 185-201
    • Foody, G.M.1
  • 15
    • 84881042152 scopus 로고    scopus 로고
    • Texture classification of PolSAR data based on sparse coding of wavelet polarization textons
    • He C., Li S., Liao Z., Liao M. Texture classification of PolSAR data based on sparse coding of wavelet polarization textons. IEEE Trans. Geosci. Remote Sens. 2013, 51(8):4576-4590.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.8 , pp. 4576-4590
    • He, C.1    Li, S.2    Liao, Z.3    Liao, M.4
  • 16
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the Random Forest framework for classification of hyperspectral data
    • Ham J., Chen Y., Crawford M.M., Ghosh J. Investigation of the Random Forest framework for classification of hyperspectral data. Geosci. Remote Sens., IEEE Trans. 2005, 43(3):492-501.
    • (2005) Geosci. Remote Sens., IEEE Trans. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 17
    • 84908658726 scopus 로고    scopus 로고
    • Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification
    • Jin H., Mountrakis G., Stehman S.V. Assessing integration of intensity, polarimetric scattering, interferometric coherence and spatial texture metrics in PALSAR-derived land cover classification. ISPRS J. Photogram. Remote Sens. 2014, 98:70-84.
    • (2014) ISPRS J. Photogram. Remote Sens. , vol.98 , pp. 70-84
    • Jin, H.1    Mountrakis, G.2    Stehman, S.V.3
  • 18
    • 84886933697 scopus 로고    scopus 로고
    • Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data
    • Jones B.M., Gusmeroli A., Arp C.D., Strozzi T., Grosse G., Gaglioti B.V., Whitman M.S. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data. Int. J. Remote Sens. 2013, 34(23):8267-8279.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.23 , pp. 8267-8279
    • Jones, B.M.1    Gusmeroli, A.2    Arp, C.D.3    Strozzi, T.4    Grosse, G.5    Gaglioti, B.V.6    Whitman, M.S.7
  • 19
    • 84875922650 scopus 로고    scopus 로고
    • An assessment of the effectiveness of a Rotation Forest ensemble for land-use and land-cover mapping
    • Kavzoglu T., Colkesen I. An assessment of the effectiveness of a Rotation Forest ensemble for land-use and land-cover mapping. Int. J. Remote Sens. 2013, 34(12):4224-4241.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.12 , pp. 4224-4241
    • Kavzoglu, T.1    Colkesen, I.2
  • 22
    • 0033357270 scopus 로고    scopus 로고
    • Polarimetric SAR speckle filtering and its implication for classification
    • Lee J.S., Grunes M.R., De Grandi G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 1999, 37(5):2363-2373.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.5 , pp. 2363-2373
    • Lee, J.S.1    Grunes, M.R.2    De Grandi, G.3
  • 23
    • 42749094856 scopus 로고    scopus 로고
    • Cancer classification using Rotation Forest
    • Liu K.H., Huang D.S. Cancer classification using Rotation Forest. Comput. Biol. Med. 2008, 38(5):601-610.
    • (2008) Comput. Biol. Med. , vol.38 , Issue.5 , pp. 601-610
    • Liu, K.H.1    Huang, D.S.2
  • 24
    • 84867069504 scopus 로고    scopus 로고
    • Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the Random Forests algorithm
    • Loosvelt L., Peters J., Skriver H., De Baets B., Verhoest N.E. Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the Random Forests algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50(10):4185-4200.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 4185-4200
    • Loosvelt, L.1    Peters, J.2    Skriver, H.3    De Baets, B.4    Verhoest, N.E.5
  • 25
    • 0030213052 scopus 로고    scopus 로고
    • Texture features for browsing and retrieval of image data
    • Manjunath B.S., Ma W.Y. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18(8):837-842.
    • (1996) IEEE Trans. Pattern Anal. Mach. Intell. , vol.18 , Issue.8 , pp. 837-842
    • Manjunath, B.S.1    Ma, W.Y.2
  • 26
    • 70549104881 scopus 로고    scopus 로고
    • The contribution of ALOS PALSAR multi polarization and polarimetric data to crop classification
    • McNairn H., Shang J., Jiao X., Champagne C. The contribution of ALOS PALSAR multi polarization and polarimetric data to crop classification. IEEE Trans. Geosci. Remote Sens. 2009, 47(12):3981-3992.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.12 , pp. 3981-3992
    • McNairn, H.1    Shang, J.2    Jiao, X.3    Champagne, C.4
  • 27
    • 84868092003 scopus 로고    scopus 로고
    • Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach
    • Niu X., Ban Y. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int. J. Remote Sens. 2013, 34(1):1-26.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.1 , pp. 1-26
    • Niu, X.1    Ban, Y.2
  • 29
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest classifier for remote sensing classification
    • Pal M. Random Forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26(1):217-222.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 30
    • 84870840688 scopus 로고    scopus 로고
    • Improving Wishart classification of polarimetric SAR data using the Hopfield Neural Network optimization approach
    • Pajares G., López-Martínez C., Sánchez-Lladó F.J., Molina Í. Improving Wishart classification of polarimetric SAR data using the Hopfield Neural Network optimization approach. Remote Sens. 2012, 4(11):3571-3595.
    • (2012) Remote Sens. , vol.4 , Issue.11 , pp. 3571-3595
    • Pajares, G.1    López-Martínez, C.2    Sánchez-Lladó, F.J.3    Molina, Í.4
  • 31
    • 82655178425 scopus 로고    scopus 로고
    • A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data
    • Qi Z., Yeh A.G.O., Li X., Lin Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ. 2012, 118:21-39.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 21-39
    • Qi, Z.1    Yeh, A.G.O.2    Li, X.3    Lin, Z.4
  • 32
    • 33644549989 scopus 로고    scopus 로고
    • Is there a best classifier
    • SPIE 5982, Image and Signal Processing for Remote Sensing, XI, 59820A (October).
    • Richards, J., 2005. Is there a best classifier?. Proc. SPIE 5982, Image and Signal Processing for Remote Sensing, XI, 59820A (October).
    • (2005) Proc
    • Richards, J.1
  • 35
    • 84898442749 scopus 로고    scopus 로고
    • Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification
    • Samat A., Du P., Baig M.H.A., Chakravarty S., Cheng L. Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification. Photogram. Eng. Remote Sens. 2014, 80(3):239-251.
    • (2014) Photogram. Eng. Remote Sens. , vol.80 , Issue.3 , pp. 239-251
    • Samat, A.1    Du, P.2    Baig, M.H.A.3    Chakravarty, S.4    Cheng, L.5
  • 36
    • 84886422702 scopus 로고    scopus 로고
    • The potential of linear discriminative Laplacian eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas
    • Shi L., Zhang L., Zhao L., Yang J., Li P., Zhang L. The potential of linear discriminative Laplacian eigenmaps dimensionality reduction in polarimetric SAR classification for agricultural areas. ISPRS J. Photogram. Remote Sens. 2013, 86:124-135.
    • (2013) ISPRS J. Photogram. Remote Sens. , vol.86 , pp. 124-135
    • Shi, L.1    Zhang, L.2    Zhao, L.3    Yang, J.4    Li, P.5    Zhang, L.6
  • 37
    • 84894058457 scopus 로고    scopus 로고
    • Classification of dual-and single polarized SAR images by incorporating visual features
    • Uhlmann S., Kiranyaz S. Classification of dual-and single polarized SAR images by incorporating visual features. ISPRS J. Photogram. Remote Sens. 2014, 90:10-22.
    • (2014) ISPRS J. Photogram. Remote Sens. , vol.90 , pp. 10-22
    • Uhlmann, S.1    Kiranyaz, S.2
  • 38
    • 84899769183 scopus 로고    scopus 로고
    • Random Forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data
    • van Beijma S., Comber A., Lamb A. Random Forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149:118-129.
    • (2014) Remote Sens. Environ. , vol.149 , pp. 118-129
    • van Beijma, S.1    Comber, A.2    Lamb, A.3
  • 39
    • 80052319876 scopus 로고    scopus 로고
    • Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues
    • van Zyl J.J., Arii M., Kim Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues. IEEE Trans. Geosci. Remote Sens. 2011, 49(9):3452-3459.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.9 , pp. 3452-3459
    • van Zyl, J.J.1    Arii, M.2    Kim, Y.3
  • 40
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • Waske B., Braun M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogram. Remote Sens. 2009, 64(5):450-457.
    • (2009) ISPRS J. Photogram. Remote Sens. , vol.64 , Issue.5 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 41
    • 84888299612 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on Rotation Forest
    • Xia J., Du P., He X., Chanussot J. Hyperspectral remote sensing image classification based on Rotation Forest. IEEE Geosci. Remote Sens. Lett. 2014, 11(1):239-243.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.1 , pp. 239-243
    • Xia, J.1    Du, P.2    He, X.3    Chanussot, J.4
  • 43
    • 37349035781 scopus 로고    scopus 로고
    • An empirical study of using Rotation Forest to improve regressors
    • Zhang C.X., Zhang J.S., Wang G.W. An empirical study of using Rotation Forest to improve regressors. Appl. Math. Comput. 2008, 195(2):618-629.
    • (2008) Appl. Math. Comput. , vol.195 , Issue.2 , pp. 618-629
    • Zhang, C.X.1    Zhang, J.S.2    Wang, G.W.3
  • 44
    • 84855430126 scopus 로고    scopus 로고
    • Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data
    • Zhu Z., Woodcock C.E., Rogan J., Kellndorfer J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117:72-82.
    • (2012) Remote Sens. Environ. , vol.117 , pp. 72-82
    • Zhu, Z.1    Woodcock, C.E.2    Rogan, J.3    Kellndorfer, J.4
  • 45
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.H., Wu J., Tang W. Ensembling neural networks: many could be better than all. Artif. Intell. 2002, 137(1):239-263.
    • (2002) Artif. Intell. , vol.137 , Issue.1 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 46
    • 80052682753 scopus 로고    scopus 로고
    • Polarimetric SAR image classification using multifeatures combination and extremely randomized clustering forests
    • Zou T., Yang W., Dai D., Sun H. Polarimetric SAR image classification using multifeatures combination and extremely randomized clustering forests. EURASIP J. Adv. Signal Process. 2010, 2010:4.
    • (2010) EURASIP J. Adv. Signal Process. , vol.2010 , pp. 4
    • Zou, T.1    Yang, W.2    Dai, D.3    Sun, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.