메뉴 건너뛰기




Volumn 380, Issue 7-8, 2016, Pages 903-909

Energy consumption analysis for various memristive networks under different learning strategies

Author keywords

Brain inspired computation; Energy consumption; Memristor; Neural networks; Neuromorphic engineering

Indexed keywords

BRAIN; ENERGY EFFICIENCY; ENERGY UTILIZATION; MEMRISTORS; NEURAL NETWORKS;

EID: 84955682383     PISSN: 03759601     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physleta.2015.12.024     Document Type: Article
Times cited : (38)

References (35)
  • 2
    • 84900521434 scopus 로고    scopus 로고
    • Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations
    • B.V. Benjamin, and et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations Proc. IEEE 102 2014 699 716
    • (2014) Proc. IEEE , vol.102 , pp. 699-716
    • Benjamin, B.V.1
  • 3
    • 84900504664 scopus 로고    scopus 로고
    • The SpiNNaker project
    • S.B. Furber, and et al. The SpiNNaker project Proc. IEEE 102 2014 652 665
    • (2014) Proc. IEEE , vol.102 , pp. 652-665
    • Furber, S.B.1
  • 4
    • 84905915006 scopus 로고    scopus 로고
    • A million spiking-neuron integrated circuit with a scalable communication network and interface
    • P.A. Merolla, and et al. A million spiking-neuron integrated circuit with a scalable communication network and interface Science 345 2014 668 673
    • (2014) Science , vol.345 , pp. 668-673
    • Merolla, P.A.1
  • 5
    • 84861089198 scopus 로고    scopus 로고
    • Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
    • D. Kuzum, and et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing Nano Lett. 12 2012 2179 2186
    • (2012) Nano Lett. , vol.12 , pp. 2179-2186
    • Kuzum, D.1
  • 6
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hebbian learning through spike-timing-dependent synaptic plasticity
    • S. Song, K.D. Miller, and L.F. Abbott Competitive Hebbian learning through spike-timing-dependent synaptic plasticity Nat. Neurosci. 3 2000 919 926
    • (2000) Nat. Neurosci. , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.D.2    Abbott, L.F.3
  • 8
    • 43049126833 scopus 로고    scopus 로고
    • The missing memristor found
    • D.B. Strukov, and et al. The missing memristor found Nature 453 2008 80 83
    • (2008) Nature , vol.453 , pp. 80-83
    • Strukov, D.B.1
  • 9
    • 77951026760 scopus 로고    scopus 로고
    • Nanoscale memristor device as synapse in neuromorphic systems
    • S.H. Jo, and et al. Nanoscale memristor device as synapse in neuromorphic systems Nano Lett. 10 2010 1297 1301
    • (2010) Nano Lett. , vol.10 , pp. 1297-1301
    • Jo, S.H.1
  • 10
    • 84885651650 scopus 로고    scopus 로고
    • Nanoscale electronic synapses using phase change devices
    • B.L. Jackson, and et al. Nanoscale electronic synapses using phase change devices ACM J. Emerg. Technol. Comput. Syst. 9 2013
    • (2013) ACM J. Emerg. Technol. Comput. Syst. , vol.9
    • Jackson, B.L.1
  • 11
    • 84883517906 scopus 로고    scopus 로고
    • Synaptic electronics: Materials, devices and applications
    • D. Kuzum, S. Yu, and H.P. Wong Synaptic electronics: materials, devices and applications Nanotechnology 24 2013
    • (2013) Nanotechnology , vol.24
    • Kuzum, D.1    Yu, S.2    Wong, H.P.3
  • 12
    • 79960834019 scopus 로고    scopus 로고
    • An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation
    • S. Yu, and et al. An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation IEEE Trans. Electron Devices 58 2011 2729 2737
    • (2011) IEEE Trans. Electron Devices , vol.58 , pp. 2729-2737
    • Yu, S.1
  • 13
    • 84856720048 scopus 로고    scopus 로고
    • A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing
    • F. Alibart, and et al. A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing Adv. Funct. Mater. 22 2012 609 616
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 609-616
    • Alibart, F.1
  • 15
    • 84855772398 scopus 로고    scopus 로고
    • A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications
    • K. Kim, and et al. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications Nano Lett. 12 2012 389 395
    • (2012) Nano Lett. , vol.12 , pp. 389-395
    • Kim, K.1
  • 16
    • 84870294722 scopus 로고    scopus 로고
    • Low-energy robust neuromorphic computation using synaptic devices
    • D. Kuzum, and et al. Low-energy robust neuromorphic computation using synaptic devices IEEE Trans. Electron Devices 59 2012 3489 3494
    • (2012) IEEE Trans. Electron Devices , vol.59 , pp. 3489-3494
    • Kuzum, D.1
  • 17
    • 84921819141 scopus 로고    scopus 로고
    • Artificial synapse network on inorganic proton conductor for neuromorphic systems
    • L.Q. Zhu, and et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems Nat. Commun. 5 2014 3158
    • (2014) Nat. Commun. , vol.5
    • Zhu, L.Q.1
  • 18
  • 19
    • 84896979826 scopus 로고    scopus 로고
    • Pattern classification by memristive crossbar circuits using ex situ and in situ training
    • F. Alibart, E. Zamanidoost, and D.B. Strukov Pattern classification by memristive crossbar circuits using ex situ and in situ training Nat. Commun. 4 2013 2072
    • (2013) Nat. Commun. , vol.4
    • Alibart, F.1    Zamanidoost, E.2    Strukov, D.B.3
  • 20
    • 84934988705 scopus 로고    scopus 로고
    • Complex learning in bio-plausible memristive networks
    • L. Deng, and et al. Complex learning in bio-plausible memristive networks Sci. Rep. 5 2015 10684
    • (2015) Sci. Rep. , vol.5
    • Deng, L.1
  • 21
    • 80455149790 scopus 로고    scopus 로고
    • A digital neurosynaptic core using embedded crossbar memory with 45 pJ per spike in 45 Nm
    • CICC
    • P. Merolla, and et al. A digital neurosynaptic core using embedded crossbar memory with 45 pJ per spike in 45 Nm 2011 IEEE Custom Integrated Circuits Conf. CICC 2011
    • (2011) 2011 IEEE Custom Integrated Circuits Conf.
    • Merolla, P.1
  • 22
    • 84880924425 scopus 로고    scopus 로고
    • SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation
    • E. Painkras, and et al. SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation IEEE J. Solid-State Circuits 48 2013 1943 1953
    • (2013) IEEE J. Solid-State Circuits , vol.48 , pp. 1943-1953
    • Painkras, E.1
  • 23
    • 79955538512 scopus 로고    scopus 로고
    • Low-power switching of phase-change materials with carbon nanotube electrodes
    • F. Xiong, and et al. Low-power switching of phase-change materials with carbon nanotube electrodes Science 332 2011 568 570
    • (2011) Science , vol.332 , pp. 568-570
    • Xiong, F.1
  • 24
    • 84860744210 scopus 로고    scopus 로고
    • Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices
    • M.D. Pickett, and R.S. Williams Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices Nanotechnology 23 2012
    • (2012) Nanotechnology , vol.23
    • Pickett, M.D.1    Williams, R.S.2
  • 27
    • 79960642436 scopus 로고    scopus 로고
    • Short-term plasticity and long-term potentiation mimicked in single inorganic synapses
    • T. Ohno, and et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses Nat. Mater. 10 2011 591 595
    • (2011) Nat. Mater. , vol.10 , pp. 591-595
    • Ohno, T.1
  • 28
    • 84861125089 scopus 로고    scopus 로고
    • Metal-oxide RRAM
    • H.S.P. Wong, and et al. Metal-oxide RRAM Proc. IEEE 100 2012 1951 1970
    • (2012) Proc. IEEE , vol.100 , pp. 1951-1970
    • Wong, H.S.P.1
  • 29
    • 84929095672 scopus 로고    scopus 로고
    • Training and operation of an integrated neuromorphic network based on metal-oxide memristors
    • M. Prezioso, and et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors Nature 521 2015 61 64
    • (2015) Nature , vol.521 , pp. 61-64
    • Prezioso, M.1
  • 30
    • 46749093701 scopus 로고    scopus 로고
    • Memristive switching mechanism for metal/oxide/metal nanodevices
    • J.J. Yang, and et al. Memristive switching mechanism for metal/oxide/metal nanodevices Nat. Nanotechnol. 3 2008 429 433
    • (2008) Nat. Nanotechnol. , vol.3 , pp. 429-433
    • Yang, J.J.1
  • 31
    • 84857012303 scopus 로고    scopus 로고
    • Energy efficient programming of nanoelectronic synaptic devices for large-scale implementation of associative and temporal sequence learning
    • D. Kuzum, R.G.D. Jeyasingh, and H.S.P. Wong Energy efficient programming of nanoelectronic synaptic devices for large-scale implementation of associative and temporal sequence learning 2011 IEEE Int. Electron Devices Meeting (IEDM) 2011
    • (2011) 2011 IEEE Int. Electron Devices Meeting (IEDM)
    • Kuzum, D.1    Jeyasingh, R.G.D.2    Wong, H.S.P.3
  • 32
    • 84876895659 scopus 로고    scopus 로고
    • Memristor bridge synapse-based neural network and its learning
    • S.P. Adhikari, and et al. Memristor bridge synapse-based neural network and its learning IEEE Trans. Neural Netw. Learn. Syst. 23 2012 1426 1435
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , pp. 1426-1435
    • Adhikari, S.P.1
  • 34
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, and R.R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 2006 504 507
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 35
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • D. Sussillo, and L.F. Abbott Generating coherent patterns of activity from chaotic neural networks Neuron 63 2009 544 557
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.