메뉴 건너뛰기




Volumn 7, Issue 3, 2014, Pages 705-714

Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis

Author keywords

[No Author keywords available]

Indexed keywords

CYTOCHROME C; ELONGATION FACTOR; MESSENGER RNA; METHYLTRANSFERASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; RIBOSOME PROTEIN; ADENOSINE TRIPHOSPHATE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SACCHAROMYCES CEREVISIAE PROTEIN; TRANSCRIPTION FACTOR; AMINO ACID; CARBON DIOXIDE; TRICARBOXYLIC ACID;

EID: 84899925866     PISSN: None     EISSN: 22111247     Source Type: Journal    
DOI: 10.1016/j.celrep.2014.03.057     Document Type: Article
Times cited : (74)

References (66)
  • 2
    • 0025954883 scopus 로고
    • Compartmentation of folate-mediated one-carbon metabolism in eukaryotes
    • Appling D.R. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 1991, 5:2645-2651.
    • (1991) FASEB J. , vol.5 , pp. 2645-2651
    • Appling, D.R.1
  • 5
    • 44349186331 scopus 로고    scopus 로고
    • Influence of genotype and nutrition on survival and metabolism of starving yeast
    • Boer V.M., Amini S., Botstein D. Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc. Natl. Acad. Sci. USA 2008, 105:6930-6935.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 6930-6935
    • Boer, V.M.1    Amini, S.2    Botstein, D.3
  • 7
    • 0030945198 scopus 로고    scopus 로고
    • Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species
    • Brand K.A., Hermfisse U. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. 1997, 11:388-395.
    • (1997) FASEB J. , vol.11 , pp. 388-395
    • Brand, K.A.1    Hermfisse, U.2
  • 8
    • 18244376808 scopus 로고    scopus 로고
    • Homeostatic Adjustment and Metabolic Remodeling in Glucose-limited Yeast Cultures
    • 19
    • Brauer M.J., Saldanha A.J., Dolinski K., Botstein D. Homeostatic Adjustment and Metabolic Remodeling in Glucose-limited Yeast Cultures. Molecular Biology of the Cell 2005, 16:2503-2517. 19.
    • (2005) Molecular Biology of the Cell , vol.16 , pp. 2503-2517
    • Brauer, M.J.1    Saldanha, A.J.2    Dolinski, K.3    Botstein, D.4
  • 10
    • 84875325075 scopus 로고    scopus 로고
    • The last generation of bacterial growth in limiting nutrient
    • Bren A., Hart Y., Dekel E., Koster D., Alon U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol. 2013, 7:27.
    • (2013) BMC Syst. Biol. , vol.7 , pp. 27
    • Bren, A.1    Hart, Y.2    Dekel, E.3    Koster, D.4    Alon, U.5
  • 11
    • 84855858773 scopus 로고    scopus 로고
    • Continuous and long-term volume measurements with a commercial Coulter counter
    • Bryan A.K., Engler A., Gulati A., Manalis S.R. Continuous and long-term volume measurements with a commercial Coulter counter. PLoS ONE 2012, 7:e29866.
    • (2012) PLoS ONE , vol.7
    • Bryan, A.K.1    Engler, A.2    Gulati, A.3    Manalis, S.R.4
  • 12
    • 0022273124 scopus 로고
    • In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae
    • Campbell S.L., Jones K.A., Shulman R.G. In vivo 31P nuclear magnetic resonance saturation transfer measurements of phosphate exchange reactions in the yeast Saccharomyces cerevisiae. FEBS Lett. 1985, 193:189-193.
    • (1985) FEBS Lett. , vol.193 , pp. 189-193
    • Campbell, S.L.1    Jones, K.A.2    Shulman, R.G.3
  • 15
    • 0013936130 scopus 로고
    • The Crabtree effect: a regulatory system in yeast
    • De Deken R.H. The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 1966, 44:149-156.
    • (1966) J. Gen. Microbiol. , vol.44 , pp. 149-156
    • De Deken, R.H.1
  • 16
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • DeBerardinis R.J., Mancuso A., Daikhin E., Nissim I., Yudkoff M., Wehrli S., Thompson C.B. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 2007, 104:19345-19350.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 19345-19350
    • DeBerardinis, R.J.1    Mancuso, A.2    Daikhin, E.3    Nissim, I.4    Yudkoff, M.5    Wehrli, S.6    Thompson, C.B.7
  • 17
    • 0344824417 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network
    • Famili I., Förster J., Nielsen J., Palsson B.O. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 2003, 100:13134-13139.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 13134-13139
    • Famili, I.1    Förster, J.2    Nielsen, J.3    Palsson, B.O.4
  • 18
    • 0027160524 scopus 로고
    • Characterization of the folate-dependent mitochondrial oxidation of carbon 3 of serine
    • García-Martínez L.F., Appling D.R. Characterization of the folate-dependent mitochondrial oxidation of carbon 3 of serine. Biochemistry 1993, 32:4671-4676.
    • (1993) Biochemistry , vol.32 , pp. 4671-4676
    • García-Martínez, L.F.1    Appling, D.R.2
  • 19
    • 8144228566 scopus 로고    scopus 로고
    • Why do cancers have high aerobic glycolysis?
    • Gatenby R.A., Gillies R.J. Why do cancers have high aerobic glycolysis?. Nat. Rev. Cancer 2004, 4:891-899.
    • (2004) Nat. Rev. Cancer , vol.4 , pp. 891-899
    • Gatenby, R.A.1    Gillies, R.J.2
  • 20
    • 0021927222 scopus 로고
    • Bioenergetic studies of mitochondrial oxidative phosphorylation using 31phosphorus NMR
    • Gyulai L., Roth Z., Leigh J.S., Chance B. Bioenergetic studies of mitochondrial oxidative phosphorylation using 31phosphorus NMR. J. Biol. Chem. 1985, 260:3947-3954.
    • (1985) J. Biol. Chem. , vol.260 , pp. 3947-3954
    • Gyulai, L.1    Roth, Z.2    Leigh, J.S.3    Chance, B.4
  • 21
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011, 144:646-674.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 23
    • 71449083602 scopus 로고    scopus 로고
    • Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae
    • Heyland J., Fu J., Blank L.M. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology 2009, 155:3827-3837.
    • (2009) Microbiology , vol.155 , pp. 3827-3837
    • Heyland, J.1    Fu, J.2    Blank, L.M.3
  • 24
    • 11144263646 scopus 로고    scopus 로고
    • P/O ratios of mitochondrial oxidative phosphorylation. Biochimica et Biophysica Acta (BBA)-
    • Hinkle P. P/O ratios of mitochondrial oxidative phosphorylation. Biochimica et Biophysica Acta (BBA) Bioenergetics 2005, 1706:1-11.
    • (2005) Bioenergetics , vol.1706 , pp. 1-11
    • Hinkle, P.1
  • 27
    • 0028351736 scopus 로고
    • Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae
    • Ju Q., Warner J.R. Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae. Yeast 1994, 10:151-157.
    • (1994) Yeast , vol.10 , pp. 151-157
    • Ju, Q.1    Warner, J.R.2
  • 28
    • 35348861958 scopus 로고
    • The oxidation of pyruvate in pigeon breast muscle
    • Krebs H.A., Eggleston L.V. The oxidation of pyruvate in pigeon breast muscle. Biochem. J. 1940, 34:442-459.
    • (1940) Biochem. J. , vol.34 , pp. 442-459
    • Krebs, H.A.1    Eggleston, L.V.2
  • 29
    • 0014653793 scopus 로고
    • Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae
    • Küenzi M.T., Fiechter A. Changes in carbohydrate composition and trehalase-activity during the budding cycle of Saccharomyces cerevisiae. Arch. Mikrobiol. 1969, 64:396-407.
    • (1969) Arch. Mikrobiol. , vol.64 , pp. 396-407
    • Küenzi, M.T.1    Fiechter, A.2
  • 31
    • 64049092699 scopus 로고    scopus 로고
    • Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast
    • Lu C., Brauer M.J., Botstein D. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol. Biol. Cell 2009, 20:891-903.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 891-903
    • Lu, C.1    Brauer, M.J.2    Botstein, D.3
  • 32
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt S.Y., Vander Heiden M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27:441-464.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 34
    • 78649692853 scopus 로고    scopus 로고
    • On getting there from here
    • McKnight S.L. On getting there from here. Science 2010, 330:1338-1339.
    • (2010) Science , vol.330 , pp. 1338-1339
    • McKnight, S.L.1
  • 35
  • 36
    • 0001639179 scopus 로고
    • The Growth of Bacterial Cultures
    • Monod J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3:371-394.
    • (1949) Annu. Rev. Microbiol. , vol.3 , pp. 371-394
    • Monod, J.1
  • 38
    • 0021792065 scopus 로고
    • The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells
    • Newsholme E.A., Crabtree B., Ardawi M.S. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci. Rep. 1985, 5:393-400.
    • (1985) Biosci. Rep. , vol.5 , pp. 393-400
    • Newsholme, E.A.1    Crabtree, B.2    Ardawi, M.S.3
  • 39
    • 77954636295 scopus 로고    scopus 로고
    • There is a steady-state transcriptome in exponentially growing yeast cells
    • Pelechano V., Pérez-Ortín J.E. There is a steady-state transcriptome in exponentially growing yeast cells. Yeast 2010, 27:413-422.
    • (2010) Yeast , vol.27 , pp. 413-422
    • Pelechano, V.1    Pérez-Ortín, J.E.2
  • 40
    • 0035917865 scopus 로고    scopus 로고
    • Cooperation and competition in the evolution of ATP-producing pathways
    • Pfeiffer T., Schuster S., Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science 2001, 292:504-507.
    • (2001) Science , vol.292 , pp. 504-507
    • Pfeiffer, T.1    Schuster, S.2    Bonhoeffer, S.3
  • 41
    • 0028781629 scopus 로고
    • i → AT P flux in lamb myocardium in vivo
    • i → AT P flux in lamb myocardium in vivo. Biochim. Biophys. Acta 1994, 1185:221-227.
    • (1994) Biochim. Biophys. Acta , vol.1185 , pp. 221-227
    • Portman, M.A.1
  • 42
    • 33751529756 scopus 로고    scopus 로고
    • Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
    • Pujol-Carrion N., Belli G., Herrero E., Nogues A., de la Torre-Ruiz M.A. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell Sci. 2006, 119:4554-4564.
    • (2006) J. Cell Sci. , vol.119 , pp. 4554-4564
    • Pujol-Carrion, N.1    Belli, G.2    Herrero, E.3    Nogues, A.4    de la Torre-Ruiz, M.A.5
  • 43
    • 0347419305 scopus 로고    scopus 로고
    • The molecular machinery of Keilin's respiratory chain
    • Rich P.R. The molecular machinery of Keilin's respiratory chain. Biochem. Soc. Trans. 2003, 31:1095-1105.
    • (2003) Biochem. Soc. Trans. , vol.31 , pp. 1095-1105
    • Rich, P.R.1
  • 45
    • 78449268845 scopus 로고    scopus 로고
    • Interdependence of cell growth and gene expression: origins and consequences
    • Scott M., Gunderson C.W., Mateescu E.M., Zhang Z., Hwa T. Interdependence of cell growth and gene expression: origins and consequences. Science 2010, 330:1099-1102.
    • (2010) Science , vol.330 , pp. 1099-1102
    • Scott, M.1    Gunderson, C.W.2    Mateescu, E.M.3    Zhang, Z.4    Hwa, T.5
  • 46
    • 77953115788 scopus 로고    scopus 로고
    • Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth
    • Shachrai I., Zaslaver A., Alon U., Dekel E. Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol. Cell 2010, 38:758-767.
    • (2010) Mol. Cell , vol.38 , pp. 758-767
    • Shachrai, I.1    Zaslaver, A.2    Alon, U.3    Dekel, E.4
  • 47
    • 0029665879 scopus 로고    scopus 로고
    • 31P NMR magnetization transfer study of the control of ATP turnover in Saccharomyces cerevisiae
    • Sheldon J.G., Williams S.P., Fulton A.M., Brindle K.M. 31P NMR magnetization transfer study of the control of ATP turnover in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1996, 93:6399-6404.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 6399-6404
    • Sheldon, J.G.1    Williams, S.P.2    Fulton, A.M.3    Brindle, K.M.4
  • 48
    • 79953661070 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect
    • Shlomi T., Benyamini T., Gottlieb E., Sharan R., Ruppin E. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput. Biol. 2011, 7:e1002018.
    • (2011) PLoS Comput. Biol. , vol.7
    • Shlomi, T.1    Benyamini, T.2    Gottlieb, E.3    Sharan, R.4    Ruppin, E.5
  • 50
    • 79959199873 scopus 로고    scopus 로고
    • Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast
    • Slavov N., Botstein D. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol. Biol. Cell 2011, 22:1997-2009.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1997-2009
    • Slavov, N.1    Botstein, D.2
  • 51
    • 84872329554 scopus 로고    scopus 로고
    • Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression
    • Slavov N., Botstein D. Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression. Mol. Biol. Cell 2013, 24:157-168.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 157-168
    • Slavov, N.1    Botstein, D.2
  • 52
    • 82755168799 scopus 로고    scopus 로고
    • Metabolic cycling without cell division cycling in respiring yeast
    • Slavov N., Macinskas J., Caudy A., Botstein D. Metabolic cycling without cell division cycling in respiring yeast. Proc. Natl. Acad. Sci. USA 2011, 108:19090-19095.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 19090-19095
    • Slavov, N.1    Macinskas, J.2    Caudy, A.3    Botstein, D.4
  • 53
    • 84861120908 scopus 로고    scopus 로고
    • A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes
    • Slavov N., Airoldi E.M., van Oudenaarden A., Botstein D. A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes. Mol. Biol. Cell 2012, 23:1986-1997.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 1986-1997
    • Slavov, N.1    Airoldi, E.M.2    van Oudenaarden, A.3    Botstein, D.4
  • 54
    • 84876535960 scopus 로고    scopus 로고
    • Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins
    • Slavov N., Carey J., Linse S. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. ACS Chem. Neurosci. 2013, 4:601-612.
    • (2013) ACS Chem. Neurosci. , vol.4 , pp. 601-612
    • Slavov, N.1    Carey, J.2    Linse, S.3
  • 55
    • 0012926979 scopus 로고    scopus 로고
    • Effect of specific growth rate on fermentative capacity of baker's yeast
    • Van Hoek P., Van Dijken J.P., Pronk J.T. Effect of specific growth rate on fermentative capacity of baker's yeast. Appl. Environ. Microbiol. 1998, 64:4226-4233.
    • (1998) Appl. Environ. Microbiol. , vol.64 , pp. 4226-4233
    • Van Hoek, P.1    Van Dijken, J.P.2    Pronk, J.T.3
  • 56
    • 0034213554 scopus 로고    scopus 로고
    • Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae
    • Van Hoek P., van Dijken J.P., Pronk J.T. Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb. Technol. 2000, 26:724-736.
    • (2000) Enzyme Microb. Technol. , vol.26 , pp. 724-736
    • Van Hoek, P.1    van Dijken, J.P.2    Pronk, J.T.3
  • 57
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: the metabolic requirements of cell proliferation
    • Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009, 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 58
    • 77951803596 scopus 로고    scopus 로고
    • Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited
    • Vazquez A., Liu J., Zhou Y., Oltvai Z.N. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst. Biol. 2010, 4:58.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 58
    • Vazquez, A.1    Liu, J.2    Zhou, Y.3    Oltvai, Z.N.4
  • 60
    • 0014653084 scopus 로고
    • Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth
    • von Meyenburg K.H. Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch. Mikrobiol. 1969, 66:289-303.
    • (1969) Arch. Mikrobiol. , vol.66 , pp. 289-303
    • von Meyenburg, K.H.1
  • 61
    • 0001221508 scopus 로고
    • On respiratory impairment in cancer cells
    • Warburg O. On respiratory impairment in cancer cells. Science 1956, 124:269-270.
    • (1956) Science , vol.124 , pp. 269-270
    • Warburg, O.1
  • 62
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: a cancer hallmark even warburg did not anticipate
    • Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21:297-308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1    Thompson, C.B.2
  • 63
    • 38349121328 scopus 로고    scopus 로고
    • Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions
    • Wiebe M.G., Rintala E., Tamminen A., Simolin H., Salusjärvi L., Toivari M., Kokkonen J.T., Kiuru J., Ketola R.A., Jouhten P., et al. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res. 2008, 8:140-154.
    • (2008) FEMS Yeast Res. , vol.8 , pp. 140-154
    • Wiebe, M.G.1    Rintala, E.2    Tamminen, A.3    Simolin, H.4    Salusjärvi, L.5    Toivari, M.6    Kokkonen, J.T.7    Kiuru, J.8    Ketola, R.A.9    Jouhten, P.10
  • 64
    • 72449171935 scopus 로고    scopus 로고
    • Growth landscape formed by perception and import of glucose in yeast
    • Youk H., van Oudenaarden A. Growth landscape formed by perception and import of glucose in yeast. Nature 2009, 462:875-879.
    • (2009) Nature , vol.462 , pp. 875-879
    • Youk, H.1    van Oudenaarden, A.2
  • 65
    • 81755181119 scopus 로고    scopus 로고
    • Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness
    • Zakrzewska A., van Eikenhorst G., Burggraaff J.E., Vis D.J., Hoefsloot H., Delneri D., Oliver S.G., Brul S., Smits G.J. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness. Mol. Biol. Cell 2011, 22:4435-4446.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 4435-4446
    • Zakrzewska, A.1    van Eikenhorst, G.2    Burggraaff, J.E.3    Vis, D.J.4    Hoefsloot, H.5    Delneri, D.6    Oliver, S.G.7    Brul, S.8    Smits, G.J.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.