메뉴 건너뛰기




Volumn 10, Issue 11, 2015, Pages

Union exon based approach for RNA-seq gene quantification: To be or not to be?

Author keywords

[No Author keywords available]

Indexed keywords

DNA STRUCTURE; DNA TRANSCRIPTION; EXON; EXPECTATION; GENE EXPRESSION; GENE EXPRESSION REGULATION; GENETIC TRANSCRIPTION; QUANTITATIVE STUDY; ALGORITHM; PROCEDURES; SEQUENCE ANALYSIS;

EID: 84953438386     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0141910     Document Type: Article
Times cited : (19)

References (47)
  • 2
    • 57749195712 scopus 로고    scopus 로고
    • RNA-seq: A revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10(1):57-63.
    • (2009) Nat. Rev. Genet. , vol.10 , Issue.1 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 4
    • 84898618335 scopus 로고    scopus 로고
    • Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells
    • Zhao S, Fung-Leung W-P, Bittner A, Ngo K, Liu X. Comparison of RNA-seq and microarray in transcriptome profiling of activated T cells. PloS ONE. 2014, 9(1):e78644.
    • (2014) PloS ONE , vol.9 , Issue.1 , pp. e78644
    • Zhao, S.1    Fung-Leung, W.-P.2    Bittner, A.3    Ngo, K.4    Liu, X.5
  • 5
    • 84929001104 scopus 로고    scopus 로고
    • The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
    • GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015, 348(6235):648-60.
    • (2015) Science , vol.348 , Issue.6235 , pp. 648-660
    • GTEx Consortium1
  • 7
    • 79957842166 scopus 로고    scopus 로고
    • Computational methods for transcriptome annotation and quantification using RNA-seq
    • Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011, 8(6):469-77.
    • (2011) Nat Methods , vol.8 , Issue.6 , pp. 469-477
    • Garber, M.1    Grabherr, M.G.2    Guttman, M.3    Trapnell, C.4
  • 8
    • 84888861753 scopus 로고    scopus 로고
    • Systematic evaluation of spliced alignment programs for RNA-seq data
    • Engström PG, Steijger T, Sipos B, Grant GR, Kahles A et al. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods. 2013, 10(12):1185-91.
    • (2013) Nat Methods , vol.10 , Issue.12 , pp. 1185-1191
    • Engström, P.G.1    Steijger, T.2    Sipos, B.3    Grant, G.R.4    Kahles, A.5
  • 9
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics. 2013, 14:91.
    • (2013) BMC Bioinformatics. , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 10
    • 84903757908 scopus 로고    scopus 로고
    • Evaluation of alignment algorithms for discovery and identification of pathogens using RNA-seq
    • Borozan I, Watt SN, Ferretti V. Evaluation of alignment algorithms for discovery and identification of pathogens using RNA-seq. PLoS One. 2013, 8(10):e76935.
    • (2013) PLoS One , vol.8 , Issue.10 , pp. e76935
    • Borozan, I.1    Watt, S.N.2    Ferretti, V.3
  • 12
    • 77951820899 scopus 로고    scopus 로고
    • Fast and SNP-tolerant detection of complex variants and splicing in short reads
    • Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010, 26(7):873-81.
    • (2010) Bioinformatics , vol.26 , Issue.7 , pp. 873-881
    • Wu, T.D.1    Nacu, S.2
  • 13
  • 14
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14(4):R36.
    • (2013) Genome Biol. , vol.14 , Issue.4 , pp. R36
    • Kim, D.1    Pertea, G.2    Trapnell, C.3    Pimentel, H.4    Kelley, R.5    Salzberg, S.L.6
  • 15
    • 84903754081 scopus 로고    scopus 로고
    • Assessment of the impact of using a reference transcriptome in mapping short RNA-seq reads
    • Zhao S. Assessment of the impact of using a reference transcriptome in mapping short RNA-seq reads. PLoS ONE. 2014, 9(7):e101374.
    • (2014) PLoS ONE , vol.9 , Issue.7 , pp. e101374
    • Zhao, S.1
  • 16
    • 84924333321 scopus 로고    scopus 로고
    • A comprehensive evaluation of Ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification
    • Zhao S, Zhang B. A comprehensive evaluation of Ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification BMC Genomics. 2015, 16:97.
    • (2015) BMC Genomics. , vol.16 , pp. 97
    • Zhao, S.1    Zhang, B.2
  • 17
    • 33846057724 scopus 로고    scopus 로고
    • NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins
    • Database
    • Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic acids Res. 2007, 35(Database):D61-65.
    • (2007) Nucleic Acids Res. , vol.35 , pp. D61-D65
    • Pruitt, K.D.1    Tatusova, T.2    Maglott, D.R.3
  • 21
    • 84899698560 scopus 로고    scopus 로고
    • Assessing the impact of human genome annotation choice on RNA-seq expression estimates
    • Wu P-Y, Phan JH, Wang MD. Assessing the impact of human genome annotation choice on RNA-seq expression estimates. BMC Bioinformatics. 2013, 14(Suppl 11):S8.
    • (2013) BMC Bioinformatics. , vol.14 , pp. S8
    • Wu, P.-Y.1    Phan, J.H.2    Wang, M.D.3
  • 23
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011, 12:323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 24
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010, 28:511-515.
    • (2010) Nat Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3    Mortazavi, A.4    Kwan, G.5    Van Baren, M.J.6
  • 26
    • 84897397058 scopus 로고    scopus 로고
    • FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014, 30(7):923-30.
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 27
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-A Python framework to work with high-throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2014, 31(2):166-9.
    • (2014) Bioinformatics , vol.31 , Issue.2 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 28
    • 84937691256 scopus 로고    scopus 로고
    • Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
    • Kanitz A, Gypas F, Gruber AJ, Gruber AR, Martin G, Zavolan M. Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol. 2015, 16:150
    • (2015) Genome Biol. , vol.16 , pp. 150
    • Kanitz, A.1    Gypas, F.2    Gruber, A.J.3    Gruber, A.R.4    Martin, G.5    Zavolan, M.6
  • 29
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNAseq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNAseq data. Genome Biol. 2010, 11(3):R25.
    • (2010) Genome Biol. , vol.11 , Issue.3 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 30
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010, 26(1):139-40.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 31
    • 84896735766 scopus 로고    scopus 로고
    • Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15(2):R29.
    • (2014) Genome Biol. , vol.15 , Issue.2 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 32
    • 84878637612 scopus 로고    scopus 로고
    • Stranded RNA-seq provides greater resolution of transcriptome profiling
    • Mills JD, Kawahara Y, Janitz M. Stranded RNA-seq provides greater resolution of transcriptome profiling. Curr Genomics. 2013, 14(3):173-81.
    • (2013) Curr Genomics. , vol.14 , Issue.3 , pp. 173-181
    • Mills, J.D.1    Kawahara, Y.2    Janitz, M.3
  • 33
    • 84904776692 scopus 로고    scopus 로고
    • Analysis of stranded information using an automated procedure for strand specific RNA sequencing
    • Sigurgeirsson B, Emanuelsson O, Lundeberg J. Analysis of stranded information using an automated procedure for strand specific RNA sequencing. BMC Genomics. 2014, 15:631.
    • (2014) BMC Genomics. , vol.15 , pp. 631
    • Sigurgeirsson, B.1    Emanuelsson, O.2    Lundeberg, J.3
  • 34
    • 84940529173 scopus 로고    scopus 로고
    • Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap
    • Zhao S, Zhang Y, Gordo W, Quan J, Xi H, Du S, von Schack D, Zhang B. Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap. BMC Genomics. 2015, 16:675.
    • (2015) BMC Genomics. , vol.16 , pp. 675
    • Zhao, S.1    Zhang, Y.2    Gordo, W.3    Quan, J.4    Xi, H.5    Du, S.6    Von Schack, D.7    Zhang, B.8
  • 35
    • 84945937563 scopus 로고    scopus 로고
    • IRcall and IRclassifier: Two methods for flexible detection of intron retention events from RNA-Seq data
    • Bai Y, Ji S, Wang Y. IRcall and IRclassifier: two methods for flexible detection of intron retention events from RNA-Seq data. BMC Genomics. 2015, 16(Suppl 2):S9.
    • (2015) BMC Genomics. , vol.16 , pp. S9
    • Bai, Y.1    Ji, S.2    Wang, Y.3
  • 36
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995, 57:289-300.
    • (1995) J R Stat Soc B. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 38
    • 65649144746 scopus 로고    scopus 로고
    • Differential clathrin binding and subcellular localization of OCRL1 splice isoforms
    • Choudhury R, Noakes CJ, McKenzie E, Kox C, Lowe M. Differential clathrin binding and subcellular localization of OCRL1 splice isoforms. J Biol Chem. 2009, 284(15):9965-73.
    • (2009) J Biol Chem. , vol.284 , Issue.15 , pp. 9965-9973
    • Choudhury, R.1    Noakes, C.J.2    McKenzie, E.3    Kox, C.4    Lowe, M.5
  • 39
    • 84900491119 scopus 로고    scopus 로고
    • Computational approaches for isoform detection and estimation: Good and bad news
    • Angelini C, De Canditiis D, De Feis I. Computational approaches for isoform detection and estimation: good and bad news. BMC Bioinformatics. 2014, 15:135.
    • (2014) BMC Bioinformatics , vol.15 , pp. 135
    • Angelini, C.1    De Canditiis, D.2    De Feis, I.3
  • 40
    • 84946735654 scopus 로고    scopus 로고
    • Gene Ontology Consortium: Going forward
    • Database issue
    • The Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucl Acids Res. 2015, 43(Database issue):D1049-56.
    • (2015) Nucl Acids Res. , vol.43 , pp. D1049-D1056
    • The Gene Ontology Consortium1
  • 42
    • 84955505370 scopus 로고    scopus 로고
    • IPA. [http://www.ingenuity.com/]
    • IPA1
  • 43
    • 84955448180 scopus 로고    scopus 로고
    • MetaCore. [http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceuticalresearch/metacore.htm]
    • MetaCore1
  • 44
    • 84904756759 scopus 로고    scopus 로고
    • The emerging era of genomic data integration for analyzing splice isoform function
    • Li HD, Menon R, Omenn GS, Guan Y. The emerging era of genomic data integration for analyzing splice isoform function. Trends Genet. 2014, 30(8):340-7
    • (2014) Trends Genet. , vol.30 , Issue.8 , pp. 340-347
    • Li, H.D.1    Menon, R.2    Omenn, G.S.3    Guan, Y.4
  • 45
    • 84872033704 scopus 로고    scopus 로고
    • Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples
    • Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012, 131(4):281-5.
    • (2012) Theory Biosci. , vol.131 , Issue.4 , pp. 281-285
    • Wagner, G.P.1    Kin, K.2    Lynch, V.J.3
  • 47
    • 84955466173 scopus 로고    scopus 로고
    • GENCODE: [http://www.gencodegenes.org/releases/19.html].
    • GENCODE1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.