메뉴 건너뛰기




Volumn 30, Issue 8, 2014, Pages 340-347

The emerging era of genomic data integration for analyzing splice isoform function

Author keywords

Cancers; Development; Function prediction; Genomic data integration; Splice isoforms

Indexed keywords

RNA ISOFORM; TRANSCRIPTOME; ISOPROTEIN; PROTEIN;

EID: 84904756759     PISSN: 01689525     EISSN: 13624555     Source Type: Journal    
DOI: 10.1016/j.tig.2014.05.005     Document Type: Review
Times cited : (78)

References (96)
  • 1
    • 0013394889 scopus 로고    scopus 로고
    • Mechanisms of alternative pre-messenger RNA splicing
    • Black D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 2007, 72:291-336.
    • (2007) Annu. Rev. Biochem. , vol.72 , pp. 291-336
    • Black, D.L.1
  • 2
    • 77952029221 scopus 로고    scopus 로고
    • Deciphering the splicing code
    • Barash Y., et al. Deciphering the splicing code. Nature 2010, 465:53-59.
    • (2010) Nature , vol.465 , pp. 53-59
    • Barash, Y.1
  • 3
    • 78650827356 scopus 로고    scopus 로고
    • Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts
    • Ferreira E., et al. Alternative splicing enriched cDNA libraries identify breast cancer-associated transcripts. BMC Genomics 2010, 11:S4.
    • (2010) BMC Genomics , vol.11
    • Ferreira, E.1
  • 4
    • 0035393343 scopus 로고    scopus 로고
    • Genome-wide detection of alternative splicing in expressed sequences of human genes
    • Modrek B., et al. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acid Res. 2001, 29:2850-2859.
    • (2001) Nucleic Acid Res. , vol.29 , pp. 2850-2859
    • Modrek, B.1
  • 5
    • 77957663917 scopus 로고    scopus 로고
    • Alternative expression analysis by RNA sequencing
    • Griffith M., et al. Alternative expression analysis by RNA sequencing. Nat. Methods 2010, 7:843-847.
    • (2010) Nat. Methods , vol.7 , pp. 843-847
    • Griffith, M.1
  • 6
    • 84879147679 scopus 로고    scopus 로고
    • The impact of splicing on protein domain architecture
    • Light S., Elofsson A. The impact of splicing on protein domain architecture. Curr. Opin. Struct. Biol. 2013, 23:451-458.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 451-458
    • Light, S.1    Elofsson, A.2
  • 7
    • 84863003268 scopus 로고    scopus 로고
    • Tissue-specific alternative splicing remodels protein-protein interaction networks
    • Ellis, Jonathan D., et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol. Cell 2012, 46:884-892.
    • (2012) Mol. Cell , vol.46 , pp. 884-892
    • Ellis1    Jonathan, D.2
  • 8
    • 0037422575 scopus 로고    scopus 로고
    • Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans
    • Lewis B.P., et al. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:189-192.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 189-192
    • Lewis, B.P.1
  • 9
    • 1842632326 scopus 로고    scopus 로고
    • A novel role for shuttling SR proteins in mRNA translation
    • Sanford J.R., et al. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 2004, 18:755-768.
    • (2004) Genes Dev. , vol.18 , pp. 755-768
    • Sanford, J.R.1
  • 10
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing
    • Pan Q., et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40:1413-1415.
    • (2008) Nat. Genet. , vol.40 , pp. 1413-1415
    • Pan, Q.1
  • 11
    • 84865760395 scopus 로고    scopus 로고
    • GENCODE: The reference human genome annotation for The ENCODE Project
    • Harrow J., et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22:1760-1774.
    • (2012) Genome Res. , vol.22 , pp. 1760-1774
    • Harrow, J.1
  • 12
    • 7444260846 scopus 로고    scopus 로고
    • The ENCODE (ENCyclopedia Of DNA Elements) Project
    • Consortium E.P. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004, 306:636-640.
    • (2004) Science , vol.306 , pp. 636-640
    • Consortium, E.P.1
  • 13
    • 56549101959 scopus 로고    scopus 로고
    • Alternative isoform regulation in human tissue transcriptomes
    • Wang E.T., et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470-476.
    • (2008) Nature , vol.456 , pp. 470-476
    • Wang, E.T.1
  • 14
    • 12344250822 scopus 로고    scopus 로고
    • Function of alternative splicing
    • Stamm S., et al. Function of alternative splicing. Gene 2005, 344:1-20.
    • (2005) Gene , vol.344 , pp. 1-20
    • Stamm, S.1
  • 15
    • 34248368920 scopus 로고    scopus 로고
    • The implications of alternative splicing in the ENCODE protein complement
    • Tress M.L., et al. The implications of alternative splicing in the ENCODE protein complement. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:5495-5500.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 5495-5500
    • Tress, M.L.1
  • 16
    • 84888234617 scopus 로고    scopus 로고
    • Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq data
    • Eksi R., et al. Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq data. PLoS Comput. Biol. 2013, 9:e1003314.
    • (2013) PLoS Comput. Biol. , vol.9
    • Eksi, R.1
  • 17
    • 77954131742 scopus 로고    scopus 로고
    • Alternative splice variants, a new class of protein cancer biomarker candidates: findings in pancreatic cancer and breast cancer with systems biology implications
    • Omenn G.S., et al. Alternative splice variants, a new class of protein cancer biomarker candidates: findings in pancreatic cancer and breast cancer with systems biology implications. Dis. Markers 2010, 28:241-251.
    • (2010) Dis. Markers , vol.28 , pp. 241-251
    • Omenn, G.S.1
  • 18
    • 82755181925 scopus 로고    scopus 로고
    • Functional implications of structural predictions for alternative splice proteins expressed in Her2/neu-induced breast cancers
    • Menon R., et al. Functional implications of structural predictions for alternative splice proteins expressed in Her2/neu-induced breast cancers. J. Proteome Res. 2011, 10:5503-5511.
    • (2011) J. Proteome Res. , vol.10 , pp. 5503-5511
    • Menon, R.1
  • 19
    • 58249110387 scopus 로고    scopus 로고
    • Identification of novel alternative splice isoforms of circulating proteins in a mouse model of human pancreatic cancer
    • Menon R., et al. Identification of novel alternative splice isoforms of circulating proteins in a mouse model of human pancreatic cancer. Cancer Res. 2009, 69:300-309.
    • (2009) Cancer Res. , vol.69 , pp. 300-309
    • Menon, R.1
  • 20
    • 84882604044 scopus 로고    scopus 로고
    • Innovations in proteomic profiling of cancers: alternative splice variants as a new class of cancer biomarker candidates and bridging of proteomics with structural biology
    • Omenn G.S., et al. Innovations in proteomic profiling of cancers: alternative splice variants as a new class of cancer biomarker candidates and bridging of proteomics with structural biology. J. Proteomics 2013, 90:28-37.
    • (2013) J. Proteomics , vol.90 , pp. 28-37
    • Omenn, G.S.1
  • 21
    • 37149014737 scopus 로고    scopus 로고
    • Protein kinase C-dependent control of Bcl-x alternative splicing
    • Revil T., et al. Protein kinase C-dependent control of Bcl-x alternative splicing. Mol. Cell. Biol. 2007, 27:8431-8441.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8431-8441
    • Revil, T.1
  • 22
    • 84879422644 scopus 로고    scopus 로고
    • Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway
    • Skalka N., et al. Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway. Oncogene 2013, 32:2836-2847.
    • (2013) Oncogene , vol.32 , pp. 2836-2847
    • Skalka, N.1
  • 23
    • 84880946307 scopus 로고    scopus 로고
    • Alternative pre-mRNA splicing in neurons: growing up and extending its reach
    • Zheng S., Black D.L. Alternative pre-mRNA splicing in neurons: growing up and extending its reach. Trends Genet. 2013, 29:442-448.
    • (2013) Trends Genet. , vol.29 , pp. 442-448
    • Zheng, S.1    Black, D.L.2
  • 24
    • 77953932362 scopus 로고    scopus 로고
    • Nova2 regulates neuronal migration through an RNA Switch in disabled-1 signaling
    • Yano M., et al. Nova2 regulates neuronal migration through an RNA Switch in disabled-1 signaling. Neuron 2010, 66:848-858.
    • (2010) Neuron , vol.66 , pp. 848-858
    • Yano, M.1
  • 25
    • 23044431574 scopus 로고    scopus 로고
    • Nova regulates brain-specific splicing to shape the synapse
    • Ule J., et al. Nova regulates brain-specific splicing to shape the synapse. Nat. Genet. 2005, 37:844-852.
    • (2005) Nat. Genet. , vol.37 , pp. 844-852
    • Ule, J.1
  • 26
    • 35548940665 scopus 로고    scopus 로고
    • Neuronal regulation of alternative pre-mRNA splicing
    • Li Q., et al. Neuronal regulation of alternative pre-mRNA splicing. Nat. Rev. Neurosci. 2007, 8:819-831.
    • (2007) Nat. Rev. Neurosci. , vol.8 , pp. 819-831
    • Li, Q.1
  • 27
    • 80052223272 scopus 로고    scopus 로고
    • An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming
    • Gabut M., et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 2011, 147:132-146.
    • (2011) Cell , vol.147 , pp. 132-146
    • Gabut, M.1
  • 28
    • 84880840070 scopus 로고    scopus 로고
    • Stem cells: tailored splicing patterns
    • Baumann K. Stem cells: tailored splicing patterns. Nat. Rev. Mol. Cell Biol. 2013, 14:464-465.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 464-465
    • Baumann, K.1
  • 29
    • 84878964968 scopus 로고    scopus 로고
    • Stem cells: regulation by alternative splicing
    • Aaronson Y., Meshorer E. Stem cells: regulation by alternative splicing. Nature 2013, 498:176-177.
    • (2013) Nature , vol.498 , pp. 176-177
    • Aaronson, Y.1    Meshorer, E.2
  • 30
    • 84878995293 scopus 로고    scopus 로고
    • MBNL proteins repress ES-cell-specific alternative splicing and reprogramming
    • Han H., et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 2013, 498:241-245.
    • (2013) Nature , vol.498 , pp. 241-245
    • Han, H.1
  • 31
    • 77953764202 scopus 로고    scopus 로고
    • Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation
    • Salomonis N., et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:10514-10519.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 10514-10519
    • Salomonis, N.1
  • 32
    • 79951964368 scopus 로고    scopus 로고
    • Comprehensive analysis of alternative splicing and functionality in neuronal differentiation of P19 Cells
    • Suzuki H., et al. Comprehensive analysis of alternative splicing and functionality in neuronal differentiation of P19 Cells. PLoS ONE 2011, 6:e16880.
    • (2011) PLoS ONE , vol.6
    • Suzuki, H.1
  • 33
    • 77954365140 scopus 로고    scopus 로고
    • Alternative splicing is frequent during early embryonic development in mouse
    • Revil T., et al. Alternative splicing is frequent during early embryonic development in mouse. BMC Genomics 2010, 11:399.
    • (2010) BMC Genomics , vol.11 , pp. 399
    • Revil, T.1
  • 34
    • 34347384211 scopus 로고    scopus 로고
    • A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons
    • Boutz P.L., et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 2007, 21:1636-1652.
    • (2007) Genes Dev. , vol.21 , pp. 1636-1652
    • Boutz, P.L.1
  • 35
    • 33746927884 scopus 로고    scopus 로고
    • The connection between splicing and cancer
    • Srebrow A., Kornblihtt A.R. The connection between splicing and cancer. J. Cell Sci. 2006, 119:2635-2641.
    • (2006) J. Cell Sci. , vol.119 , pp. 2635-2641
    • Srebrow, A.1    Kornblihtt, A.R.2
  • 36
    • 34548758543 scopus 로고    scopus 로고
    • Splicing in disease: disruption of the splicing code and the decoding machinery
    • Wang G-S., Cooper T.A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 2007, 8:749-761.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 749-761
    • Wang, G.-S.1    Cooper, T.A.2
  • 37
    • 77951718967 scopus 로고    scopus 로고
    • Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu-induced breast cancers
    • Menon R., Omenn G.S. Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu-induced breast cancers. Cancer Res. 2010, 70:3440-3449.
    • (2010) Cancer Res. , vol.70 , pp. 3440-3449
    • Menon, R.1    Omenn, G.S.2
  • 38
    • 64249084287 scopus 로고    scopus 로고
    • Aberrant RNA splicing and its functional consequences in cancer cells
    • Fackenthal J., Godley L.A. Aberrant RNA splicing and its functional consequences in cancer cells. Dis. Model Mech. 2008, 1:1754-8411.
    • (2008) Dis. Model Mech. , vol.1 , pp. 1754-8411
    • Fackenthal, J.1    Godley, L.A.2
  • 39
    • 24344448786 scopus 로고    scopus 로고
    • P53 isoforms can regulate p53 transcriptional activity
    • Bourdon J-C., et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005, 19:2122-2137.
    • (2005) Genes Dev. , vol.19 , pp. 2122-2137
    • Bourdon, J.-C.1
  • 40
    • 84864390075 scopus 로고    scopus 로고
    • BRCA1 exon 11 alternative splicing, multiple functions and the association with cancer
    • Tammaro C., et al. BRCA1 exon 11 alternative splicing, multiple functions and the association with cancer. Biochem. Soc. Trans. 2012, 40:768-772.
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 768-772
    • Tammaro, C.1
  • 41
    • 35348839507 scopus 로고    scopus 로고
    • CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity
    • Scotlandi K., et al. CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity. Oncogene 2007, 26:6604-6618.
    • (2007) Oncogene , vol.26 , pp. 6604-6618
    • Scotlandi, K.1
  • 42
    • 33750309458 scopus 로고    scopus 로고
    • Overexpression of caspase-3s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy
    • Veggran F., et al. Overexpression of caspase-3s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy. Clin. Cancer Res. 2006, 12:5794-5800.
    • (2006) Clin. Cancer Res. , vol.12 , pp. 5794-5800
    • Veggran, F.1
  • 43
    • 84866513094 scopus 로고    scopus 로고
    • Nek2C functions as a tumor promoter in human breast tumorigenesis
    • Liu Z., et al. Nek2C functions as a tumor promoter in human breast tumorigenesis. Int. J. Mol. Med. 2012, 30:775-782.
    • (2012) Int. J. Mol. Med. , vol.30 , pp. 775-782
    • Liu, Z.1
  • 44
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology
    • Ashburner M., et al. Gene ontology: tool for the unification of biology. Nat. Genet. 2000, 25:25-29.
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 45
    • 0345863935 scopus 로고    scopus 로고
    • The KEGG resource for deciphering the genome
    • Kanehisa M., et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32:D277-D280.
    • (2004) Nucleic Acids Res. , vol.32
    • Kanehisa, M.1
  • 46
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:15545-15550.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 47
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data source for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya O.G., et al. A Bayesian framework for combining heterogeneous data source for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. U.S.A. 2003, 100:8348-8353.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 8348-8353
    • Troyanskaya, O.G.1
  • 48
    • 47549108100 scopus 로고    scopus 로고
    • Predicting gene function in a hierarchical context with an ensemble of classifiers
    • Guan Y., et al. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol. 2008, 9(Suppl. 1):S3.
    • (2008) Genome Biol. , vol.9 , Issue.SUPPL. 1
    • Guan, Y.1
  • 49
    • 77349119213 scopus 로고    scopus 로고
    • Predicting gene function using hierarchical multi-label decision tree ensembles
    • Schietgat L., et al. Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics 2010, 11:2.
    • (2010) BMC Bioinformatics , vol.11 , pp. 2
    • Schietgat, L.1
  • 50
    • 52949087576 scopus 로고    scopus 로고
    • A genomewide functional network for the laboratory mouse
    • Guan Y., et al. A genomewide functional network for the laboratory mouse. PLoS Comput. Biol. 2008, 4:e1000165.
    • (2008) PLoS Comput. Biol. , vol.4
    • Guan, Y.1
  • 51
    • 33646884801 scopus 로고    scopus 로고
    • Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes
    • Franke L., et al. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 2006, 78:1011-1025.
    • (2006) Am. J. Hum. Genet. , vol.78 , pp. 1011-1025
    • Franke, L.1
  • 52
    • 38649138295 scopus 로고    scopus 로고
    • A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans
    • Lee I., et al. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat. Genet. 2008, 40:181-188.
    • (2008) Nat. Genet. , vol.40 , pp. 181-188
    • Lee, I.1
  • 53
    • 41549138299 scopus 로고    scopus 로고
    • An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae
    • Lee I., et al. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS ONE 2007, 2:e988.
    • (2007) PLoS ONE , vol.2
    • Lee, I.1
  • 54
    • 84866931187 scopus 로고    scopus 로고
    • Tissue-specific functional networks for prioritizing phenotypes and disease genes
    • Guan Y., et al. Tissue-specific functional networks for prioritizing phenotypes and disease genes. PLoS Comput. Biol. 2012, 8:e1002694.
    • (2012) PLoS Comput. Biol. , vol.8
    • Guan, Y.1
  • 55
    • 78649680792 scopus 로고    scopus 로고
    • Functional genomics complements quantitative genetics in identifying disease-gene associations
    • Guan Y., et al. Functional genomics complements quantitative genetics in identifying disease-gene associations. PLoS Comput. Biol. 2010, 6:e1000991.
    • (2010) PLoS Comput. Biol. , vol.6
    • Guan, Y.1
  • 56
    • 25144498379 scopus 로고    scopus 로고
    • A human protein-protein interaction network: a resource for annotating the proteome
    • Stelzl U. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122:957-968.
    • (2005) Cell , vol.122 , pp. 957-968
    • Stelzl, U.1
  • 57
    • 0033669189 scopus 로고    scopus 로고
    • A network of protein-protein interactions in yeast
    • Schwikowski B., et al. A network of protein-protein interactions in yeast. Nat. Biotechnol. 2000, 18:1257-1261.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 1257-1261
    • Schwikowski, B.1
  • 58
    • 84876515907 scopus 로고    scopus 로고
    • STRING v9.1: protein-protein interaction networks, with increased coverage and integration
    • Franceschini A., et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013, 41:D808-D815.
    • (2013) Nucleic Acids Res. , vol.41
    • Franceschini, A.1
  • 59
    • 84860918589 scopus 로고    scopus 로고
    • MINT, the molecular interaction database: 2012 update
    • Licata L., et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012, 40:D857-D861.
    • (2012) Nucleic Acids Res. , vol.40
    • Licata, L.1
  • 60
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of Drosophila melanogaster
    • Giot L., et al. A protein interaction map of Drosophila melanogaster. Science 2003, 302:1727-1736.
    • (2003) Science , vol.302 , pp. 1727-1736
    • Giot, L.1
  • 61
    • 84862807218 scopus 로고    scopus 로고
    • DNA-protein interactions: methods for detection and analysis
    • Dey B., et al. DNA-protein interactions: methods for detection and analysis. Mol. Cell. Biochem. 2012, 365:279-299.
    • (2012) Mol. Cell. Biochem. , vol.365 , pp. 279-299
    • Dey, B.1
  • 62
    • 84864428085 scopus 로고    scopus 로고
    • Confirming the functional importance of a protein-DNA interaction
    • Carey M.F., et al. Confirming the functional importance of a protein-DNA interaction. Cold Spring Harb. Protoc. 2012, 7:733-757.
    • (2012) Cold Spring Harb. Protoc. , vol.7 , pp. 733-757
    • Carey, M.F.1
  • 63
    • 80054991882 scopus 로고    scopus 로고
    • Network-based methods for human disease gene prediction
    • Wang X., et al. Network-based methods for human disease gene prediction. Brief. Funct. Genomics 2011, 10:280-293.
    • (2011) Brief. Funct. Genomics , vol.10 , pp. 280-293
    • Wang, X.1
  • 64
    • 43249114206 scopus 로고    scopus 로고
    • Network-based global inference of human disease genes
    • Wu X., et al. Network-based global inference of human disease genes. Mol. Syst. Biol. 2008, 4:189.
    • (2008) Mol. Syst. Biol. , vol.4 , pp. 189
    • Wu, X.1
  • 65
    • 84863987708 scopus 로고    scopus 로고
    • Computational tools for prioritizing candidate genes: boosting disease gene discovery
    • Moreau Y., Tranchevent L-C. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 2012, 13:523-536.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 523-536
    • Moreau, Y.1    Tranchevent, L.-C.2
  • 66
    • 79952196824 scopus 로고    scopus 로고
    • Identification of alternatively spliced transcripts using a proteomic informatics approach
    • Menon R., Omenn G.S. Identification of alternatively spliced transcripts using a proteomic informatics approach. Methods Mol. Biol. 2011, 696:319-326.
    • (2011) Methods Mol. Biol. , vol.696 , pp. 319-326
    • Menon, R.1    Omenn, G.S.2
  • 67
    • 84907642940 scopus 로고    scopus 로고
    • High-resolution functional annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based label propagation method
    • Li W., et al. High-resolution functional annotation of human transcriptome: predicting isoform functions by a novel multiple instance-based label propagation method. Nucleic Acids Res. 2013, 1-15.
    • (2013) Nucleic Acids Res. , pp. 1-15
    • Li, W.1
  • 68
    • 84898612068 scopus 로고    scopus 로고
    • Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism
    • Corominas R., et al. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nat. Commun. 2014, 5:3650.
    • (2014) Nat. Commun. , vol.5 , pp. 3650
    • Corominas, R.1
  • 69
    • 84876298530 scopus 로고    scopus 로고
    • Protein function prediction using domain families
    • Rentzsch R., Orengo C.A. Protein function prediction using domain families. BMC Bioinformatics 2013, 14(Suppl. 3):S5.
    • (2013) BMC Bioinformatics , vol.14 , Issue.SUPPL. 3
    • Rentzsch, R.1    Orengo, C.A.2
  • 70
    • 48249113702 scopus 로고    scopus 로고
    • Predicting protein function from domain content
    • Forslund K., Sonnhammer E.L.L. Predicting protein function from domain content. Bioinformatics 2008, 24:1681-1687.
    • (2008) Bioinformatics , vol.24 , pp. 1681-1687
    • Forslund, K.1    Sonnhammer, E.L.L.2
  • 71
    • 36448988254 scopus 로고    scopus 로고
    • Predicting protein function from sequence and structure
    • Lee D., et al. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 2007, 8:995-1005.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 995-1005
    • Lee, D.1
  • 72
    • 0346799108 scopus 로고    scopus 로고
    • Prediction of protein function from protein sequence and structure
    • Whisstock J., Lesk A. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 2003, 36:307-340.
    • (2003) Q. Rev. Biophys. , vol.36 , pp. 307-340
    • Whisstock, J.1    Lesk, A.2
  • 73
    • 22544441094 scopus 로고    scopus 로고
    • ProFunc: a server for predicting protein function from 3D structure
    • Laskowski R.A., et al. ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 2005, 33:W89-W93.
    • (2005) Nucleic Acids Res. , vol.33
    • Laskowski, R.A.1
  • 74
    • 77954065271 scopus 로고    scopus 로고
    • I-TASSER: a unified platform for automated protein structure and function prediction
    • Roy A., et al. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5:725-738.
    • (2010) Nat. Protoc. , vol.5 , pp. 725-738
    • Roy, A.1
  • 75
    • 84888226422 scopus 로고    scopus 로고
    • Structure-Based Function Prediction of Uncharacterized Protein Using Binding Sites Comparison
    • Konc J., et al. Structure-Based Function Prediction of Uncharacterized Protein Using Binding Sites Comparison. PLoS Comput. Biol. 2013, 9:e1003341.
    • (2013) PLoS Comput. Biol. , vol.9
    • Konc, J.1
  • 76
    • 0033954256 scopus 로고    scopus 로고
    • The Protein Data Bank
    • Berman H.M., et al. The Protein Data Bank. Nucleic Acids Res. 2000, 28:235-242.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 235-242
    • Berman, H.M.1
  • 77
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: discovering splice junctions with RNA-Seq
    • Trapnell C., et al. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1
  • 78
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B., et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10:R25.
    • (2009) Genome Biol. , vol.10
    • Langmead, B.1
  • 79
    • 67649884743 scopus 로고    scopus 로고
    • Fast and accurate short read alignment with Burrows-Wheeler transform
    • Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
    • (2009) Bioinformatics , vol.25 , pp. 1754-1760
    • Li, H.1    Durbin, R.2
  • 80
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    • Trapnell C., et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7:562-578.
    • (2012) Nat. Protoc. , vol.7 , pp. 562-578
    • Trapnell, C.1
  • 81
    • 84871946825 scopus 로고    scopus 로고
    • Streaming fragment assignment for real-time analysis of sequencing experiments
    • Roberts A., Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 2013, 10:71-73.
    • (2013) Nat. Methods , vol.10 , pp. 71-73
    • Roberts, A.1    Pachter, L.2
  • 82
    • 0036923345 scopus 로고    scopus 로고
    • Multiple instance learning with generalized support vector machines
    • Andrews S., et al. Multiple instance learning with generalized support vector machines. AAAI-02 Proceedings 2002, 943-944.
    • (2002) AAAI-02 Proceedings , pp. 943-944
    • Andrews, S.1
  • 85
    • 0032493350 scopus 로고    scopus 로고
    • Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2
    • Kamijo T., et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:8292-8297.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 8292-8297
    • Kamijo, T.1
  • 86
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Dunham I., et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
    • (2012) Nature , vol.489 , pp. 57-74
    • Dunham, I.1
  • 87
    • 84904434702 scopus 로고    scopus 로고
    • A new class of protein cancer biomarker candidates: Differentially expressed splice variants of ERBB2 (HER2/neu) and ERBB1 (EGFR) in breast cancer cell lines
    • Omenn G.S., et al. A new class of protein cancer biomarker candidates: Differentially expressed splice variants of ERBB2 (HER2/neu) and ERBB1 (EGFR) in breast cancer cell lines. J. Proteomics 2014, 10.1016/j.jprot.2014.04.012.
    • (2014) J. Proteomics
    • Omenn, G.S.1
  • 88
    • 2342423628 scopus 로고    scopus 로고
    • Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells
    • Du K.L., et al. Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. J. Biol. Chem. 2004, 279:17578-17586.
    • (2004) J. Biol. Chem. , vol.279 , pp. 17578-17586
    • Du, K.L.1
  • 89
    • 0034954603 scopus 로고    scopus 로고
    • The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis
    • Xu Z., et al. The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol. Cell. Biol. 2001, 21:4713-4724.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4713-4724
    • Xu, Z.1
  • 90
    • 84881039243 scopus 로고    scopus 로고
    • Development of Hodgkin lymphoma in homozygotic triplets with constitutional deletion in MKL1
    • Bjorkholm M., et al. Development of Hodgkin lymphoma in homozygotic triplets with constitutional deletion in MKL1. Blood 2013, 121:4807.
    • (2013) Blood , vol.121 , pp. 4807
    • Bjorkholm, M.1
  • 91
    • 84904722907 scopus 로고    scopus 로고
    • TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms
    • Scharenberg M.A., et al. TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. J. Cell Sci. 2014, 141:e707.
    • (2014) J. Cell Sci. , vol.141
    • Scharenberg, M.A.1
  • 92
    • 79551670394 scopus 로고    scopus 로고
    • Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex
    • Franco S.J., et al. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 2011, 69:482-497.
    • (2011) Neuron , vol.69 , pp. 482-497
    • Franco, S.J.1
  • 93
    • 84864005203 scopus 로고    scopus 로고
    • Splice-mediated motif switching regulates disabled-1 phosphorylation and SH2 domain Interactions
    • Gao Z., et al. Splice-mediated motif switching regulates disabled-1 phosphorylation and SH2 domain Interactions. Mol. Cell. Biol. 2012, 32:2794-2808.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2794-2808
    • Gao, Z.1
  • 94
    • 0034778447 scopus 로고    scopus 로고
    • EGFR and cancer prognosis
    • Nicholson R.I., et al. EGFR and cancer prognosis. Eur. J. Cancer 2001, 37:9-15.
    • (2001) Eur. J. Cancer , vol.37 , pp. 9-15
    • Nicholson, R.I.1
  • 95
    • 12244261580 scopus 로고    scopus 로고
    • Soluble epidermal growth factor receptor (sEGFR/sErbB1) as a potential risk, screening, and diagnostic serum biomarker of epithelial ovarian cancer
    • Baron A.T., et al. Soluble epidermal growth factor receptor (sEGFR/sErbB1) as a potential risk, screening, and diagnostic serum biomarker of epithelial ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 2003, 12:103-113.
    • (2003) Cancer Epidemiol. Biomarkers Prev. , vol.12 , pp. 103-113
    • Baron, A.T.1
  • 96
    • 79958702541 scopus 로고    scopus 로고
    • The epidermal growth factor receptor conundrum
    • Wilken J.A., et al. The epidermal growth factor receptor conundrum. Cancer 2010, 117:2358-2360.
    • (2010) Cancer , vol.117 , pp. 2358-2360
    • Wilken, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.