메뉴 건너뛰기




Volumn 104, Issue 2, 2016, Pages 310-331

Linked Component Analysis from Matrices to High-Order Tensors: Applications to Biomedical Data

Author keywords

(multilinear) independent component analysis; (multiway) blind source separation (BSS); Analysis of multirelational data; constrained Tucker decompositions for multiblock data; CP (CANDECOMP PARAFAC) decompositions; data fusion; group and joint independent component analysis; independent vector analysis (IVA); nonnegative sparse matrix tensor factorizations

Indexed keywords

BLIND SOURCE SEPARATION; DATA FUSION; DATA MINING; DECOMPOSITION; INDEPENDENT COMPONENT ANALYSIS; MEDICAL APPLICATIONS; TENSORS;

EID: 84953282331     PISSN: 00189219     EISSN: 15582256     Source Type: Journal    
DOI: 10.1109/JPROC.2015.2474704     Document Type: Review
Times cited : (192)

References (128)
  • 2
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 4
    • 84869034845 scopus 로고    scopus 로고
    • Tensor decompositions: New concepts for brain data analysis
    • A. Cichocki, "Tensor decompositions: New concepts for brain data analysis" SICE J. Control Meas., Syst. Integr., vol. 7, pp. 507-517, 2011.
    • (2011) SICE J. Control Meas., Syst. Integr. , vol.7 , pp. 507-517
    • Cichocki, A.1
  • 8
    • 84888852280 scopus 로고    scopus 로고
    • Understanding data fusion within the framework of coupled matrix and tensor factorizations
    • E. Acar, M. Rasmussen, F. Savorani, T. Næs, and R. Bro, "Understanding data fusion within the framework of coupled matrix and tensor factorizations," Chemometr. Intell. Lab. Syst., vol. 129, pp. 53-63, 2013.
    • (2013) Chemometr. Intell. Lab. Syst. , vol.129 , pp. 53-63
    • Acar, E.1    Rasmussen, M.2    Savorani, F.3    Næs, T.4    Bro, R.5
  • 9
    • 84873126892 scopus 로고    scopus 로고
    • Coupled matrix factorization with sparse factors to identify potential biomarkers in metabolomics
    • E. Acar et al., "Coupled matrix factorization with sparse factors to identify potential biomarkers in metabolomics," in Proc. IEEE 12th Int. Conf. Data Mining Workshops, 2012, pp. 1-8.
    • (2012) Proc. IEEE 12th Int. Conf. Data Mining Workshops , pp. 1-8
    • Acar, E.1
  • 10
    • 14844306738 scopus 로고    scopus 로고
    • Fetal electrocardiogram extraction by sequential source separation in the wavelet domain
    • Mar.
    • M. Jafari and J. Chambers, "Fetal electrocardiogram extraction by sequential source separation in the wavelet domain," IEEE Trans. Biomed. Eng., vol. 52, no. 3, pp. 390-400, Mar. 2005.
    • (2005) IEEE Trans. Biomed. Eng. , vol.52 , Issue.3 , pp. 390-400
    • Jafari, M.1    Chambers, J.2
  • 13
    • 85032752434 scopus 로고    scopus 로고
    • Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging
    • May
    • T. Adali, M. Anderson, and G.-S. Fu, "Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging," IEEE Signal Process. Mag., vol. 31, no. 3, pp. 18-33, May 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.3 , pp. 18-33
    • Adali, T.1    Anderson, M.2    Fu, G.-S.3
  • 14
    • 62749170517 scopus 로고    scopus 로고
    • Complex ICA using nonlinear functions
    • Sep.
    • T. Adali, H. Li, M. Novey, and J. Cardoso, "Complex ICA using nonlinear functions," IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4536-4544, Sep. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.9 , pp. 4536-4544
    • Adali, T.1    Li, H.2    Novey, M.3    Cardoso, J.4
  • 15
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • Oct.
    • J. F. Cardoso, "Blind signal separation: Statistical principles," Proc. IEEE, vol. 86, no. 10, pp. 2009-2025, Oct. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.10 , pp. 2009-2025
    • Cardoso, J.F.1
  • 16
    • 84870993474 scopus 로고    scopus 로고
    • Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery
    • V. Calhoun and T. Adali, "Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery," IEEE Rev. Biomed. Eng., vol. 5, pp. 60-73, 2012.
    • (2012) IEEE Rev. Biomed. Eng. , vol.5 , pp. 60-73
    • Calhoun, V.1    Adali, T.2
  • 17
    • 33645224023 scopus 로고    scopus 로고
    • Unmixing fMRI with independent component analysis
    • Mar.
    • V. Calhoun and T. Adali, "Unmixing fMRI with independent component analysis," IEEE Eng. Med. Biol. Mag., vol. 25, no. 2, pp. 79-90, Mar. 2006.
    • (2006) IEEE Eng. Med. Biol. Mag. , vol.25 , Issue.2 , pp. 79-90
    • Calhoun, V.1    Adali, T.2
  • 18
    • 0035033714 scopus 로고    scopus 로고
    • Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
    • V. Calhoun, T. Adali, G. Pearlson, and J. Pekar, "Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms," Human Brain Mapping, vol. 13, no. 1, pp. 43-53, 2001.
    • (2001) Human Brain Mapping , vol.13 , Issue.1 , pp. 43-53
    • Calhoun, V.1    Adali, T.2    Pearlson, G.3    Pekar, J.4
  • 19
    • 48749090271 scopus 로고    scopus 로고
    • A unified framework for group independent component analysis for multi-subject fMRI data
    • Y. Guo and G. Pagnoni, "A unified framework for group independent component analysis for multi-subject fMRI data," NeuroImage, vol. 42, no. 3, pp. 1078-1093, 2008.
    • (2008) NeuroImage , vol.42 , Issue.3 , pp. 1078-1093
    • Guo, Y.1    Pagnoni, G.2
  • 20
    • 84870794840 scopus 로고    scopus 로고
    • A unified approach to sparse signal processing
    • F. Marvasti et al., "A unified approach to sparse signal processing," EURASIP J. Adv. Signal Process., vol. 2012, no. 44, pp. 1-45, 2012.
    • (2012) EURASIP J. Adv. Signal Process. , vol.2012 , Issue.44 , pp. 1-45
    • Marvasti, F.1
  • 22
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling
    • Mar.
    • E. Candes and M. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.
    • (2008) IEEE Signal Process. Mag. , vol.25 , Issue.2 , pp. 21-30
    • Candes, E.1    Wakin, M.2
  • 23
    • 79951677607 scopus 로고    scopus 로고
    • Mixing matrix estimation from sparse mixtures with unknown number of sources
    • Feb.
    • G. Zhou, Z. Yang, S. Xie, and J.-M. Yang, "Mixing matrix estimation from sparse mixtures with unknown number of sources," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 211-221, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.2 , pp. 211-221
    • Zhou, G.1    Yang, Z.2    Xie, S.3    Yang, J.-M.4
  • 24
    • 18844436491 scopus 로고    scopus 로고
    • Fourth-order blind identification of underdetermined mixtures of sources FOBIUM
    • A. Ferreol, L. Albera, and P. Chevalier, "Fourth-order blind identification of underdetermined mixtures of sources FOBIUM," IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1640-1653, 2005.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.5 , pp. 1640-1653
    • Ferreol, A.1    Albera, L.2    Chevalier, P.3
  • 25
    • 34249802620 scopus 로고    scopus 로고
    • Fourth-order cumulant-based blind identification of underdetermined mixtures
    • L. De Lathauwer, J. Castaing, and J. Cardoso, "Fourth-order cumulant-based blind identification of underdetermined mixtures," IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2965-2973, 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.6 , pp. 2965-2973
    • De Lathauwer, L.1    Castaing, J.2    Cardoso, J.3
  • 26
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct. 21
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 21, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 27
    • 84870868704 scopus 로고    scopus 로고
    • Sparse and unique nonnegative matrix factorization through data preprocessing
    • Nov.
    • N. Gillis, "Sparse and unique nonnegative matrix factorization through data preprocessing," J. Mach. Learn. Res., vol. 13, no. 11, pp. 3349-3386, Nov. 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.11 , pp. 3349-3386
    • Gillis, N.1
  • 28
    • 84890916116 scopus 로고    scopus 로고
    • Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition
    • Jan. 1
    • K. Huang, N. Sidiropoulos, and A. Swami, "Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition," IEEE Trans. Signal Process., vol. 62, no. 1, pp. 211-224, Jan. 1, 2014.
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.1 , pp. 211-224
    • Huang, K.1    Sidiropoulos, N.2    Swami, A.3
  • 29
    • 77949836282 scopus 로고    scopus 로고
    • Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization
    • May
    • F. Y. Wang, C. Y. Chi, T. H. Chan, and Y. Wang, "Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 875-888, May 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 875-888
    • Wang, F.Y.1    Chi, C.Y.2    Chan, T.H.3    Wang, Y.4
  • 30
    • 80053637334 scopus 로고    scopus 로고
    • Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts
    • Oct.
    • G. Zhou, S. Xie, Z. Yang, J.-M. Yang, and Z. He, "Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1626-1637, Oct. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1626-1637
    • Zhou, G.1    Xie, S.2    Yang, Z.3    Yang, J.-M.4    He, Z.5
  • 33
    • 84914166609 scopus 로고    scopus 로고
    • Two efficient algorithms for approximately orthogonal nonnegative matrix factorization
    • Jul.
    • B. Li, G. Zhou, and A. Cichocki, "Two efficient algorithms for approximately orthogonal nonnegative matrix factorization," IEEE Signal Process. Lett., vol. 22, no. 7, pp. 843-846, Jul. 2015.
    • (2015) IEEE Signal Process. Lett. , vol.22 , Issue.7 , pp. 843-846
    • Li, B.1    Zhou, G.2    Cichocki, A.3
  • 35
    • 84924081954 scopus 로고    scopus 로고
    • Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis
    • T. Yokota, R. Zdunek, A. Cichocki, and Y. Yamashita, "Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis," Signal Process., vol. 113, pp. 234-249, 2015.
    • (2015) Signal Process. , vol.113 , pp. 234-249
    • Yokota, T.1    Zdunek, R.2    Cichocki, A.3    Yamashita, Y.4
  • 37
    • 0033309417 scopus 로고    scopus 로고
    • Natural gradient algorithm for blind separation of overdetermined mixture with additive noise
    • L.-Q. Zhang, A. Cichocki, and S. Amari, "Natural gradient algorithm for blind separation of overdetermined mixture with additive noise," IEEE Signal Process. Lett., vol. 6, no. 11, pp. 293-295, 1999.
    • (1999) IEEE Signal Process. Lett. , vol.6 , Issue.11 , pp. 293-295
    • Zhang, L.-Q.1    Cichocki, A.2    Amari, S.3
  • 38
    • 85032751462 scopus 로고    scopus 로고
    • Nonnegative matrix and tensor factorizations: An algorithmic perspective
    • May
    • G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, "Nonnegative matrix and tensor factorizations: An algorithmic perspective," IEEE Signal Process. Mag., vol. 31, no. 3, pp. 54-65, May 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.3 , pp. 54-65
    • Zhou, G.1    Cichocki, A.2    Zhao, Q.3    Xie, S.4
  • 39
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, 2011.
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 41
    • 84874516763 scopus 로고    scopus 로고
    • Image denoising using the higher order singular value decomposition
    • A. Rajwade, A. Rangarajan, and A. Banerjee, "Image denoising using the higher order singular value decomposition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 4, pp. 849-862, 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.4 , pp. 849-862
    • Rajwade, A.1    Rangarajan, A.2    Banerjee, A.3
  • 42
    • 78751515806 scopus 로고    scopus 로고
    • Tensor decompositions for feature extraction and classification of high dimensional datasets
    • H. A. Phan and A. Cichocki, "Tensor decompositions for feature extraction and classification of high dimensional datasets," IEICE Nonlinear Theory Appl., vol. 1, no. 1, pp. 37-68, 2010.
    • (2010) IEICE Nonlinear Theory Appl. , vol.1 , Issue.1 , pp. 37-68
    • Phan, H.A.1    Cichocki, A.2
  • 43
    • 36749028922 scopus 로고    scopus 로고
    • A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies
    • L. Omberg, G. Golub, and O. Alter, "A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies," Proc. Nat. Acad. Sci., vol. 104, no. 47, pp. 18 371-18 376, 2007.
    • (2007) Proc. Nat. Acad. Sci. , vol.104 , Issue.47 , pp. 18371-18376
    • Omberg, L.1    Golub, G.2    Alter, O.3
  • 44
    • 84919329838 scopus 로고    scopus 로고
    • Block term decomposition for modelling epileptic seizures
    • B. Hunyadi et al., "Block term decomposition for modelling epileptic seizures," EURASIP J. Adv. Signal Process., vol. 2014, no. 1, pp. 1-19, 2014.
    • (2014) EURASIP J. Adv. Signal Process. , vol.2014 , Issue.1 , pp. 1-19
    • Hunyadi, B.1
  • 46
    • 26844487467 scopus 로고    scopus 로고
    • Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm
    • L. Shoker, S. Sanei, and J. Chambers, "Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm," IEEE Signal Process. Lett., vol. 12, no. 10, pp. 721-724, 2005.
    • (2005) IEEE Signal Process. Lett. , vol.12 , Issue.10 , pp. 721-724
    • Shoker, L.1    Sanei, S.2    Chambers, J.3
  • 47
    • 84928242138 scopus 로고    scopus 로고
    • Tensor decomposition of EEG signals: A brief review
    • F. Cong et al., "Tensor decomposition of EEG signals: A brief review," J. Neurosci. Meth., vol. 248, pp. 59-69, 2015.
    • (2015) J. Neurosci. Meth. , vol.248 , pp. 59-69
    • Cong, F.1
  • 49
    • 84899934602 scopus 로고    scopus 로고
    • EEG extended source localization: Tensor-based vs. Conventional methods
    • H. Becker et al., "EEG extended source localization: Tensor-based vs. conventional methods," NeuroImage, vol. 96, pp. 143-157, 2014.
    • (2014) NeuroImage , vol.96 , pp. 143-157
    • Becker, H.1
  • 50
  • 51
    • 33947514540 scopus 로고    scopus 로고
    • ERPWAVELAB: A toolbox for multi-channel analysis of time-frequency transformed event related potentials
    • M. Mørup, L. K. Hansen, and S. M. Arnfred, "ERPWAVELAB: A toolbox for multi-channel analysis of time-frequency transformed event related potentials," J. Neurosci. Meth., vol. 161, no. 2, pp. 361-368, 2007.
    • (2007) J. Neurosci. Meth. , vol.161 , Issue.2 , pp. 361-368
    • Mørup, M.1    Hansen, L.K.2    Arnfred, S.M.3
  • 53
    • 84882371310 scopus 로고    scopus 로고
    • Fast and unique Tucker decompositions via multiway blind source separation
    • G. Zhou and A. Cichocki, "Fast and unique Tucker decompositions via multiway blind source separation," Bull. Polish Acad. Sci., Technol. Sci., vol. 60, no. 3, pp. 389-405, 2012.
    • (2012) Bull. Polish Acad. Sci., Technol. Sci. , vol.60 , Issue.3 , pp. 389-405
    • Zhou, G.1    Cichocki, A.2
  • 54
    • 84959556564 scopus 로고    scopus 로고
    • Efficient nonnegative Tucker decompositions: Algorithms and uniqueness
    • Dec.
    • G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, "Efficient nonnegative Tucker decompositions: Algorithms and uniqueness," IEEE Trans. Image Process., vol. 24, no. 12, pp. 4990-5003, Dec. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.12 , pp. 4990-5003
    • Zhou, G.1    Cichocki, A.2    Zhao, Q.3    Xie, S.4
  • 55
    • 0033653594 scopus 로고    scopus 로고
    • On the uniqueness of multilinear decomposition of N-way arrays
    • N. D. Sidiropoulos and R. Bro, "On the uniqueness of multilinear decomposition of N-way arrays," J. Chemometrics, vol. 14, no. 3, pp. 229-239, 2000.
    • (2000) J. Chemometrics , vol.14 , Issue.3 , pp. 229-239
    • Sidiropoulos, N.D.1    Bro, R.2
  • 56
    • 84919918834 scopus 로고    scopus 로고
    • An algorithm for generic and low-rank specific identifiability of complex tensors
    • L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, "An algorithm for generic and low-rank specific identifiability of complex tensors," SIAM J. Matrix Anal. Appl., vol. 35, no. 4, pp. 1265-1287, 2014.
    • (2014) SIAM J. Matrix Anal. Appl. , vol.35 , Issue.4 , pp. 1265-1287
    • Chiantini, L.1    Ottaviani, G.2    Vannieuwenhoven, N.3
  • 57
    • 0031078854 scopus 로고    scopus 로고
    • A blind source separation technique using second-order statistics
    • Feb.
    • A. Belouchrani, K. AbedMeraim, J. F. Cardoso, and E. Moulines, "A blind source separation technique using second-order statistics," IEEE Trans. Signal Process., vol. 45, no. 2, pp. 434-444, Feb. 1997.
    • (1997) IEEE Trans. Signal Process. , vol.45 , Issue.2 , pp. 434-444
    • Belouchrani, A.1    Abedmeraim, K.2    Cardoso, J.F.3    Moulines, E.4
  • 58
    • 0036125994 scopus 로고    scopus 로고
    • Equivariant nonstationary source separation
    • S. Choi, A. Cichocki, and S. Amari, "Equivariant nonstationary source separation," Neural Netw., vol. 15, no. 1, pp. 121-130, 2002.
    • (2002) Neural Netw. , vol.15 , Issue.1 , pp. 121-130
    • Choi, S.1    Cichocki, A.2    Amari, S.3
  • 59
    • 26844550383 scopus 로고    scopus 로고
    • A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation
    • Jul.
    • A. Ziehe, P. Laskov, G. Nolte, and K. R. Muller, "A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation," J. Mach. Learn. Res., vol. 5, pp. 777-800, Jul. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 777-800
    • Ziehe, A.1    Laskov, P.2    Nolte, G.3    Muller, K.R.4
  • 60
    • 33746356349 scopus 로고    scopus 로고
    • A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
    • L. De Lathauwer, "A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization," SIAM J. Matrix Anal. Appl., vol. 28, no. 3, pp. 642-666, 2006.
    • (2006) SIAM J. Matrix Anal. Appl. , vol.28 , Issue.3 , pp. 642-666
    • De Lathauwer, L.1
  • 61
    • 75549087892 scopus 로고    scopus 로고
    • Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers
    • Nov.
    • G. Zhou, S. Xie, Z. Yang, and J. Zhang, "Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers," IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1810-1819, Nov. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.11 , pp. 1810-1819
    • Zhou, G.1    Xie, S.2    Yang, Z.3    Zhang, J.4
  • 62
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for multisubject fMRI analysis
    • C. F. Beckmann and S. M. Smith, "Tensorial extensions of independent component analysis for multisubject fMRI analysis," NeuroImage, vol. 25, no. 1, pp. 294-311, 2005.
    • (2005) NeuroImage , vol.25 , Issue.1 , pp. 294-311
    • Beckmann, C.F.1    Smith, S.M.2
  • 63
    • 84864283711 scopus 로고    scopus 로고
    • A combination of parallel factor and independent component analysis
    • M. De Vos, D. Nion, S. Van Huffel, and L. De Lathauwer, "A combination of parallel factor and independent component analysis," Signal Process., vol. 92, no. 12, pp. 2990-2999, 2012.
    • (2012) Signal Process. , vol.92 , Issue.12 , pp. 2990-2999
    • De Vos, M.1    Nion, D.2    Van Huffel, S.3    De Lathauwer, L.4
  • 64
    • 85008574320 scopus 로고    scopus 로고
    • Canonical polyadic decomposition based on a single mode blind source separation
    • Aug.
    • G. Zhou and A. Cichocki, "Canonical polyadic decomposition based on a single mode blind source separation," IEEE Signal Process. Lett., vol. 19, no. 8, pp. 523-526, Aug. 2012.
    • (2012) IEEE Signal Process. Lett. , vol.19 , Issue.8 , pp. 523-526
    • Zhou, G.1    Cichocki, A.2
  • 65
    • 84894682018 scopus 로고    scopus 로고
    • Blind source separation of underdetermined mixtures of event-related sources
    • M. Niknazar, H. Becker, B. Rivet, C. Jutten, and P. Comon, "Blind source separation of underdetermined mixtures of event-related sources," Signal Process., vol. 101, pp. 52-64, 2014.
    • (2014) Signal Process. , vol.101 , pp. 52-64
    • Niknazar, M.1    Becker, H.2    Rivet, B.3    Jutten, C.4    Comon, P.5
  • 66
    • 70349696077 scopus 로고    scopus 로고
    • Nonnegative approximations of nonnegative tensors
    • L.-H. Lim and P. Comon, "Nonnegative approximations of nonnegative tensors," J. Chemometrics, vol. 23, no. 7-8, pp. 432-441, 2009.
    • (2009) J. Chemometrics , vol.23 , Issue.7-8 , pp. 432-441
    • Lim, L.-H.1    Comon, P.2
  • 68
    • 84912569461 scopus 로고    scopus 로고
    • Non-negative tensor factorization with missing data for the modeling of gene expressions in the human brain
    • S. Nielsen and M. Morup, "Non-negative tensor factorization with missing data for the modeling of gene expressions in the human brain," in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., 2014, pp. 1-6.
    • (2014) Proc. IEEE Int. Workshop Mach. Learn. Signal Process. , pp. 1-6
    • Nielsen, S.1    Morup, M.2
  • 69
    • 84903202144 scopus 로고    scopus 로고
    • Independent vector analysis with a generalized multivariate Gaussian source prior for frequency domain blind source separation
    • Y. Liang, J. Harris, S. M. Naqvi, G. Chen, and J. A. Chambers, "Independent vector analysis with a generalized multivariate Gaussian source prior for frequency domain blind source separation," Signal Process., vol. 105, pp. 175-184, 2014.
    • (2014) Signal Process. , vol.105 , pp. 175-184
    • Liang, Y.1    Harris, J.2    Naqvi, S.M.3    Chen, G.4    Chambers, J.A.5
  • 70
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, ERP data
    • V. Calhoun, J. Liu, and T. Adali, "A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, ERP data," NeuroImage, vol. 45, no. 1, pp. 163-172, 2009.
    • (2009) NeuroImage , vol.45 , Issue.1 , pp. 163-172
    • Calhoun, V.1    Liu, J.2    Adali, T.3
  • 71
    • 33645128468 scopus 로고    scopus 로고
    • Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data
    • V. Calhoun, T. Adali, G. Pearlson, and K. Kiehl, "Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data," NeuroImage, vol. 30, no. 2, pp. 544-553, 2006.
    • (2006) NeuroImage , vol.30 , Issue.2 , pp. 544-553
    • Calhoun, V.1    Adali, T.2    Pearlson, G.3    Kiehl, K.4
  • 72
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • V. Calhoun, T. Adali, G. Pearlson, and J. Pekar, "A method for making group inferences from functional MRI data using independent component analysis," Human Brain Mapping, vol. 14, no. 3, pp. 140-151, 2001.
    • (2001) Human Brain Mapping , vol.14 , Issue.3 , pp. 140-151
    • Calhoun, V.1    Adali, T.2    Pearlson, G.3    Pekar, J.4
  • 73
    • 85032751181 scopus 로고    scopus 로고
    • Canonical correlation analysis for data fusion and group inferences
    • N. Correa, T. Adali, Y.-O. Li, and V. Calhoun, "Canonical correlation analysis for data fusion and group inferences," IEEE Signal Process. Mag., vol. 27, no. 4, pp. 39-50, 2010.
    • (2010) IEEE Signal Process. Mag. , vol.27 , Issue.4 , pp. 39-50
    • Correa, N.1    Adali, T.2    Li, Y.-O.3    Calhoun, V.4
  • 74
    • 0000020007 scopus 로고
    • Canonical analysis of several sets of variables
    • J. R. Kettenring, "Canonical analysis of several sets of variables," Biometrika, vol. 58, no. 3, pp. 433-451, 1971.
    • (1971) Biometrika , vol.58 , Issue.3 , pp. 433-451
    • Kettenring, J.R.1
  • 75
    • 78650217865 scopus 로고    scopus 로고
    • Linked independent component analysis for multimodal data fusion
    • A. Groves, C. Beckmann, S. Smith, and M. Woolrich, "Linked independent component analysis for multimodal data fusion," NeuroImage, vol. 54, no. 1, p. 2198-21 217, 2011.
    • (2011) NeuroImage , vol.54 , Issue.1 , pp. 2198-21217
    • Groves, A.1    Beckmann, C.2    Smith, S.3    Woolrich, M.4
  • 76
    • 84873159873 scopus 로고    scopus 로고
    • A critique of tensor probabilistic independent component analysis: Implications and recommendations for multi-subject fMRI data analysis
    • N. Helwig and S. Hong, "A critique of tensor probabilistic independent component analysis: Implications and recommendations for multi-subject fMRI data analysis," J. Neurosci. Methods, vol. 213, no. 2, pp. 263-273, 2013.
    • (2013) J. Neurosci. Methods , vol.213 , Issue.2 , pp. 263-273
    • Helwig, N.1    Hong, S.2
  • 77
    • 84872728425 scopus 로고    scopus 로고
    • Shared processing of perception and imagery of music in decomposed {EEG}
    • R. S. Schaefer, P. Desain, and J. Farquhar, "Shared processing of perception and imagery of music in decomposed {EEG}," NeuroImage, vol. 70, pp. 317-326, 2013.
    • (2013) NeuroImage , vol.70 , pp. 317-326
    • Schaefer, R.S.1    Desain, P.2    Farquhar, J.3
  • 78
    • 80054711200 scopus 로고    scopus 로고
    • Population value decomposition, a framework for the analysis of image populations
    • C. Crainiceanu, B. S. Caffo, S. Luo, V. M. Zipunnikov, and N. M. Punjabi, "Population value decomposition, a framework for the analysis of image populations," J. Amer. Stat. Assoc., vol. 106, no. 495, pp. 775-790, 2011.
    • (2011) J. Amer. Stat. Assoc. , vol.106 , Issue.495 , pp. 775-790
    • Crainiceanu, C.1    Caffo, B.S.2    Luo, S.3    Zipunnikov, V.M.4    Punjabi, N.M.5
  • 79
    • 84887988913 scopus 로고    scopus 로고
    • Accelerated canonical polyadic decomposition by using mode reduction
    • Dec.
    • G. Zhou, A. Cichocki, and S. Xie, "Accelerated canonical polyadic decomposition by using mode reduction," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2051-2062, Dec. 2013.
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , Issue.12 , pp. 2051-2062
    • Zhou, G.1    Cichocki, A.2    Xie, S.3
  • 80
    • 84903966756 scopus 로고    scopus 로고
    • Independent vector analysis: Identification conditions and performance bounds
    • Sep.
    • M. Anderson, G. Fu, R. Phlypo, and T. Adali, "Independent vector analysis: Identification conditions and performance bounds," IEEE Trans. Signal Process., vol. 62, no. 17, pp. 4399-4410, Sep. 2014.
    • (2014) IEEE Trans. Signal Process. , vol.62 , Issue.17 , pp. 4399-4410
    • Anderson, M.1    Fu, G.2    Phlypo, R.3    Adali, T.4
  • 81
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Dec.
    • H. Hotelling, "Relations between two sets of variates," Biometrika, vol. 28, no. 3/4, pp. 321-377, Dec. 1936.
    • (1936) Biometrika , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 82
    • 70349808992 scopus 로고    scopus 로고
    • Joint blind source separation by multiset canonical correlation analysis
    • Oct.
    • Y.-O. Li, T. Adali, W. Wang, and V. Calhoun, "Joint blind source separation by multiset canonical correlation analysis," IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3918-3929, Oct. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.10 , pp. 3918-3929
    • Li, Y.-O.1    Adali, T.2    Wang, W.3    Calhoun, V.4
  • 83
    • 84897999975 scopus 로고    scopus 로고
    • Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
    • 450 013(1-14)
    • Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis," Int. J. Neural Syst., vol. 4, no. 24, p. 1 450 013(1-14), 2014.
    • (2014) Int. J. Neural Syst. , vol.4 , Issue.24 , pp. 1
    • Zhang, Y.1    Zhou, G.2    Jin, J.3    Wang, X.4    Cichocki, A.5
  • 84
    • 84933073746 scopus 로고    scopus 로고
    • Independent vector analysis for gradient artifact removal in concurrent EEG-fMRI data
    • P. Acharjee, R. Phlypo, L. Wu, V. Calhoun, and T. Adali, "Independent vector analysis for gradient artifact removal in concurrent EEG-fMRI data," IEEE Trans. Biomed. Eng., vol. 62, no. 7, pp. 1750-1758, 2015.
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , Issue.7 , pp. 1750-1758
    • Acharjee, P.1    Phlypo, R.2    Wu, L.3    Calhoun, V.4    Adali, T.5
  • 85
    • 85032752481 scopus 로고    scopus 로고
    • Kernelization of tensor-based models for multiway data analysis: Processing of multidimensional structured data
    • Q. Zhao, G. Zhou, T. Adali, L. Zhang, and A. Cichocki, "Kernelization of tensor-based models for multiway data analysis: Processing of multidimensional structured data," IEEE Signal Process. Mag., vol. 30, no. 4, pp. 137-148, 2013.
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.4 , pp. 137-148
    • Zhao, Q.1    Zhou, G.2    Adali, T.3    Zhang, L.4    Cichocki, A.5
  • 86
    • 84940384892 scopus 로고    scopus 로고
    • Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties
    • Sep.
    • T. Adali, Y. Levin-Schwartz, and V. Calhoun, "Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties," Proc. IEEE, vol. 103, no. 9, pp. 1478-1493, Sep. 2015.
    • (2015) Proc. IEEE , vol.103 , Issue.9 , pp. 1478-1493
    • Adali, T.1    Levin-Schwartz, Y.2    Calhoun, V.3
  • 87
    • 84903488735 scopus 로고    scopus 로고
    • Preserving subject variability in group fMRI analysis: Performance evaluation of GICA versus IVA
    • A.Michael, M. Anderson, R. Miller, T. Adali, and V. D. Calhoun, "Preserving subject variability in group fMRI analysis: Performance evaluation of GICA versus IVA," Front. Syst. Neurosci., vol. 8, no. 106, pp. 1-18, 2014.
    • (2014) Front. Syst. Neurosci. , vol.8 , Issue.106 , pp. 1-18
    • Michael, A.1    Anderson, M.2    Miller, R.3    Adali, T.4    Calhoun, V.D.5
  • 89
    • 84926286683 scopus 로고    scopus 로고
    • Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA
    • J. Laney et al., "Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA," J. Neurosci. Methods, vol. 247, pp. 32-40, 2015.
    • (2015) J. Neurosci. Methods , vol.247 , pp. 32-40
    • Laney, J.1
  • 90
    • 84905758016 scopus 로고    scopus 로고
    • A study of spatial variation in fMRI brain networks via independent vector analysis: Application to schizophrenia
    • Jun.
    • S. Gopal et al., "A study of spatial variation in fMRI brain networks via independent vector analysis: Application to schizophrenia," in Proc. Int. Workshop Pattern Recognit. Neuroimaging, Jun. 2014, pp. 1-4.
    • (2014) Proc. Int. Workshop Pattern Recognit. Neuroimaging , pp. 1-4
    • Gopal, S.1
  • 91
    • 84878122541 scopus 로고    scopus 로고
    • Higher order partial least squares (HOPLS): A generalized multilinear regression method
    • Jul.
    • Q. Zhao et al., "Higher order partial least squares (HOPLS): A generalized multilinear regression method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1660-1673, Jul. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.7 , pp. 1660-1673
    • Zhao, Q.1
  • 92
    • 84876058478 scopus 로고    scopus 로고
    • Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
    • E. Lock, K. Hoadley, J. S. Marron, and A. Nobel, "Joint and individual variation explained (JIVE) for integrated analysis of multiple data types," Ann. Appl. Stat., vol. 7, no. 1, pp. 523-542, 2013.
    • (2013) Ann. Appl. Stat. , vol.7 , Issue.1 , pp. 523-542
    • Lock, E.1    Hoadley, K.2    Marron, J.S.3    Nobel, A.4
  • 94
    • 84962080151 scopus 로고    scopus 로고
    • Group component analysis from multi-block data: Common and individual feature extraction
    • G. Zhou, A. Cichocki, Y. Zhang, and D. Mandic, "Group component analysis from multi-block data: Common and individual feature extraction," IEEE Trans. Neural Netw. Learn. Syst., [Online]. Available: http://arxiv. org/abs/1212.3913.
    • IEEE Trans. Neural Netw. Learn. Syst
    • Zhou, G.1    Cichocki, A.2    Zhang, Y.3    Mandic, D.4
  • 96
    • 84939249854 scopus 로고    scopus 로고
    • Bayesian CP factorization of incomplete tensors with automatic rank determination
    • Sep.
    • Q. Zhao, L. Zhang, and A. Cichocki, "Bayesian CP factorization of incomplete tensors with automatic rank determination," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1751-1763, Sep. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.9 , pp. 1751-1763
    • Zhao, Q.1    Zhang, L.2    Cichocki, A.3
  • 99
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis
    • E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis" J. ACM, vol. 58, no. 3, pp. 11:1-11:37, 2011.
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 111-1137
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 101
    • 78149283977 scopus 로고    scopus 로고
    • Detecting the number of clusters in N-way probabilistic clustering
    • Z. He, A. Cichocki, S. Xie, and K. Choi, "Detecting the number of clusters in N-way probabilistic clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2006-2021, 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.11 , pp. 2006-2021
    • He, Z.1    Cichocki, A.2    Xie, S.3    Choi, K.4
  • 102
    • 77952741387 scopus 로고    scopus 로고
    • Matrix completion with noise
    • Jun.
    • E. Candes and Y. Plan, "Matrix completion with noise," Proc. IEEE, vol. 98, no. 6, pp. 925-936, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 925-936
    • Candes, E.1    Plan, Y.2
  • 103
    • 84870175618 scopus 로고    scopus 로고
    • Tensor completion for estimating missing values in visual data
    • Jan.
    • J. Liu, P. Musialski, P. Wonka, and J. Ye, "Tensor completion for estimating missing values in visual data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 208-220, Jan. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.1 , pp. 208-220
    • Liu, J.1    Musialski, P.2    Wonka, P.3    Ye, J.4
  • 104
    • 84897553151 scopus 로고    scopus 로고
    • Robust low-rank tensor recovery: Models and algorithms
    • D. Goldfarb and Z. T. Qin, "Robust low-rank tensor recovery: Models and algorithms," SIAM J. Matrix Anal. Appl., vol. 35, no. 1, pp. 225-253, 2014.
    • (2014) SIAM J. Matrix Anal. Appl. , vol.35 , Issue.1 , pp. 225-253
    • Goldfarb, D.1    Qin, Z.T.2
  • 105
    • 84867120756 scopus 로고    scopus 로고
    • Infinite Tucker decomposition: Nonparametric bayesian models for multiway data analysis
    • J. Langford and J. Pineau, Eds.
    • Z. Xu, F. Yan, and A. Qi, "Infinite Tucker decomposition: Nonparametric bayesian models for multiway data analysis," in Proc. 29th Int. Conf. Mach. Learn., J. Langford and J. Pineau, Eds., 2012, pp. 1023-1030.
    • (2012) Proc. 29th Int. Conf. Mach. Learn , pp. 1023-1030
    • Xu, Z.1    Yan, F.2    Qi, A.3
  • 107
    • 84880828991 scopus 로고    scopus 로고
    • Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-lr; Lr; 1 terms, a new generalization
    • L. Sorber, M. V. Barel, and L. D. Lathauwer, "Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-lr; lr; 1 terms, a new generalization," SIAM J. Optim., vol. 23, no. 2, pp. 695-720, 2013.
    • (2013) SIAM J. Optim. , vol.23 , Issue.2 , pp. 695-720
    • Sorber, L.1    Barel, M.V.2    Lathauwer, L.D.3
  • 108
    • 84962001706 scopus 로고    scopus 로고
    • Scalable Bayesian low-rank decomposition of incomplete multiway tensors
    • P. Rai et al., "Scalable Bayesian low-rank decomposition of incomplete multiway tensors," in Proc. 31st Int. Conf. Mach. Learn., 2014, pp. 1800-1808.
    • (2014) Proc. 31st Int. Conf. Mach. Learn. , pp. 1800-1808
    • Rai, P.1
  • 109
    • 85032750821 scopus 로고    scopus 로고
    • Dimensionality reduction via subspace and submanifold learning
    • Mar.
    • Y. Ma, P. Niyogi, G. Sapiro, and R. Vidal, "Dimensionality reduction via subspace and submanifold learning," IEEE Signal Process. Mag., vol. 28, no. 2, pp. 14-126, Mar. 2011.
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.2 , pp. 14-126
    • Ma, Y.1    Niyogi, P.2    Sapiro, G.3    Vidal, R.4
  • 110
    • 84861153505 scopus 로고    scopus 로고
    • Fast nonnegative matrix/tensor factorization based on low-rank approximation
    • G. Zhou, A. Cichocki, and S. Xie, "Fast nonnegative matrix/tensor factorization based on low-rank approximation," IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2928-2940, 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.6 , pp. 2928-2940
    • Zhou, G.1    Cichocki, A.2    Xie, S.3
  • 113
    • 84856463292 scopus 로고    scopus 로고
    • Randomized algorithms for matrices and data
    • M. W. Mahoney, "Randomized algorithms for matrices and data," Found. Trends Mach. Learn., vol. 3, no. 2, pp. 123-224, 2011.
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.2 , pp. 123-224
    • Mahoney, M.W.1
  • 114
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P. Martinsson, and J. Tropp, "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions," SIAM Rev., vol. 53, no. 2, pp. 217-288, 2011.
    • (2011) SIAM Rev. , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.2    Tropp, J.3
  • 115
    • 77953154158 scopus 로고    scopus 로고
    • Generalizing the column-row matrix decomposition to multi-way arrays
    • C. F. Caiafa and A. Cichocki, "Generalizing the column-row matrix decomposition to multi-way arrays," Linear Algebra Appl., vol. 433, no. 3, pp. 557-573, 2010.
    • (2010) Linear Algebra Appl. , vol.433 , Issue.3 , pp. 557-573
    • Caiafa, C.F.1    Cichocki, A.2
  • 116
    • 85030107265 scopus 로고    scopus 로고
    • Tensor sparsification via a bound on the spectral norm of random tensors
    • N. H. Nguyen, P. Drineas, and T. D. Tran, "Tensor sparsification via a bound on the spectral norm of random tensors," Inf. Inference, pp. 1-35, 2015.
    • (2015) Inf. Inference , pp. 1-35
    • Nguyen, N.H.1    Drineas, P.2    Tran, T.D.3
  • 117
    • 85032752418 scopus 로고    scopus 로고
    • Convex optimization for big data: Scalable, randomized, parallel algorithms for big data analytics
    • Sep.
    • V. Cevher, S. Becker, and M. Schmidt, "Convex optimization for big data: Scalable, randomized, parallel algorithms for big data analytics," IEEE Signal Process. Mag., vol. 31, no. 5, pp. 32-43, Sep. 2014.
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.5 , pp. 32-43
    • Cevher, V.1    Becker, S.2    Schmidt, M.3
  • 118
    • 34249320522 scopus 로고    scopus 로고
    • Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
    • Jun.
    • Z. Lin, C. Zhang, W. Wu, and X. Gao, "Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs," IEEE Trans. Biomed. Eng., vol. 54, no. 6, pp. 1172-1176, Jun. 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.6 , pp. 1172-1176
    • Lin, Z.1    Zhang, C.2    Wu, W.3    Gao, X.4
  • 119
    • 84888114061 scopus 로고    scopus 로고
    • L1-regularized multiway canonical correlation analysis for SSVEPbased BCI
    • Y. Zhang et al., "L1-regularized multiway canonical correlation analysis for SSVEPbased BCI," IEEE Trans. Neural Syste. Rehab. Eng., vol. 21, no. 6, pp. 887-896, 2013.
    • (2013) IEEE Trans. Neural Syste. Rehab. Eng. , vol.21 , Issue.6 , pp. 887-896
    • Zhang, Y.1
  • 121
    • 84908299126 scopus 로고    scopus 로고
    • Denoising of 3D magnetic resonance images by using higher-order singular value decomposition
    • X. Zhang et al., "Denoising of 3D magnetic resonance images by using higher-order singular value decomposition," Med. Image Anal., vol. 19, no. 1, pp. 75-86, 2015.
    • (2015) Med. Image Anal. , vol.19 , Issue.1 , pp. 75-86
    • Zhang, X.1
  • 122
    • 84937924227 scopus 로고    scopus 로고
    • Generalized higher-order orthogonal iteration for tensor decomposition and completion
    • Y. Liu, F. Shang, W. Fan, J. Cheng, and H. Cheng, "Generalized higher-order orthogonal iteration for tensor decomposition and completion," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1763-1771.
    • (2014) Proc. Adv. Neural Inf. Process. Syst. , pp. 1763-1771
    • Liu, Y.1    Shang, F.2    Fan, W.3    Cheng, J.4    Cheng, H.5
  • 123
    • 84937834376 scopus 로고    scopus 로고
    • Tucker factorization with missing data with application to low-n-rank tensor completion
    • M. Filipovic and A. Jukic, "Tucker factorization with missing data with application to low-n-rank tensor completion," Multidimensional Syst. Signal Process., pp. 1-16, 2013.
    • (2013) Multidimensional Syst. Signal Process. , pp. 1-16
    • Filipovic, M.1    Jukic, A.2
  • 124
    • 84959875939 scopus 로고    scopus 로고
    • Turbo-SMT: Accelerating coupled sparse matrix-tensor factorizations by 200
    • E. Papalexakis et al., "Turbo-SMT: Accelerating coupled sparse matrix-tensor factorizations by 200-," in Proc. SIAM Int. Conf. Data Mining, 2014.
    • (2014) Proc. SIAM Int. Conf. Data Mining
    • Papalexakis, E.1
  • 125
    • 84911903554 scopus 로고    scopus 로고
    • Joint blind source separation of multidimensional components: Model and algorithm
    • Sep.
    • D. Lahat and C. Jutten, "Joint blind source separation of multidimensional components: Model and algorithm," in Proc. 22nd Eur. Signal Process. Conf., Sep. 2014, pp. 1417-1421.
    • (2014) Proc. 22nd Eur. Signal Process. Conf , pp. 1417-1421
    • Lahat, D.1    Jutten, C.2
  • 126
    • 84940431216 scopus 로고    scopus 로고
    • Multidataset independent subspace analysis extends independent vector analysis
    • Oct.
    • R. Silva, S. Plis, T. Adali, and V. Calhoun, "Multidataset independent subspace analysis extends independent vector analysis," in Proc. IEEE Int. Conf. Image Process., Oct. 2014, pp. 2864-2868.
    • (2014) Proc. IEEE Int. Conf. Image Process , pp. 2864-2868
    • Silva, R.1    Plis, S.2    Adali, T.3    Calhoun, V.4
  • 127
    • 84946067075 scopus 로고    scopus 로고
    • Determining the number of correlated signals between two data sets using PCACCA when sample support is extremely small
    • Apr.
    • Y. Song, P. Schreier, and N. J. Roseveare, "Determining the number of correlated signals between two data sets using PCACCA when sample support is extremely small," in Proc. IEEE 40th Int. Conf. Acoust. Speech Signal Process., Apr. 2015.
    • (2015) Proc. IEEE 40th Int. Conf. Acoust. Speech Signal Process
    • Song, Y.1    Schreier, P.2    Roseveare, N.J.3
  • 128
    • 84903709665 scopus 로고    scopus 로고
    • A practical introduction to tensor networks: Matrix product states and projected entangled pair states
    • R. Orús, "A practical introduction to tensor networks: Matrix product states and projected entangled pair states," Ann. Phys., vol. 349, pp. 117-158, 2014.
    • (2014) Ann. Phys. , vol.349 , pp. 117-158
    • Orús, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.