-
1
-
-
84891283756
-
-
Chichester, U.K.: Wiley
-
A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Chichester, U.K.: Wiley, 2009.
-
(2009)
Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation
-
-
Cichocki, A.1
Zdunek, R.2
Phan, A.H.3
Amari, S.-I.4
-
2
-
-
68649096448
-
Tensor decompositions and applications
-
T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.
-
(2009)
SIAM Rev.
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
3
-
-
85032780162
-
Tensor decompositions for signal processing application
-
Mar.
-
A. Cichocki, D. Mandic, A.-H. Phan, C. Caiafa, G. Zhou, Q. Zhao, and L. De Lathauwer, "Tensor decompositions for signal processing application," IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145-163, Mar. 2015.
-
(2015)
IEEE Signal Process. Mag.
, vol.32
, Issue.2
, pp. 145-163
-
-
Cichocki, A.1
Mandic, D.2
Phan, A.-H.3
Caiafa, C.4
Zhou, G.5
Zhao, Q.6
De Lathauwer, L.7
-
4
-
-
84869034845
-
Tensor decompositions: New concepts for brain data analysis
-
A. Cichocki, "Tensor decompositions: New concepts for brain data analysis" SICE J. Control Meas., Syst. Integr., vol. 7, pp. 507-517, 2011.
-
(2011)
SICE J. Control Meas., Syst. Integr.
, vol.7
, pp. 507-517
-
-
Cichocki, A.1
-
6
-
-
19344375707
-
-
Hoboken, NJ, USA: Wiley
-
A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis With Applications in the Chemical Sciences. Hoboken, NJ, USA: Wiley, 2004.
-
(2004)
Multi-Way Analysis with Applications in the Chemical Sciences
-
-
Smilde, A.1
Bro, R.2
Geladi, P.3
-
8
-
-
84888852280
-
Understanding data fusion within the framework of coupled matrix and tensor factorizations
-
E. Acar, M. Rasmussen, F. Savorani, T. Næs, and R. Bro, "Understanding data fusion within the framework of coupled matrix and tensor factorizations," Chemometr. Intell. Lab. Syst., vol. 129, pp. 53-63, 2013.
-
(2013)
Chemometr. Intell. Lab. Syst.
, vol.129
, pp. 53-63
-
-
Acar, E.1
Rasmussen, M.2
Savorani, F.3
Næs, T.4
Bro, R.5
-
9
-
-
84873126892
-
Coupled matrix factorization with sparse factors to identify potential biomarkers in metabolomics
-
E. Acar et al., "Coupled matrix factorization with sparse factors to identify potential biomarkers in metabolomics," in Proc. IEEE 12th Int. Conf. Data Mining Workshops, 2012, pp. 1-8.
-
(2012)
Proc. IEEE 12th Int. Conf. Data Mining Workshops
, pp. 1-8
-
-
Acar, E.1
-
10
-
-
14844306738
-
Fetal electrocardiogram extraction by sequential source separation in the wavelet domain
-
Mar.
-
M. Jafari and J. Chambers, "Fetal electrocardiogram extraction by sequential source separation in the wavelet domain," IEEE Trans. Biomed. Eng., vol. 52, no. 3, pp. 390-400, Mar. 2005.
-
(2005)
IEEE Trans. Biomed. Eng.
, vol.52
, Issue.3
, pp. 390-400
-
-
Jafari, M.1
Chambers, J.2
-
12
-
-
85013730549
-
-
1st ed. Waltham, MA, USA: Academic, Mar.
-
P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications, 1st ed. Waltham, MA, USA: Academic, Mar. 2010.
-
(2010)
Handbook of Blind Source Separation: Independent Component Analysis and Applications
-
-
Comon, P.1
Jutten, C.2
-
13
-
-
85032752434
-
Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging
-
May
-
T. Adali, M. Anderson, and G.-S. Fu, "Diversity in independent component and vector analyses: Identifiability, algorithms, and applications in medical imaging," IEEE Signal Process. Mag., vol. 31, no. 3, pp. 18-33, May 2014.
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, Issue.3
, pp. 18-33
-
-
Adali, T.1
Anderson, M.2
Fu, G.-S.3
-
14
-
-
62749170517
-
Complex ICA using nonlinear functions
-
Sep.
-
T. Adali, H. Li, M. Novey, and J. Cardoso, "Complex ICA using nonlinear functions," IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4536-4544, Sep. 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.9
, pp. 4536-4544
-
-
Adali, T.1
Li, H.2
Novey, M.3
Cardoso, J.4
-
15
-
-
0032187518
-
Blind signal separation: Statistical principles
-
Oct.
-
J. F. Cardoso, "Blind signal separation: Statistical principles," Proc. IEEE, vol. 86, no. 10, pp. 2009-2025, Oct. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.10
, pp. 2009-2025
-
-
Cardoso, J.F.1
-
16
-
-
84870993474
-
Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery
-
V. Calhoun and T. Adali, "Multisubject independent component analysis of fMRI: A decade of intrinsic networks, default mode, and neurodiagnostic discovery," IEEE Rev. Biomed. Eng., vol. 5, pp. 60-73, 2012.
-
(2012)
IEEE Rev. Biomed. Eng.
, vol.5
, pp. 60-73
-
-
Calhoun, V.1
Adali, T.2
-
17
-
-
33645224023
-
Unmixing fMRI with independent component analysis
-
Mar.
-
V. Calhoun and T. Adali, "Unmixing fMRI with independent component analysis," IEEE Eng. Med. Biol. Mag., vol. 25, no. 2, pp. 79-90, Mar. 2006.
-
(2006)
IEEE Eng. Med. Biol. Mag.
, vol.25
, Issue.2
, pp. 79-90
-
-
Calhoun, V.1
Adali, T.2
-
18
-
-
0035033714
-
Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
-
V. Calhoun, T. Adali, G. Pearlson, and J. Pekar, "Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms," Human Brain Mapping, vol. 13, no. 1, pp. 43-53, 2001.
-
(2001)
Human Brain Mapping
, vol.13
, Issue.1
, pp. 43-53
-
-
Calhoun, V.1
Adali, T.2
Pearlson, G.3
Pekar, J.4
-
19
-
-
48749090271
-
A unified framework for group independent component analysis for multi-subject fMRI data
-
Y. Guo and G. Pagnoni, "A unified framework for group independent component analysis for multi-subject fMRI data," NeuroImage, vol. 42, no. 3, pp. 1078-1093, 2008.
-
(2008)
NeuroImage
, vol.42
, Issue.3
, pp. 1078-1093
-
-
Guo, Y.1
Pagnoni, G.2
-
20
-
-
84870794840
-
A unified approach to sparse signal processing
-
F. Marvasti et al., "A unified approach to sparse signal processing," EURASIP J. Adv. Signal Process., vol. 2012, no. 44, pp. 1-45, 2012.
-
(2012)
EURASIP J. Adv. Signal Process.
, vol.2012
, Issue.44
, pp. 1-45
-
-
Marvasti, F.1
-
22
-
-
85032750937
-
An introduction to compressive sampling
-
Mar.
-
E. Candes and M. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, Issue.2
, pp. 21-30
-
-
Candes, E.1
Wakin, M.2
-
23
-
-
79951677607
-
Mixing matrix estimation from sparse mixtures with unknown number of sources
-
Feb.
-
G. Zhou, Z. Yang, S. Xie, and J.-M. Yang, "Mixing matrix estimation from sparse mixtures with unknown number of sources," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 211-221, Feb. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.2
, pp. 211-221
-
-
Zhou, G.1
Yang, Z.2
Xie, S.3
Yang, J.-M.4
-
24
-
-
18844436491
-
Fourth-order blind identification of underdetermined mixtures of sources FOBIUM
-
A. Ferreol, L. Albera, and P. Chevalier, "Fourth-order blind identification of underdetermined mixtures of sources FOBIUM," IEEE Trans. Signal Process., vol. 53, no. 5, pp. 1640-1653, 2005.
-
(2005)
IEEE Trans. Signal Process.
, vol.53
, Issue.5
, pp. 1640-1653
-
-
Ferreol, A.1
Albera, L.2
Chevalier, P.3
-
25
-
-
34249802620
-
Fourth-order cumulant-based blind identification of underdetermined mixtures
-
L. De Lathauwer, J. Castaing, and J. Cardoso, "Fourth-order cumulant-based blind identification of underdetermined mixtures," IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2965-2973, 2007.
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, Issue.6
, pp. 2965-2973
-
-
De Lathauwer, L.1
Castaing, J.2
Cardoso, J.3
-
26
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Oct. 21
-
D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 21, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
27
-
-
84870868704
-
Sparse and unique nonnegative matrix factorization through data preprocessing
-
Nov.
-
N. Gillis, "Sparse and unique nonnegative matrix factorization through data preprocessing," J. Mach. Learn. Res., vol. 13, no. 11, pp. 3349-3386, Nov. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.11
, pp. 3349-3386
-
-
Gillis, N.1
-
28
-
-
84890916116
-
Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition
-
Jan. 1
-
K. Huang, N. Sidiropoulos, and A. Swami, "Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition," IEEE Trans. Signal Process., vol. 62, no. 1, pp. 211-224, Jan. 1, 2014.
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.1
, pp. 211-224
-
-
Huang, K.1
Sidiropoulos, N.2
Swami, A.3
-
29
-
-
77949836282
-
Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization
-
May
-
F. Y. Wang, C. Y. Chi, T. H. Chan, and Y. Wang, "Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 875-888, May 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.5
, pp. 875-888
-
-
Wang, F.Y.1
Chi, C.Y.2
Chan, T.H.3
Wang, Y.4
-
30
-
-
80053637334
-
Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts
-
Oct.
-
G. Zhou, S. Xie, Z. Yang, J.-M. Yang, and Z. He, "Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1626-1637, Oct. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.10
, pp. 1626-1637
-
-
Zhou, G.1
Xie, S.2
Yang, Z.3
Yang, J.-M.4
He, Z.5
-
32
-
-
33749575326
-
Orthogonal nonnegative matrix tri-factorizations for clustering
-
New York, NY, USA
-
C. Ding, T. Li, W. Peng, and H. Park, "Orthogonal nonnegative matrix tri-factorizations for clustering," in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining, New York, NY, USA, 2006, pp. 126-135.
-
(2006)
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining
, pp. 126-135
-
-
Ding, C.1
Li, T.2
Peng, W.3
Park, H.4
-
33
-
-
84914166609
-
Two efficient algorithms for approximately orthogonal nonnegative matrix factorization
-
Jul.
-
B. Li, G. Zhou, and A. Cichocki, "Two efficient algorithms for approximately orthogonal nonnegative matrix factorization," IEEE Signal Process. Lett., vol. 22, no. 7, pp. 843-846, Jul. 2015.
-
(2015)
IEEE Signal Process. Lett.
, vol.22
, Issue.7
, pp. 843-846
-
-
Li, B.1
Zhou, G.2
Cichocki, A.3
-
35
-
-
84924081954
-
Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis
-
T. Yokota, R. Zdunek, A. Cichocki, and Y. Yamashita, "Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis," Signal Process., vol. 113, pp. 234-249, 2015.
-
(2015)
Signal Process.
, vol.113
, pp. 234-249
-
-
Yokota, T.1
Zdunek, R.2
Cichocki, A.3
Yamashita, Y.4
-
36
-
-
33749754615
-
A new learning algorithm for blind signal separation
-
S.-I. Amari, A. Cichocki, and H.-H. Yang, "A new learning algorithm for blind signal separation," Adv. Neural Inf. Process. Syst., vol. 8, pp. 757-763, 1996.
-
(1996)
Adv. Neural Inf. Process. Syst.
, vol.8
, pp. 757-763
-
-
Amari, S.-I.1
Cichocki, A.2
Yang, H.-H.3
-
37
-
-
0033309417
-
Natural gradient algorithm for blind separation of overdetermined mixture with additive noise
-
L.-Q. Zhang, A. Cichocki, and S. Amari, "Natural gradient algorithm for blind separation of overdetermined mixture with additive noise," IEEE Signal Process. Lett., vol. 6, no. 11, pp. 293-295, 1999.
-
(1999)
IEEE Signal Process. Lett.
, vol.6
, Issue.11
, pp. 293-295
-
-
Zhang, L.-Q.1
Cichocki, A.2
Amari, S.3
-
38
-
-
85032751462
-
Nonnegative matrix and tensor factorizations: An algorithmic perspective
-
May
-
G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, "Nonnegative matrix and tensor factorizations: An algorithmic perspective," IEEE Signal Process. Mag., vol. 31, no. 3, pp. 54-65, May 2014.
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, Issue.3
, pp. 54-65
-
-
Zhou, G.1
Cichocki, A.2
Zhao, Q.3
Xie, S.4
-
39
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122, 2011.
-
(2011)
Found. Trends Mach. Learn.
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
40
-
-
0034144758
-
A multilinear singular value decomposition
-
L. De Lathauwer, B. De Moor, and J. Vandewalle, "A multilinear singular value decomposition," SIAM J. Matrix Anal. Appl., vol. 21, pp. 1253-1278, 2000.
-
(2000)
SIAM J. Matrix Anal. Appl.
, vol.21
, pp. 1253-1278
-
-
De Lathauwer, L.1
De Moor, B.2
Vandewalle, J.3
-
41
-
-
84874516763
-
Image denoising using the higher order singular value decomposition
-
A. Rajwade, A. Rangarajan, and A. Banerjee, "Image denoising using the higher order singular value decomposition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 4, pp. 849-862, 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.4
, pp. 849-862
-
-
Rajwade, A.1
Rangarajan, A.2
Banerjee, A.3
-
42
-
-
78751515806
-
Tensor decompositions for feature extraction and classification of high dimensional datasets
-
H. A. Phan and A. Cichocki, "Tensor decompositions for feature extraction and classification of high dimensional datasets," IEICE Nonlinear Theory Appl., vol. 1, no. 1, pp. 37-68, 2010.
-
(2010)
IEICE Nonlinear Theory Appl.
, vol.1
, Issue.1
, pp. 37-68
-
-
Phan, H.A.1
Cichocki, A.2
-
43
-
-
36749028922
-
A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies
-
L. Omberg, G. Golub, and O. Alter, "A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies," Proc. Nat. Acad. Sci., vol. 104, no. 47, pp. 18 371-18 376, 2007.
-
(2007)
Proc. Nat. Acad. Sci.
, vol.104
, Issue.47
, pp. 18371-18376
-
-
Omberg, L.1
Golub, G.2
Alter, O.3
-
44
-
-
84919329838
-
Block term decomposition for modelling epileptic seizures
-
B. Hunyadi et al., "Block term decomposition for modelling epileptic seizures," EURASIP J. Adv. Signal Process., vol. 2014, no. 1, pp. 1-19, 2014.
-
(2014)
EURASIP J. Adv. Signal Process.
, vol.2014
, Issue.1
, pp. 1-19
-
-
Hunyadi, B.1
-
45
-
-
84890516878
-
EEG-FMRI integration using a partially constrained tensor factorization
-
Vancouver, BC, Canada, May
-
S. Ferdowsi, V. Abolghasemi, and S. Sanei, "EEG-FMRI integration using a partially constrained tensor factorization," in Proc. IEEE 38th Int. Conf. Acoust. Speech Signal Process., Vancouver, BC, Canada, May 2013, pp. 6191-6195.
-
(2013)
Proc. IEEE 38th Int. Conf. Acoust. Speech Signal Process
, pp. 6191-6195
-
-
Ferdowsi, S.1
Abolghasemi, V.2
Sanei, S.3
-
46
-
-
26844487467
-
Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm
-
L. Shoker, S. Sanei, and J. Chambers, "Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm," IEEE Signal Process. Lett., vol. 12, no. 10, pp. 721-724, 2005.
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, Issue.10
, pp. 721-724
-
-
Shoker, L.1
Sanei, S.2
Chambers, J.3
-
47
-
-
84928242138
-
Tensor decomposition of EEG signals: A brief review
-
F. Cong et al., "Tensor decomposition of EEG signals: A brief review," J. Neurosci. Meth., vol. 248, pp. 59-69, 2015.
-
(2015)
J. Neurosci. Meth.
, vol.248
, pp. 59-69
-
-
Cong, F.1
-
48
-
-
70349445478
-
Multi-dimensional space-time-frequency component analysis of event related EEG data using closed-form PARAFAC
-
Apr.
-
M. Weis, F. Römer, M. Haardt, D. Jannek, and P. Husar, "Multi-dimensional space-time-frequency component analysis of event related EEG data using closed-form PARAFAC," in Proc. IEEE 34th Int. Conf. Acoust. Speech Signal Process., Apr. 2009, pp. 349-352.
-
(2009)
Proc. IEEE 34th Int. Conf. Acoust. Speech Signal Process
, pp. 349-352
-
-
Weis, M.1
Römer, F.2
Haardt, M.3
Jannek, D.4
Husar, P.5
-
49
-
-
84899934602
-
EEG extended source localization: Tensor-based vs. Conventional methods
-
H. Becker et al., "EEG extended source localization: Tensor-based vs. conventional methods," NeuroImage, vol. 96, pp. 143-157, 2014.
-
(2014)
NeuroImage
, vol.96
, pp. 143-157
-
-
Becker, H.1
-
50
-
-
38749146490
-
Canonical decomposition of ICTAL scalp EEG and accurate source localisation: Principles and simulation study
-
M. De Vos, L. De Lathauwer, B. Vanrumste, S. Van Huffel, and W. Van Paesschen, "Canonical decomposition of ICTAL scalp EEG and accurate source localisation: Principles and simulation study," Comput. Intell. Neurosci., vol. 2007, 2007.
-
(2007)
Comput. Intell. Neurosci.
, vol.2007
-
-
De Vos, M.1
De Lathauwer, L.2
Vanrumste, B.3
Van Huffel, S.4
Van Paesschen, W.5
-
51
-
-
33947514540
-
ERPWAVELAB: A toolbox for multi-channel analysis of time-frequency transformed event related potentials
-
M. Mørup, L. K. Hansen, and S. M. Arnfred, "ERPWAVELAB: A toolbox for multi-channel analysis of time-frequency transformed event related potentials," J. Neurosci. Meth., vol. 161, no. 2, pp. 361-368, 2007.
-
(2007)
J. Neurosci. Meth.
, vol.161
, Issue.2
, pp. 361-368
-
-
Mørup, M.1
Hansen, L.K.2
Arnfred, S.M.3
-
53
-
-
84882371310
-
Fast and unique Tucker decompositions via multiway blind source separation
-
G. Zhou and A. Cichocki, "Fast and unique Tucker decompositions via multiway blind source separation," Bull. Polish Acad. Sci., Technol. Sci., vol. 60, no. 3, pp. 389-405, 2012.
-
(2012)
Bull. Polish Acad. Sci., Technol. Sci.
, vol.60
, Issue.3
, pp. 389-405
-
-
Zhou, G.1
Cichocki, A.2
-
54
-
-
84959556564
-
Efficient nonnegative Tucker decompositions: Algorithms and uniqueness
-
Dec.
-
G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, "Efficient nonnegative Tucker decompositions: Algorithms and uniqueness," IEEE Trans. Image Process., vol. 24, no. 12, pp. 4990-5003, Dec. 2015.
-
(2015)
IEEE Trans. Image Process.
, vol.24
, Issue.12
, pp. 4990-5003
-
-
Zhou, G.1
Cichocki, A.2
Zhao, Q.3
Xie, S.4
-
55
-
-
0033653594
-
On the uniqueness of multilinear decomposition of N-way arrays
-
N. D. Sidiropoulos and R. Bro, "On the uniqueness of multilinear decomposition of N-way arrays," J. Chemometrics, vol. 14, no. 3, pp. 229-239, 2000.
-
(2000)
J. Chemometrics
, vol.14
, Issue.3
, pp. 229-239
-
-
Sidiropoulos, N.D.1
Bro, R.2
-
56
-
-
84919918834
-
An algorithm for generic and low-rank specific identifiability of complex tensors
-
L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, "An algorithm for generic and low-rank specific identifiability of complex tensors," SIAM J. Matrix Anal. Appl., vol. 35, no. 4, pp. 1265-1287, 2014.
-
(2014)
SIAM J. Matrix Anal. Appl.
, vol.35
, Issue.4
, pp. 1265-1287
-
-
Chiantini, L.1
Ottaviani, G.2
Vannieuwenhoven, N.3
-
57
-
-
0031078854
-
A blind source separation technique using second-order statistics
-
Feb.
-
A. Belouchrani, K. AbedMeraim, J. F. Cardoso, and E. Moulines, "A blind source separation technique using second-order statistics," IEEE Trans. Signal Process., vol. 45, no. 2, pp. 434-444, Feb. 1997.
-
(1997)
IEEE Trans. Signal Process.
, vol.45
, Issue.2
, pp. 434-444
-
-
Belouchrani, A.1
Abedmeraim, K.2
Cardoso, J.F.3
Moulines, E.4
-
58
-
-
0036125994
-
Equivariant nonstationary source separation
-
S. Choi, A. Cichocki, and S. Amari, "Equivariant nonstationary source separation," Neural Netw., vol. 15, no. 1, pp. 121-130, 2002.
-
(2002)
Neural Netw.
, vol.15
, Issue.1
, pp. 121-130
-
-
Choi, S.1
Cichocki, A.2
Amari, S.3
-
59
-
-
26844550383
-
A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation
-
Jul.
-
A. Ziehe, P. Laskov, G. Nolte, and K. R. Muller, "A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation," J. Mach. Learn. Res., vol. 5, pp. 777-800, Jul. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 777-800
-
-
Ziehe, A.1
Laskov, P.2
Nolte, G.3
Muller, K.R.4
-
60
-
-
33746356349
-
A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
-
L. De Lathauwer, "A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization," SIAM J. Matrix Anal. Appl., vol. 28, no. 3, pp. 642-666, 2006.
-
(2006)
SIAM J. Matrix Anal. Appl.
, vol.28
, Issue.3
, pp. 642-666
-
-
De Lathauwer, L.1
-
61
-
-
75549087892
-
Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers
-
Nov.
-
G. Zhou, S. Xie, Z. Yang, and J. Zhang, "Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers," IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1810-1819, Nov. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.11
, pp. 1810-1819
-
-
Zhou, G.1
Xie, S.2
Yang, Z.3
Zhang, J.4
-
62
-
-
14244251502
-
Tensorial extensions of independent component analysis for multisubject fMRI analysis
-
C. F. Beckmann and S. M. Smith, "Tensorial extensions of independent component analysis for multisubject fMRI analysis," NeuroImage, vol. 25, no. 1, pp. 294-311, 2005.
-
(2005)
NeuroImage
, vol.25
, Issue.1
, pp. 294-311
-
-
Beckmann, C.F.1
Smith, S.M.2
-
63
-
-
84864283711
-
A combination of parallel factor and independent component analysis
-
M. De Vos, D. Nion, S. Van Huffel, and L. De Lathauwer, "A combination of parallel factor and independent component analysis," Signal Process., vol. 92, no. 12, pp. 2990-2999, 2012.
-
(2012)
Signal Process.
, vol.92
, Issue.12
, pp. 2990-2999
-
-
De Vos, M.1
Nion, D.2
Van Huffel, S.3
De Lathauwer, L.4
-
64
-
-
85008574320
-
Canonical polyadic decomposition based on a single mode blind source separation
-
Aug.
-
G. Zhou and A. Cichocki, "Canonical polyadic decomposition based on a single mode blind source separation," IEEE Signal Process. Lett., vol. 19, no. 8, pp. 523-526, Aug. 2012.
-
(2012)
IEEE Signal Process. Lett.
, vol.19
, Issue.8
, pp. 523-526
-
-
Zhou, G.1
Cichocki, A.2
-
65
-
-
84894682018
-
Blind source separation of underdetermined mixtures of event-related sources
-
M. Niknazar, H. Becker, B. Rivet, C. Jutten, and P. Comon, "Blind source separation of underdetermined mixtures of event-related sources," Signal Process., vol. 101, pp. 52-64, 2014.
-
(2014)
Signal Process.
, vol.101
, pp. 52-64
-
-
Niknazar, M.1
Becker, H.2
Rivet, B.3
Jutten, C.4
Comon, P.5
-
66
-
-
70349696077
-
Nonnegative approximations of nonnegative tensors
-
L.-H. Lim and P. Comon, "Nonnegative approximations of nonnegative tensors," J. Chemometrics, vol. 23, no. 7-8, pp. 432-441, 2009.
-
(2009)
J. Chemometrics
, vol.23
, Issue.7-8
, pp. 432-441
-
-
Lim, L.-H.1
Comon, P.2
-
68
-
-
84912569461
-
Non-negative tensor factorization with missing data for the modeling of gene expressions in the human brain
-
S. Nielsen and M. Morup, "Non-negative tensor factorization with missing data for the modeling of gene expressions in the human brain," in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., 2014, pp. 1-6.
-
(2014)
Proc. IEEE Int. Workshop Mach. Learn. Signal Process.
, pp. 1-6
-
-
Nielsen, S.1
Morup, M.2
-
69
-
-
84903202144
-
Independent vector analysis with a generalized multivariate Gaussian source prior for frequency domain blind source separation
-
Y. Liang, J. Harris, S. M. Naqvi, G. Chen, and J. A. Chambers, "Independent vector analysis with a generalized multivariate Gaussian source prior for frequency domain blind source separation," Signal Process., vol. 105, pp. 175-184, 2014.
-
(2014)
Signal Process.
, vol.105
, pp. 175-184
-
-
Liang, Y.1
Harris, J.2
Naqvi, S.M.3
Chen, G.4
Chambers, J.A.5
-
70
-
-
65549097795
-
A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, ERP data
-
V. Calhoun, J. Liu, and T. Adali, "A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, ERP data," NeuroImage, vol. 45, no. 1, pp. 163-172, 2009.
-
(2009)
NeuroImage
, vol.45
, Issue.1
, pp. 163-172
-
-
Calhoun, V.1
Liu, J.2
Adali, T.3
-
71
-
-
33645128468
-
Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data
-
V. Calhoun, T. Adali, G. Pearlson, and K. Kiehl, "Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data," NeuroImage, vol. 30, no. 2, pp. 544-553, 2006.
-
(2006)
NeuroImage
, vol.30
, Issue.2
, pp. 544-553
-
-
Calhoun, V.1
Adali, T.2
Pearlson, G.3
Kiehl, K.4
-
72
-
-
0034753663
-
A method for making group inferences from functional MRI data using independent component analysis
-
V. Calhoun, T. Adali, G. Pearlson, and J. Pekar, "A method for making group inferences from functional MRI data using independent component analysis," Human Brain Mapping, vol. 14, no. 3, pp. 140-151, 2001.
-
(2001)
Human Brain Mapping
, vol.14
, Issue.3
, pp. 140-151
-
-
Calhoun, V.1
Adali, T.2
Pearlson, G.3
Pekar, J.4
-
73
-
-
85032751181
-
Canonical correlation analysis for data fusion and group inferences
-
N. Correa, T. Adali, Y.-O. Li, and V. Calhoun, "Canonical correlation analysis for data fusion and group inferences," IEEE Signal Process. Mag., vol. 27, no. 4, pp. 39-50, 2010.
-
(2010)
IEEE Signal Process. Mag.
, vol.27
, Issue.4
, pp. 39-50
-
-
Correa, N.1
Adali, T.2
Li, Y.-O.3
Calhoun, V.4
-
74
-
-
0000020007
-
Canonical analysis of several sets of variables
-
J. R. Kettenring, "Canonical analysis of several sets of variables," Biometrika, vol. 58, no. 3, pp. 433-451, 1971.
-
(1971)
Biometrika
, vol.58
, Issue.3
, pp. 433-451
-
-
Kettenring, J.R.1
-
75
-
-
78650217865
-
Linked independent component analysis for multimodal data fusion
-
A. Groves, C. Beckmann, S. Smith, and M. Woolrich, "Linked independent component analysis for multimodal data fusion," NeuroImage, vol. 54, no. 1, p. 2198-21 217, 2011.
-
(2011)
NeuroImage
, vol.54
, Issue.1
, pp. 2198-21217
-
-
Groves, A.1
Beckmann, C.2
Smith, S.3
Woolrich, M.4
-
76
-
-
84873159873
-
A critique of tensor probabilistic independent component analysis: Implications and recommendations for multi-subject fMRI data analysis
-
N. Helwig and S. Hong, "A critique of tensor probabilistic independent component analysis: Implications and recommendations for multi-subject fMRI data analysis," J. Neurosci. Methods, vol. 213, no. 2, pp. 263-273, 2013.
-
(2013)
J. Neurosci. Methods
, vol.213
, Issue.2
, pp. 263-273
-
-
Helwig, N.1
Hong, S.2
-
77
-
-
84872728425
-
Shared processing of perception and imagery of music in decomposed {EEG}
-
R. S. Schaefer, P. Desain, and J. Farquhar, "Shared processing of perception and imagery of music in decomposed {EEG}," NeuroImage, vol. 70, pp. 317-326, 2013.
-
(2013)
NeuroImage
, vol.70
, pp. 317-326
-
-
Schaefer, R.S.1
Desain, P.2
Farquhar, J.3
-
78
-
-
80054711200
-
Population value decomposition, a framework for the analysis of image populations
-
C. Crainiceanu, B. S. Caffo, S. Luo, V. M. Zipunnikov, and N. M. Punjabi, "Population value decomposition, a framework for the analysis of image populations," J. Amer. Stat. Assoc., vol. 106, no. 495, pp. 775-790, 2011.
-
(2011)
J. Amer. Stat. Assoc.
, vol.106
, Issue.495
, pp. 775-790
-
-
Crainiceanu, C.1
Caffo, B.S.2
Luo, S.3
Zipunnikov, V.M.4
Punjabi, N.M.5
-
79
-
-
84887988913
-
Accelerated canonical polyadic decomposition by using mode reduction
-
Dec.
-
G. Zhou, A. Cichocki, and S. Xie, "Accelerated canonical polyadic decomposition by using mode reduction," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 12, pp. 2051-2062, Dec. 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.12
, pp. 2051-2062
-
-
Zhou, G.1
Cichocki, A.2
Xie, S.3
-
80
-
-
84903966756
-
Independent vector analysis: Identification conditions and performance bounds
-
Sep.
-
M. Anderson, G. Fu, R. Phlypo, and T. Adali, "Independent vector analysis: Identification conditions and performance bounds," IEEE Trans. Signal Process., vol. 62, no. 17, pp. 4399-4410, Sep. 2014.
-
(2014)
IEEE Trans. Signal Process.
, vol.62
, Issue.17
, pp. 4399-4410
-
-
Anderson, M.1
Fu, G.2
Phlypo, R.3
Adali, T.4
-
81
-
-
0000107975
-
Relations between two sets of variates
-
Dec.
-
H. Hotelling, "Relations between two sets of variates," Biometrika, vol. 28, no. 3/4, pp. 321-377, Dec. 1936.
-
(1936)
Biometrika
, vol.28
, Issue.3-4
, pp. 321-377
-
-
Hotelling, H.1
-
82
-
-
70349808992
-
Joint blind source separation by multiset canonical correlation analysis
-
Oct.
-
Y.-O. Li, T. Adali, W. Wang, and V. Calhoun, "Joint blind source separation by multiset canonical correlation analysis," IEEE Trans. Signal Process., vol. 57, no. 10, pp. 3918-3929, Oct. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.10
, pp. 3918-3929
-
-
Li, Y.-O.1
Adali, T.2
Wang, W.3
Calhoun, V.4
-
83
-
-
84897999975
-
Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
-
450 013(1-14)
-
Y. Zhang, G. Zhou, J. Jin, X. Wang, and A. Cichocki, "Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis," Int. J. Neural Syst., vol. 4, no. 24, p. 1 450 013(1-14), 2014.
-
(2014)
Int. J. Neural Syst.
, vol.4
, Issue.24
, pp. 1
-
-
Zhang, Y.1
Zhou, G.2
Jin, J.3
Wang, X.4
Cichocki, A.5
-
84
-
-
84933073746
-
Independent vector analysis for gradient artifact removal in concurrent EEG-fMRI data
-
P. Acharjee, R. Phlypo, L. Wu, V. Calhoun, and T. Adali, "Independent vector analysis for gradient artifact removal in concurrent EEG-fMRI data," IEEE Trans. Biomed. Eng., vol. 62, no. 7, pp. 1750-1758, 2015.
-
(2015)
IEEE Trans. Biomed. Eng.
, vol.62
, Issue.7
, pp. 1750-1758
-
-
Acharjee, P.1
Phlypo, R.2
Wu, L.3
Calhoun, V.4
Adali, T.5
-
85
-
-
85032752481
-
Kernelization of tensor-based models for multiway data analysis: Processing of multidimensional structured data
-
Q. Zhao, G. Zhou, T. Adali, L. Zhang, and A. Cichocki, "Kernelization of tensor-based models for multiway data analysis: Processing of multidimensional structured data," IEEE Signal Process. Mag., vol. 30, no. 4, pp. 137-148, 2013.
-
(2013)
IEEE Signal Process. Mag.
, vol.30
, Issue.4
, pp. 137-148
-
-
Zhao, Q.1
Zhou, G.2
Adali, T.3
Zhang, L.4
Cichocki, A.5
-
86
-
-
84940384892
-
Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties
-
Sep.
-
T. Adali, Y. Levin-Schwartz, and V. Calhoun, "Multimodal data fusion using source separation: Two effective models based on ICA and IVA and their properties," Proc. IEEE, vol. 103, no. 9, pp. 1478-1493, Sep. 2015.
-
(2015)
Proc. IEEE
, vol.103
, Issue.9
, pp. 1478-1493
-
-
Adali, T.1
Levin-Schwartz, Y.2
Calhoun, V.3
-
87
-
-
84903488735
-
Preserving subject variability in group fMRI analysis: Performance evaluation of GICA versus IVA
-
A.Michael, M. Anderson, R. Miller, T. Adali, and V. D. Calhoun, "Preserving subject variability in group fMRI analysis: Performance evaluation of GICA versus IVA," Front. Syst. Neurosci., vol. 8, no. 106, pp. 1-18, 2014.
-
(2014)
Front. Syst. Neurosci.
, vol.8
, Issue.106
, pp. 1-18
-
-
Michael, A.1
Anderson, M.2
Miller, R.3
Adali, T.4
Calhoun, V.D.5
-
88
-
-
84890470961
-
Capturing group variability using IVA: A simulation study and graph-theoretical analysis
-
May
-
S. Ma, R. Phlypo, V. Calhoun, and T. Adali, "Capturing group variability using IVA: A simulation study and graph-theoretical analysis," in Proc. IEEE 38th Int. Conf. Acoust. Speech Signal Process., May 2013, pp. 3128-3132.
-
(2013)
Proc. IEEE 38th Int. Conf. Acoust. Speech Signal Process
, pp. 3128-3132
-
-
Ma, S.1
Phlypo, R.2
Calhoun, V.3
Adali, T.4
-
89
-
-
84926286683
-
Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA
-
J. Laney et al., "Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA," J. Neurosci. Methods, vol. 247, pp. 32-40, 2015.
-
(2015)
J. Neurosci. Methods
, vol.247
, pp. 32-40
-
-
Laney, J.1
-
90
-
-
84905758016
-
A study of spatial variation in fMRI brain networks via independent vector analysis: Application to schizophrenia
-
Jun.
-
S. Gopal et al., "A study of spatial variation in fMRI brain networks via independent vector analysis: Application to schizophrenia," in Proc. Int. Workshop Pattern Recognit. Neuroimaging, Jun. 2014, pp. 1-4.
-
(2014)
Proc. Int. Workshop Pattern Recognit. Neuroimaging
, pp. 1-4
-
-
Gopal, S.1
-
91
-
-
84878122541
-
Higher order partial least squares (HOPLS): A generalized multilinear regression method
-
Jul.
-
Q. Zhao et al., "Higher order partial least squares (HOPLS): A generalized multilinear regression method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1660-1673, Jul. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.7
, pp. 1660-1673
-
-
Zhao, Q.1
-
92
-
-
84876058478
-
Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
-
E. Lock, K. Hoadley, J. S. Marron, and A. Nobel, "Joint and individual variation explained (JIVE) for integrated analysis of multiple data types," Ann. Appl. Stat., vol. 7, no. 1, pp. 523-542, 2013.
-
(2013)
Ann. Appl. Stat.
, vol.7
, Issue.1
, pp. 523-542
-
-
Lock, E.1
Hoadley, K.2
Marron, J.S.3
Nobel, A.4
-
94
-
-
84962080151
-
Group component analysis from multi-block data: Common and individual feature extraction
-
G. Zhou, A. Cichocki, Y. Zhang, and D. Mandic, "Group component analysis from multi-block data: Common and individual feature extraction," IEEE Trans. Neural Netw. Learn. Syst., [Online]. Available: http://arxiv. org/abs/1212.3913.
-
IEEE Trans. Neural Netw. Learn. Syst
-
-
Zhou, G.1
Cichocki, A.2
Zhang, Y.3
Mandic, D.4
-
95
-
-
84962041472
-
-
N. Shahid, V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, "Robust principal component analysis on graphs," 2015. [Online]. Available: http:// arxiv.org/abs/1504.06151.
-
(2015)
Robust Principal Component Analysis on Graphs
-
-
Shahid, N.1
Kalofolias, V.2
Bresson, X.3
Bronstein, M.4
Vandergheynst, P.5
-
96
-
-
84939249854
-
Bayesian CP factorization of incomplete tensors with automatic rank determination
-
Sep.
-
Q. Zhao, L. Zhang, and A. Cichocki, "Bayesian CP factorization of incomplete tensors with automatic rank determination," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1751-1763, Sep. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.9
, pp. 1751-1763
-
-
Zhao, Q.1
Zhang, L.2
Cichocki, A.3
-
97
-
-
84930794872
-
Bayesian robust tensor factorization for incomplete multiway data
-
Q. Zhao, G. Zhou, L. Zhang, A. Cichocki, and S. Amari, "Bayesian robust tensor factorization for incomplete multiway data," IEEE Trans. Neural Netw. Learn. Syst., 2015, DOI: 10.1109/TNNLS.2015.2423694.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
-
-
Zhao, Q.1
Zhou, G.2
Zhang, L.3
Cichocki, A.4
Amari, S.5
-
99
-
-
79960675858
-
Robust principal component analysis
-
E. J. Candès, X. Li, Y. Ma, and J. Wright, "Robust principal component analysis" J. ACM, vol. 58, no. 3, pp. 11:1-11:37, 2011.
-
(2011)
J. ACM
, vol.58
, Issue.3
, pp. 111-1137
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
100
-
-
84887359172
-
Graph-Laplacian PCA: Closed-form solution and robustness
-
Jun.
-
B. Jiang, C. Ding, B. Luo, and J. Tang, "Graph-Laplacian PCA: Closed-form solution and robustness," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 3492-3498.
-
(2013)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 3492-3498
-
-
Jiang, B.1
Ding, C.2
Luo, B.3
Tang, J.4
-
101
-
-
78149283977
-
Detecting the number of clusters in N-way probabilistic clustering
-
Z. He, A. Cichocki, S. Xie, and K. Choi, "Detecting the number of clusters in N-way probabilistic clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2006-2021, 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.11
, pp. 2006-2021
-
-
He, Z.1
Cichocki, A.2
Xie, S.3
Choi, K.4
-
102
-
-
77952741387
-
Matrix completion with noise
-
Jun.
-
E. Candes and Y. Plan, "Matrix completion with noise," Proc. IEEE, vol. 98, no. 6, pp. 925-936, Jun. 2010.
-
(2010)
Proc. IEEE
, vol.98
, Issue.6
, pp. 925-936
-
-
Candes, E.1
Plan, Y.2
-
103
-
-
84870175618
-
Tensor completion for estimating missing values in visual data
-
Jan.
-
J. Liu, P. Musialski, P. Wonka, and J. Ye, "Tensor completion for estimating missing values in visual data," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 208-220, Jan. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.1
, pp. 208-220
-
-
Liu, J.1
Musialski, P.2
Wonka, P.3
Ye, J.4
-
104
-
-
84897553151
-
Robust low-rank tensor recovery: Models and algorithms
-
D. Goldfarb and Z. T. Qin, "Robust low-rank tensor recovery: Models and algorithms," SIAM J. Matrix Anal. Appl., vol. 35, no. 1, pp. 225-253, 2014.
-
(2014)
SIAM J. Matrix Anal. Appl.
, vol.35
, Issue.1
, pp. 225-253
-
-
Goldfarb, D.1
Qin, Z.T.2
-
105
-
-
84867120756
-
Infinite Tucker decomposition: Nonparametric bayesian models for multiway data analysis
-
J. Langford and J. Pineau, Eds.
-
Z. Xu, F. Yan, and A. Qi, "Infinite Tucker decomposition: Nonparametric bayesian models for multiway data analysis," in Proc. 29th Int. Conf. Mach. Learn., J. Langford and J. Pineau, Eds., 2012, pp. 1023-1030.
-
(2012)
Proc. 29th Int. Conf. Mach. Learn
, pp. 1023-1030
-
-
Xu, Z.1
Yan, F.2
Qi, A.3
-
106
-
-
79952446596
-
Scalable tensor factorizations for incomplete data
-
E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, "Scalable tensor factorizations for incomplete data," Chemometr. Intell. Lab. Syst., vol. 106, no. 1, pp. 41-56, 2011.
-
(2011)
Chemometr. Intell. Lab. Syst.
, vol.106
, Issue.1
, pp. 41-56
-
-
Acar, E.1
Dunlavy, D.M.2
Kolda, T.G.3
Mørup, M.4
-
107
-
-
84880828991
-
Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-lr; Lr; 1 terms, a new generalization
-
L. Sorber, M. V. Barel, and L. D. Lathauwer, "Optimization-based algorithms for tensor decompositions: Canonical polyadic decomposition, decomposition in rank-lr; lr; 1 terms, a new generalization," SIAM J. Optim., vol. 23, no. 2, pp. 695-720, 2013.
-
(2013)
SIAM J. Optim.
, vol.23
, Issue.2
, pp. 695-720
-
-
Sorber, L.1
Barel, M.V.2
Lathauwer, L.D.3
-
108
-
-
84962001706
-
Scalable Bayesian low-rank decomposition of incomplete multiway tensors
-
P. Rai et al., "Scalable Bayesian low-rank decomposition of incomplete multiway tensors," in Proc. 31st Int. Conf. Mach. Learn., 2014, pp. 1800-1808.
-
(2014)
Proc. 31st Int. Conf. Mach. Learn.
, pp. 1800-1808
-
-
Rai, P.1
-
109
-
-
85032750821
-
Dimensionality reduction via subspace and submanifold learning
-
Mar.
-
Y. Ma, P. Niyogi, G. Sapiro, and R. Vidal, "Dimensionality reduction via subspace and submanifold learning," IEEE Signal Process. Mag., vol. 28, no. 2, pp. 14-126, Mar. 2011.
-
(2011)
IEEE Signal Process. Mag.
, vol.28
, Issue.2
, pp. 14-126
-
-
Ma, Y.1
Niyogi, P.2
Sapiro, G.3
Vidal, R.4
-
110
-
-
84861153505
-
Fast nonnegative matrix/tensor factorization based on low-rank approximation
-
G. Zhou, A. Cichocki, and S. Xie, "Fast nonnegative matrix/tensor factorization based on low-rank approximation," IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2928-2940, 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.6
, pp. 2928-2940
-
-
Zhou, G.1
Cichocki, A.2
Xie, S.3
-
113
-
-
84856463292
-
Randomized algorithms for matrices and data
-
M. W. Mahoney, "Randomized algorithms for matrices and data," Found. Trends Mach. Learn., vol. 3, no. 2, pp. 123-224, 2011.
-
(2011)
Found. Trends Mach. Learn.
, vol.3
, Issue.2
, pp. 123-224
-
-
Mahoney, M.W.1
-
114
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P. Martinsson, and J. Tropp, "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions," SIAM Rev., vol. 53, no. 2, pp. 217-288, 2011.
-
(2011)
SIAM Rev.
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.2
Tropp, J.3
-
115
-
-
77953154158
-
Generalizing the column-row matrix decomposition to multi-way arrays
-
C. F. Caiafa and A. Cichocki, "Generalizing the column-row matrix decomposition to multi-way arrays," Linear Algebra Appl., vol. 433, no. 3, pp. 557-573, 2010.
-
(2010)
Linear Algebra Appl.
, vol.433
, Issue.3
, pp. 557-573
-
-
Caiafa, C.F.1
Cichocki, A.2
-
116
-
-
85030107265
-
Tensor sparsification via a bound on the spectral norm of random tensors
-
N. H. Nguyen, P. Drineas, and T. D. Tran, "Tensor sparsification via a bound on the spectral norm of random tensors," Inf. Inference, pp. 1-35, 2015.
-
(2015)
Inf. Inference
, pp. 1-35
-
-
Nguyen, N.H.1
Drineas, P.2
Tran, T.D.3
-
117
-
-
85032752418
-
Convex optimization for big data: Scalable, randomized, parallel algorithms for big data analytics
-
Sep.
-
V. Cevher, S. Becker, and M. Schmidt, "Convex optimization for big data: Scalable, randomized, parallel algorithms for big data analytics," IEEE Signal Process. Mag., vol. 31, no. 5, pp. 32-43, Sep. 2014.
-
(2014)
IEEE Signal Process. Mag.
, vol.31
, Issue.5
, pp. 32-43
-
-
Cevher, V.1
Becker, S.2
Schmidt, M.3
-
118
-
-
34249320522
-
Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
-
Jun.
-
Z. Lin, C. Zhang, W. Wu, and X. Gao, "Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs," IEEE Trans. Biomed. Eng., vol. 54, no. 6, pp. 1172-1176, Jun. 2007.
-
(2007)
IEEE Trans. Biomed. Eng.
, vol.54
, Issue.6
, pp. 1172-1176
-
-
Lin, Z.1
Zhang, C.2
Wu, W.3
Gao, X.4
-
119
-
-
84888114061
-
L1-regularized multiway canonical correlation analysis for SSVEPbased BCI
-
Y. Zhang et al., "L1-regularized multiway canonical correlation analysis for SSVEPbased BCI," IEEE Trans. Neural Syste. Rehab. Eng., vol. 21, no. 6, pp. 887-896, 2013.
-
(2013)
IEEE Trans. Neural Syste. Rehab. Eng.
, vol.21
, Issue.6
, pp. 887-896
-
-
Zhang, Y.1
-
120
-
-
84929223412
-
Independent vector analysis for SSVEP signal enhancement
-
Mar.
-
D. Emge, F.-B. Vialatte, G. Dreyfus, and T. Adali, "Independent vector analysis for SSVEP signal enhancement," in Proc. 49th Annu. Conf. Inf. Sci. Syst., Mar. 2015, pp. 1-6.
-
(2015)
Proc. 49th Annu. Conf. Inf. Sci. Syst
, pp. 1-6
-
-
Emge, D.1
Vialatte, F.-B.2
Dreyfus, G.3
Adali, T.4
-
121
-
-
84908299126
-
Denoising of 3D magnetic resonance images by using higher-order singular value decomposition
-
X. Zhang et al., "Denoising of 3D magnetic resonance images by using higher-order singular value decomposition," Med. Image Anal., vol. 19, no. 1, pp. 75-86, 2015.
-
(2015)
Med. Image Anal.
, vol.19
, Issue.1
, pp. 75-86
-
-
Zhang, X.1
-
122
-
-
84937924227
-
Generalized higher-order orthogonal iteration for tensor decomposition and completion
-
Y. Liu, F. Shang, W. Fan, J. Cheng, and H. Cheng, "Generalized higher-order orthogonal iteration for tensor decomposition and completion," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1763-1771.
-
(2014)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1763-1771
-
-
Liu, Y.1
Shang, F.2
Fan, W.3
Cheng, J.4
Cheng, H.5
-
123
-
-
84937834376
-
Tucker factorization with missing data with application to low-n-rank tensor completion
-
M. Filipovic and A. Jukic, "Tucker factorization with missing data with application to low-n-rank tensor completion," Multidimensional Syst. Signal Process., pp. 1-16, 2013.
-
(2013)
Multidimensional Syst. Signal Process.
, pp. 1-16
-
-
Filipovic, M.1
Jukic, A.2
-
124
-
-
84959875939
-
Turbo-SMT: Accelerating coupled sparse matrix-tensor factorizations by 200
-
E. Papalexakis et al., "Turbo-SMT: Accelerating coupled sparse matrix-tensor factorizations by 200-," in Proc. SIAM Int. Conf. Data Mining, 2014.
-
(2014)
Proc. SIAM Int. Conf. Data Mining
-
-
Papalexakis, E.1
-
125
-
-
84911903554
-
Joint blind source separation of multidimensional components: Model and algorithm
-
Sep.
-
D. Lahat and C. Jutten, "Joint blind source separation of multidimensional components: Model and algorithm," in Proc. 22nd Eur. Signal Process. Conf., Sep. 2014, pp. 1417-1421.
-
(2014)
Proc. 22nd Eur. Signal Process. Conf
, pp. 1417-1421
-
-
Lahat, D.1
Jutten, C.2
-
126
-
-
84940431216
-
Multidataset independent subspace analysis extends independent vector analysis
-
Oct.
-
R. Silva, S. Plis, T. Adali, and V. Calhoun, "Multidataset independent subspace analysis extends independent vector analysis," in Proc. IEEE Int. Conf. Image Process., Oct. 2014, pp. 2864-2868.
-
(2014)
Proc. IEEE Int. Conf. Image Process
, pp. 2864-2868
-
-
Silva, R.1
Plis, S.2
Adali, T.3
Calhoun, V.4
-
127
-
-
84946067075
-
Determining the number of correlated signals between two data sets using PCACCA when sample support is extremely small
-
Apr.
-
Y. Song, P. Schreier, and N. J. Roseveare, "Determining the number of correlated signals between two data sets using PCACCA when sample support is extremely small," in Proc. IEEE 40th Int. Conf. Acoust. Speech Signal Process., Apr. 2015.
-
(2015)
Proc. IEEE 40th Int. Conf. Acoust. Speech Signal Process
-
-
Song, Y.1
Schreier, P.2
Roseveare, N.J.3
-
128
-
-
84903709665
-
A practical introduction to tensor networks: Matrix product states and projected entangled pair states
-
R. Orús, "A practical introduction to tensor networks: Matrix product states and projected entangled pair states," Ann. Phys., vol. 349, pp. 117-158, 2014.
-
(2014)
Ann. Phys.
, vol.349
, pp. 117-158
-
-
Orús, R.1
|