메뉴 건너뛰기




Volumn 60, Issue 6, 2012, Pages 2928-2940

Fast nonnegative matrix/tensor factorization based on low-rank approximation

Author keywords

Low rank approximation; Nonnegative matrix factorization (NMF); Nonnegative Tucker decomposition (NTD); Principle component analysis (PCA)

Indexed keywords

CONVERGENCE SPEED; EUCLIDEAN DISTANCE; LARGE-SCALE PROBLEM; LATENT FACTOR; LOW RANK; LOW RANK APPROXIMATIONS; MATRIX FACTORIZATIONS; MEMORY REQUIREMENTS; NON-NEGATIVE MATRIX; NON-NEGATIVE MATRIX FACTORIZATION ALGORITHMS; NONNEGATIVE MATRIX FACTORIZATION; NONNEGATIVE TUCKER DECOMPOSITIONS; NONNEGATIVITY CONSTRAINTS; PRINCIPLE COMPONENT ANALYSIS; SYNTHETIC AND REAL DATA; TENSOR FIELDS;

EID: 84861153505     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2012.2190410     Document Type: Review
Times cited : (148)

References (45)
  • 2
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 3
    • 78649322960 scopus 로고    scopus 로고
    • A randomized algorithm for the decomposition of matrices
    • P.-G. Martinsson, V. Rokhlin, and M. Tygert, "A randomized algorithm for the decomposition of matrices," Appl. Comput. Harmon. Anal., vol. 30, no. 1, pp. 47-68, 2011.
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , Issue.1 , pp. 47-68
    • Martinsson, P.-G.1    Rokhlin, V.2    Tygert, M.3
  • 4
    • 34249278670 scopus 로고    scopus 로고
    • Ph.D. dissertation Food ScienceDept., RoyalVeterinary and Agricultural Univ., Copenhagen, Denmark
    • G. Tomasi, "Practical and computational aspects in chemometric data analysis," Ph.D. dissertation, Food ScienceDept., RoyalVeterinary and Agricultural Univ., Copenhagen, Denmark, 2006.
    • (2006) Practical and Computational Aspects in Chemometric Data Analysis
    • Tomasi, G.1
  • 5
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct. 21
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, Oct. 21, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 6
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • Sep.
    • M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons, "Algorithms and applications for approximate nonnegative matrix factorization," Comput. Stat. Data Anal., vol. 52, no. 1, pp. 155-173, Sep. 2007.
    • (2007) Comput. Stat. Data Anal. , vol.52 , Issue.1 , pp. 155-173
    • Berry, M.1    Browne, M.2    Langville, A.3    Pauca, V.4    Plemmons, R.5
  • 7
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 8
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • Aug.
    • D. Cai, X. He, J. Han, and T. Huang, "Graph regularized nonnegative matrix factorization for data representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1548-1560, Aug. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.8 , pp. 1548-1560
    • Cai, D.1    He, X.2    Han, J.3    Huang, T.4
  • 9
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • July
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent," IEEE Trans. Image Process., vol. 20, no. 7, pp. 2030-2048, July 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 10
    • 77956014774 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semisupervised heterogeneous data coclustering
    • Oct.
    • Y. Chen, L. Wang, and M. Dong, "Non-negative matrix factorization for semisupervised heterogeneous data coclustering," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1459-1474, Oct. 2010.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1459-1474
    • Chen, Y.1    Wang, L.2    Dong, M.3
  • 11
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • Jan.
    • C. Ding, T. Li, and M. Jordan, "Convex and semi-nonnegative matrix factorizations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, pp. 45-55, Jan. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.3
  • 12
    • 67049160153 scopus 로고    scopus 로고
    • Toward faster nonnegativematrix factorization: A new algorithm and comparisons
    • Dec.
    • J.Kimand H. Park, "Toward faster nonnegativematrix factorization: A new algorithm and comparisons," in IEEE 8th Int. Conf. Data Mining (ICDM), Dec. 2008, pp. 353-362.
    • (2008) IEEE 8th Int. Conf. Data Mining (ICDM) , pp. 353-362
    • Kimand, J.1    Park, H.2
  • 13
    • 67349093319 scopus 로고    scopus 로고
    • Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
    • H. Kim and H. Park, "Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method," SIAM J. Matrix Anal. Appl., vol. 30, no. 2, pp. 713-730, 2008.
    • (2008) SIAM J. Matrix Anal. Appl. , vol.30 , Issue.2 , pp. 713-730
    • Kim, H.1    Park, H.2
  • 14
    • 79951743210 scopus 로고    scopus 로고
    • Efficient nonnegative matrix factorization with random projections
    • F. Wang and P. Li, "Efficient nonnegative matrix factorization with random projections," in 10th SIAM Int. Conf. Data Minding (SDM), 2010, pp. 281-292.
    • (2010) 10th SIAM Int. Conf. Data Minding (SDM) , pp. 281-292
    • Wang, F.1    Li, P.2
  • 16
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Advances in Neural Information Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. Cambridge, MA: MIT Press, 2000, pp. 556-562.
    • (2000) Advances in Neural Information Processing Systems , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 84861117022 scopus 로고    scopus 로고
    • Multi-way analysis in the food industry: Models, algorithms& applications
    • [Online]
    • R. Bro, "Multi-way analysis in the food industry: Models, algorithms& applications," Food Technol., p. 309, 1998 [Online]. Available: http://curis.ku.dk/ws/files/13035961/Rasmus-Bro.pdf
    • (1998) Food Technol. , pp. 309
    • Bro, R.1
  • 18
    • 78149283977 scopus 로고    scopus 로고
    • Detecting the number of clusters in-way probabilistic clustering
    • Z. He, A. Cichocki, S. Xie, and K. Choi, "Detecting the number of clusters in-way probabilistic clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2006-2021, 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.11 , pp. 2006-2021
    • He, Z.1    Cichocki, A.2    Xie, S.3    Choi, K.4
  • 19
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • Nov.
    • C.-J. Lin, "On the convergence of multiplicative update algorithms for nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1589-1596, Nov. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.-J.1
  • 21
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Nov.
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Nov. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 22
    • 80053637334 scopus 로고    scopus 로고
    • Minimum-volumeconstrained nonnegative matrix factorization: Enhanced ability of learning parts
    • Oct.
    • G. Zhou, S. Xie, Z. Yang, J.-M. Yang, and Z. He, "Minimum- volumeconstrained nonnegative matrix factorization: Enhanced ability of learning parts," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1626-1637, Oct. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1626-1637
    • Zhou, G.1    Xie, S.2    Yang, Z.3    Yang, J.-M.4    He, Z.5
  • 24
    • 0034144761 scopus 로고    scopus 로고
    • On the best rank-1 and rank-(r1,r2,rn) approximation of higher-order tensors
    • L. De Lathauwer, B. De Moor, and J. Vandewalle, "On the best rank-1 and rank-(r1,r2,rn) approximation of higher-order tensors," SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1324-1342, 2000.
    • (2000) SIAM J. Matrix Anal. Appl. , vol.21 , Issue.4 , pp. 1324-1342
    • De Lathauwer, L.1    De Moor, B.2    Vandewalle, J.3
  • 25
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.
    • (2009) SIAM Rev. , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 26
    • 84865820552 scopus 로고    scopus 로고
    • Generalized component analysis and blind source separation methods for analyzing mulitchannel brain signals
    • Mahwah, NJ: Lawrence Erlbaum Assoc.
    • A. Cichocki, "Generalized component analysis and blind source separation methods for analyzing mulitchannel brain signals," in Statistical and Process Models for Cognitive Neuroscience and Aging. Mahwah, NJ: Lawrence Erlbaum Assoc., 2007, pp. 201-272.
    • (2007) Statistical and Process Models for Cognitive Neuroscience and Aging , pp. 201-272
    • Cichocki, A.1
  • 27
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition
    • September
    • J. Carroll and J.-J. Chang, "Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition," Psychometrika, vol. 35, no. 3, pp. 283-319, September 1970.
    • (1970) Psychometrika , vol.35 , Issue.3 , pp. 283-319
    • Carroll, J.1    Chang, J.-J.2
  • 28
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multi-modal factor analysis
    • R. A. Harshman, "Foundations of the PARAFAC procedure: Models and conditions for an 'explanatory' multi-modal factor analysis," UCLA Working Papers in Phonet., vol. 16, no. 1, pp. 1-84, 1970.
    • (1970) UCLA Working Papers in Phonet. , vol.16 , Issue.1 , pp. 1-84
    • Harshman, R.A.1
  • 29
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Sep.
    • L. Tucker, "Some mathematical notes on three-mode factor analysis," Psychometrika, vol. 31, no. 3, pp. 279-311, Sep. 1966.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.1
  • 30
    • 48249100881 scopus 로고    scopus 로고
    • Algorithms for sparse nonnegative Tucker decompositions
    • Aug.
    • M. Mørup, L. K. Hansen, and S. M. Arnfred, "Algorithms for sparse nonnegative Tucker decompositions," Neural Comput., vol. 20, no. 8, pp. 2112-2131, Aug. 2008.
    • (2008) Neural Comput. , vol.20 , Issue.8 , pp. 2112-2131
    • Mørup, M.1    Hansen, L.K.2    Arnfred, S.M.3
  • 31
    • 79956048185 scopus 로고    scopus 로고
    • Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification
    • A. H. Phan and A. Cichocki, "Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification," Neurocomput., vol. 74, no. 11, pp. 1956-1969, 2011.
    • (2011) Neurocomput. , vol.74 , Issue.11 , pp. 1956-1969
    • Phan, A.H.1    Cichocki, A.2
  • 33
    • 33751075906 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
    • July
    • P. Drineas, R. Kannan, and M. W. Mahoney, "Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix," SIAM J. Comput., vol. 36, no. 1, pp. 158-183, July 2006.
    • (2006) SIAM J. Comput. , vol.36 , Issue.1 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 34
    • 77956553147 scopus 로고    scopus 로고
    • Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
    • [Online]
    • N. Halko, P.-G. Martinsson, and J. A. Tropp, "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions," Dec. 2010 [Online]. Available: http://arxiv.org/abs/0909. 4061
    • (2010) Dec.
    • Halko, N.1    Martinsson, P.-G.2    Tropp, J.A.3
  • 35
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki and H. A. Phan, "Fast local algorithms for large scale nonnegative matrix and tensor factorizations," IEICE Trans. Fund. Electron., Commun., Comput. Sci., vol. E92-A, no. 3, pp. 708-721, 2009.
    • (2009) IEICE Trans. Fund. Electron., Commun., Comput. Sci. , vol.E92-A , Issue.3 , pp. 708-721
    • Cichocki, A.1    Phan, H.A.2
  • 36
    • 77953154158 scopus 로고    scopus 로고
    • Generalizing the column-row matrix decomposition to multi-way arrays
    • C. F. Caiafa and A. Cichocki, "Generalizing the column-row matrix decomposition to multi-way arrays," Linear Algebra Appl., vol. 433, no. 3, pp. 557-573, 2010.
    • (2010) Linear Algebra Appl. , vol.433 , Issue.3 , pp. 557-573
    • Caiafa, C.F.1    Cichocki, A.2
  • 37
    • 84861125301 scopus 로고    scopus 로고
    • On the truncated multilinear singular value decomposition
    • Comput. Sci. Dept., K.U.Leuven, Leuven, Belgium [Online]
    • N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, "On the truncated multilinear singular value decomposition," Numerical Analysis and Applied Mathematics Section, Comput. Sci. Dept., K.U.Leuven, Leuven, Belgium, 2011 [Online]. Available: http://www.cs.kuleuven.be/publicaties/rapporten/tw/ TW589.abs.html
    • (2011) Numerical Analysis and Applied Mathematics Section
    • Vannieuwenhoven, N.1    Vandebril, R.2    Meerbergen, K.3
  • 38
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Oct.
    • C.-J. Lin, "Projected gradient methods for nonnegative matrix factorization," Neural Comput., vol. 19, no. 10, pp. 2756-2779, Oct. 2007.
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 41
    • 79957938629 scopus 로고    scopus 로고
    • Damped Newton iterations for nonnegative matrix factorization
    • R. Zdunek, H. A. Phan, and A. Cichocki, "Damped Newton iterations for nonnegative matrix factorization," Austral. J. Intell. Inf. Process. Syst., vol. 12, no. 1, pp. 16-22, 2010.
    • (2010) Austral. J. Intell. Inf. Process. Syst. , vol.12 , Issue.1 , pp. 16-22
    • Zdunek, R.1    Phan, H.A.2    Cichocki, A.3
  • 42
    • 84899447095 scopus 로고    scopus 로고
    • ORL Database [Online]. Available: http://www.zjucadcg.cn/dengcai/Data/ FaceData.html
    • ORL Database [Online]
  • 43
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Dec.
    • D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, "RCV1: A new benchmark collection for text categorization research," J. Mach. Learn. Res., vol. 5, pp. 361-397, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.