메뉴 건너뛰기




Volumn 113, Issue , 2015, Pages 234-249

Smooth nonnegative matrix and tensor factorizations for robust multi-way data analysis

Author keywords

Blind source separation (BSS); Gaussian radial basis function (GRBF); Multi way data analysis; Nonnegative matrix factorization (NMF); Nonnegative tensor factorization (NTF); Smooth component analysis (SmCA)

Indexed keywords

BLIND SOURCE SEPARATION; DATA HANDLING; FACTORIZATION; FUNCTIONS; INFORMATION ANALYSIS; TENSORS;

EID: 84924081954     PISSN: 01651684     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.sigpro.2015.02.003     Document Type: Article
Times cited : (51)

References (40)
  • 1
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. Fisherfaces recognition using class specific linear projection
    • P. Belhumeur, J. Hespanha, and D. Kriegman Eigenfaces vs. Fisherfaces recognition using class specific linear projection IEEE Trans. Pattern Anal. Mach. Intell. 19 7 1997 711 720
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.1    Hespanha, J.2    Kriegman, D.3
  • 3
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckart-Young" decomposition
    • J. Carroll, and J.-J. Chang Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition Psychometrika 35 1970 283 319
    • (1970) Psychometrika , vol.35 , pp. 283-319
    • Carroll, J.1    Chang, J.-J.2
  • 4
    • 33947693835 scopus 로고    scopus 로고
    • Constrained non-negative matrix factorization method for EEG analysis in early detection of Alzheimer disease
    • Z. Chen, A. Cichocki, T.M. Rutkowski, Constrained non-negative matrix factorization method for EEG analysis in early detection of Alzheimer disease, in: Proceedings of the ICASSP, vol. 5, 2006, pp. 893-896.
    • (2006) Proceedings of the ICASSP , vol.5 , pp. 893-896
    • Chen, Z.1    Cichocki, A.2    Rutkowski, T.M.3
  • 6
    • 74449093261 scopus 로고    scopus 로고
    • Fast local algorithms for large scale nonnegative matrix and tensor factorizations
    • A. Cichocki, and A. Phan Fast local algorithms for large scale nonnegative matrix and tensor factorizations IEICE Trans. Fundam. Electron., Commun. Comput. Sci. 92 3 2009 708 721
    • (2009) IEICE Trans. Fundam. Electron., Commun. Comput. Sci. , vol.92 , Issue.3 , pp. 708-721
    • Cichocki, A.1    Phan, A.2
  • 7
    • 38049150410 scopus 로고    scopus 로고
    • Regularized alternating least squares algorithms for non-negative matrix/tensor factorization
    • A. Cichocki, R. Zdunek, Regularized alternating least squares algorithms for non-negative matrix/tensor factorization, in: Proceedings of the ISNN, Lecture Notes in Computer Science, vol. 4493, 2007, pp. 793-802.
    • (2007) Proceedings of the ISNN, Lecture Notes in Computer Science , vol.4493 , pp. 793-802
    • Cichocki, A.1    Zdunek, R.2
  • 11
    • 84884206494 scopus 로고    scopus 로고
    • Smooth incomplete matrix factorization and its applications in image/video denoising
    • Q. Dong, and L. Li Smooth incomplete matrix factorization and its applications in image/video denoising Neurocomputing 112 2013 458 469
    • (2013) Neurocomputing , vol.112 , pp. 458-469
    • Dong, Q.1    Li, L.2
  • 12
    • 67650290519 scopus 로고    scopus 로고
    • Analysis of financial data using non-negative matrix factorization
    • K. Drakakis, S. Rickard, R.D. Frein, and A. Cichocki Analysis of financial data using non-negative matrix factorization Int. Math. Forum 38 2008 1853 1870
    • (2008) Int. Math. Forum , vol.38 , pp. 1853-1870
    • Drakakis, K.1    Rickard, S.2    Frein, R.D.3    Cichocki, A.4
  • 13
    • 84872728539 scopus 로고    scopus 로고
    • Smooth nonnegative matrix factorization for unsupervised audiovisual document structuring
    • S. Essid, and C. Fevotte Smooth nonnegative matrix factorization for unsupervised audiovisual document structuring IEEE Trans. Multimed. 15 2 2013 415 425
    • (2013) IEEE Trans. Multimed. , vol.15 , Issue.2 , pp. 415-425
    • Essid, S.1    Fevotte, C.2
  • 14
    • 74449083451 scopus 로고    scopus 로고
    • Using underapproximations for sparse nonnegative matrix factorization
    • N. Gillis, and F. Glineur Using underapproximations for sparse nonnegative matrix factorization Pattern Recognit. 43 4 2010 1676 1687
    • (2010) Pattern Recognit. , vol.43 , Issue.4 , pp. 1676-1687
    • Gillis, N.1    Glineur, F.2
  • 15
    • 0002740437 scopus 로고
    • Foundations of the parafac procedure: Model and conditions for an 'explanatory' multi-mode factor analysis
    • R. Harshman, Foundations of the parafac procedure: model and conditions for an 'explanatory' multi-mode factor analysis, in: UCLA Working Papers in Phonetics, vol. 16, 1970, pp. 1-84.
    • (1970) UCLA Working Papers in Phonetics , vol.16 , pp. 1-84
    • Harshman, R.1
  • 16
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P.O. Hoyer Non-negative matrix factorization with sparseness constraints J. Mach. Learn. Res. 5 2004 1457 1469
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 20
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H.W. Kuhn The Hungarian method for the assignment problem Nav. Res. Logist. Q. 2 1-2 1955 83 97
    • (1955) Nav. Res. Logist. Q. , vol.2 , Issue.12 , pp. 83-97
    • Kuhn, H.W.1
  • 22
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 6755 1999 788 791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 23
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D.D. Lee, H.S. Seung, Algorithms for non-negative matrix factorization, in: Proceedings of the NIPS 2000, vol. 13, 2001, pp. 556-562.
    • (2001) Proceedings of the NIPS 2000 , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 25
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • L. Miao, and H. Qi Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization IEEE Trans. Geosci. Remote Sens. 45 3 2007 765 777
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 30
    • 79956048185 scopus 로고    scopus 로고
    • Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification
    • A.H. Phan, and A. Cichocki Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification Neurocomputing 74 11 2011 1956 1969
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1956-1969
    • Phan, A.H.1    Cichocki, A.2
  • 31
    • 34548051389 scopus 로고    scopus 로고
    • Multiplicative updates for nonnegative quadratic programming
    • F. Sha, Y. Lin, L.K. Saul, and D.D. Lee Multiplicative updates for nonnegative quadratic programming Neural Comput. 19 8 2007 2004 2031
    • (2007) Neural Comput. , vol.19 , Issue.8 , pp. 2004-2031
    • Sha, F.1    Lin, Y.2    Saul, L.K.3    Lee, D.D.4
  • 33
    • 0002200027 scopus 로고
    • Implications of factor analysis of three-way matrices for measurement of change
    • C.W. Harris, University of Wisconsin Press Madison, Wisconsin, UDA
    • L.R. Tucker Implications of factor analysis of three-way matrices for measurement of change C.W. Harris, Problems in Measuring Change 1963 University of Wisconsin Press Madison, Wisconsin, UDA 122 137
    • (1963) Problems in Measuring Change , pp. 122-137
    • Tucker, L.R.1
  • 34
    • 24944500827 scopus 로고    scopus 로고
    • Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems
    • M.H. Van Benthem, and M.R. Keenan Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems J. Chemom. 18 10 2004 441 450
    • (2004) J. Chemom. , vol.18 , Issue.10 , pp. 441-450
    • Van Benthem, M.H.1    Keenan, M.R.2
  • 36
    • 56349141233 scopus 로고    scopus 로고
    • Automatic factorization of biological signals by using Boltzmann non-negative matrix factorization
    • K. Watanabe, A. Hidaka, T. Kurita, Automatic factorization of biological signals by using Boltzmann non-negative matrix factorization, in: Proceedings of the IJCNN 2008, pp. 1122-1128.
    • Proceedings of the IJCNN 2008 , pp. 1122-1128
    • Watanabe, K.1    Hidaka, A.2    Kurita, T.3
  • 37
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • W. Xu, X. Liu, Y. Gong, Document clustering based on non-negative matrix factorization, in: Proceedings of the ACM/SIGIR, 2003, pp. 267-273.
    • (2003) Proceedings of the ACM/SIGIR , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3
  • 38
    • 84869020092 scopus 로고    scopus 로고
    • Approximation of feature vectors in nonnegative matrix factorization with Gaussian radial basis functions
    • R. Zdunek, Approximation of feature vectors in nonnegative matrix factorization with Gaussian radial basis functions, in: Proceedings of the ICONIP 2012, Lecture Notes in Computer Science, vol. 7663, 2012, pp. 616-623.
    • (2012) Proceedings of the ICONIP 2012, Lecture Notes in Computer Science , vol.7663 , pp. 616-623
    • Zdunek, R.1
  • 39
    • 54149101710 scopus 로고    scopus 로고
    • Gibbs regularized nonnegative matrix factorization for blind separation of locally smooth signals
    • R. Zdunek, A. Cichocki, Gibbs regularized nonnegative matrix factorization for blind separation of locally smooth signals, in: Proceedings of the NDES 2007, pp. 317-320.
    • Proceedings of the NDES 2007 , pp. 317-320
    • Zdunek, R.1    Cichocki, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.