메뉴 건너뛰기




Volumn 22, Issue 7, 2015, Pages 843-846

Two efficient algorithms for approximately orthogonal nonnegative matrix factorization

Author keywords

Accelerated proximal gradient; nonnegative matrix factorization

Indexed keywords

CLUSTERING ALGORITHMS; CONSTRAINED OPTIMIZATION; FACTORIZATION; LEAST SQUARES APPROXIMATIONS;

EID: 84914166609     PISSN: 10709908     EISSN: None     Source Type: Journal    
DOI: 10.1109/LSP.2014.2371895     Document Type: Article
Times cited : (54)

References (13)
  • 2
    • 85032751462 scopus 로고    scopus 로고
    • Nonnegative matrix and tensor factorizations: An algorithmic perspective
    • May
    • G. Zhou, A. Cichocki, Q. Zhao, and S. Xie, "Nonnegative matrix and tensor factorizations: An algorithmic perspective," IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 54-65, May 2014.
    • (2014) IEEE Signal Processing Magazine , vol.31 , Issue.3 , pp. 54-65
    • Zhou, G.1    Cichocki, A.2    Zhao, Q.3    Xie, S.4
  • 5
    • 84901628210 scopus 로고    scopus 로고
    • Two algorithms for orthogonal nonnegative matrix factorization with application to clustering
    • F. Pompili, N. Gillis, P.-A. Absil, and F. Glineur, "Two algorithms for orthogonal nonnegative matrix factorization with application to clustering," Neurocomputing, vol. 141, no. 0, pp. 15-25, 2014.
    • (2014) Neurocomputing , vol.141 , pp. 15-25
    • Pompili, F.1    Gillis, N.2    Absil, P.-A.3    Glineur, F.4
  • 6
    • 80053637334 scopus 로고    scopus 로고
    • Minimum-volumeconstrained nonnegative matrix factorization: Enhanced ability of learning parts
    • Oct.
    • G. Zhou, S. Xie, Z. Yang, J.-M. Yang, and Z. He, "Minimum-volumeconstrained nonnegative matrix factorization: Enhanced ability of learning parts," IEEE Trans. Neural Networks, vol. 22, no. 10, pp. 1626-1637, Oct. 2011.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.10 , pp. 1626-1637
    • Zhou, G.1    Xie, S.2    Yang, Z.3    Yang, J.-M.4    He, Z.5
  • 9
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF: An optimal gradient method for nonnegative matrix factorization
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "NeNMF: An optimal gradient method for nonnegative matrix factorization," IEEE Trans. Signal Processing, vol. 60, no. 6, pp. 2882-2898, 2012.
    • (2012) IEEE Trans. Signal Processing , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 10
    • 65149098835 scopus 로고
    • Solutions of ill-posed problems
    • Oct.
    • A. N. Tikhonov and V. Y. Arsenin, "Solutions of ill-posed problems," Mathematics of Computation, vol. 32, no. 144, pp. 1320-1322, Oct. 1978.
    • (1978) Mathematics of Computation , vol.32 , Issue.144 , pp. 1320-1322
    • Tikhonov, A.N.1    Arsenin, V.Y.2
  • 11
    • 84861153505 scopus 로고    scopus 로고
    • Fast nonnegative matrix/tensor factorization based on low-rank approximation
    • Jun.
    • G. Zhou, A. Cichocki, and S. Xie, "Fast nonnegative matrix/tensor factorization based on low-rank approximation," IEEE Trans. Signal Processing, vol. 60, no. 6, pp. 2928-2940, Jun. 2012.
    • (2012) IEEE Trans. Signal Processing , vol.60 , Issue.6 , pp. 2928-2940
    • Zhou, G.1    Cichocki, A.2    Xie, S.3
  • 12
    • 84861111031 scopus 로고    scopus 로고
    • Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization
    • Apr.
    • N. Gillis and F. Glineur, "Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization," Neural Computation, vol. 24, no. 4, pp. 1085-1105, Apr. 2012.
    • (2012) Neural Computation , vol.24 , Issue.4 , pp. 1085-1105
    • Gillis, N.1    Glineur, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.