메뉴 건너뛰기




Volumn 23, Issue 7-8, 2009, Pages 432-441

Nonnegative approximations of nonnegative tensors

Author keywords

CANDECOMP; Low rank tensor approximations; Nonnegative hypermatrices; Nonnegative tensor decompositions; Nonnegative tensor rank; Nonnegative tensors; PARAFAC; Probabilistic latent semantic indexing; Tensor Br gman divergence; Tensor norm

Indexed keywords

DECOMPOSITION; SEMANTICS;

EID: 70349696077     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1244     Document Type: Article
Times cited : (160)

References (37)
  • 1
    • 0002740437 scopus 로고
    • Foundations of the PARAFAC procedure: Models and conditions for an explanatory multi-modal factor analysis
    • Harshman RA. Foundations of the PARAFAC procedure: models and conditions for an explanatory multi-modal factor analysis. UCLA Working Papers in Phonetics 1970; 16: 1-84.
    • (1970) UCLA Working Papers in Phonetics , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 3
    • 0038954994 scopus 로고
    • 2.7799) complexity for n × n approximate matrix multiplication. Inform. Process
    • 2.7799) complexity for n × n approximate matrix multiplication. Inform. Process. Lett. 1979; 8(5): 234-235.
    • (1979) Lett , vol.8 , Issue.5 , pp. 234-235
    • Bini, D.1    Capovani, M.2    Lotti, G.3    Romani, F.4
  • 4
    • 0003052447 scopus 로고    scopus 로고
    • How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships
    • in Reference [37]
    • Kruskal JB, Harshman RA, Lundy ME. How 3-MFA data can cause degenerate PARAFAC solutions, among other relationships, pp. 115-122, in Reference [37].
    • Kruskal, J.B.1    Harshman, R.A.2    Lundy, M.E.3
  • 5
    • 85162707890 scopus 로고
    • The expression of a tensor or a polyadic as a sum of products
    • Hitchcock FL. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 1927; 6(1): 164-189.
    • (1927) J. Math. Phys , vol.6 , Issue.1 , pp. 164-189
    • Hitchcock, F.L.1
  • 6
    • 85163188929 scopus 로고
    • Multiple invariants and generalized rank of a p-way matrix or tensor
    • Hitchcock FL. Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 1927; 7(1): 39-79.
    • (1927) J. Math. Phys , vol.7 , Issue.1 , pp. 39-79
    • Hitchcock, F.L.1
  • 8
    • 34250487811 scopus 로고
    • Gaussian elimination is not optimal
    • Strassen V. Gaussian elimination is not optimal. Numer. Math. 1969; 13: 354-356.
    • (1969) Numer. Math. , vol.13 , pp. 354-356
    • Strassen, V.1
  • 9
    • 34250499792 scopus 로고
    • Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition
    • Carroll JD, Chang JJ. Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 1970; 35(3): 283-319.
    • (1970) Psychometrika , vol.35 , Issue.3 , pp. 283-319
    • Carroll, J.D.1    Chang, J.J.2
  • 10
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • Eckart C, Young G. The approximation of one matrix by another of lower rank. Psychometrika 1936; 1(3): 211-218.
    • (1936) Psychometrika , vol.1 , Issue.3 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 11
    • 0642334046 scopus 로고    scopus 로고
    • Fast non-negativity constrained least squares algorithm
    • Bro R, de Jong S. A fast non-negativity constrained least squares algorithm. J. Chemometrics 1997; 11(5): 393-401.
    • (1997) J. Chemometrics , vol.11 , Issue.5 , pp. 393-401
    • Bro, R.1    Jong, S.A.2
  • 12
    • 0000433620 scopus 로고    scopus 로고
    • Least squares algorithms under unimodality and non-negativity constraints
    • Bro R, Sidiropoulos N. Least squares algorithms under unimodality and non-negativity constraints. J. Chemometrics 1998; 12 (4): 223-247.
    • (1998) J. Chemometrics , vol.12 , Issue.4 , pp. 223-247
    • Bro, R.1    Sidiropoulos, N.2
  • 13
    • 0040760089 scopus 로고    scopus 로고
    • Fitting of the latent class model via iteratively reweighted least squares CANDECOMP with nonnegativity constraints
    • in Reference [37]
    • Carroll JD, De Soete G, Pruzansky S. Fitting of the latent class model via iteratively reweighted least squares CANDECOMP with nonnegativity constraints, pp. 463-472, in Reference [37].
    • Carroll, J.D.1    Soete, G.2    Pruzansky, S.3
  • 14
    • 70349727183 scopus 로고
    • Contrastvrije oplossingen van het CANDECOMP/PARAFAC-model
    • Krijnen WP, Ten Berge JMF. Contrastvrije oplossingen van het CANDECOMP/PARAFAC-model. Kwantitatieve Methoden 1991; 12(37): 87-96.
    • (1991) Kwantitatieve Methoden , vol.12 , Issue.37 , pp. 87-96
    • Krijnen, W.P.1    Berge, J.M.F.2
  • 15
    • 0030775193 scopus 로고    scopus 로고
    • A weighted non-negative least squares algorithm for three-way PARAFAC factoranalysis
    • Paatero P. A weighted non-negative least squares algorithm for three-way PARAFAC factoranalysis. Chemometrics Intell. Lab. Syst. 1997; 38(2): 223-242.
    • (1997) Chemometrics Intell. Lab. Syst , vol.38 , Issue.2 , pp. 223-242
    • Paatero, P.1
  • 16
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994; 5(2): 111-126.
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee DD, Seung HS. Learning the parts of objects by nonnegative matrix factorization. Nature 1999; 401: 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 31844432834 scopus 로고    scopus 로고
    • Non-negative tensor factorization with applications to statistics and computer vision
    • Shashua A, Hazan T. Non-negative tensor factorization with applications to statistics and computer vision. Proc. Int. Conf. Mach. Learn. (ICML'05) 2005; 22: 792-799.
    • (2005) Proc. Int. Conf. Mach. Learn. (ICML'05) , vol.22 , pp. 792-799
    • Shashua, A.1    Hazan, T.2
  • 19
    • 33751237336 scopus 로고    scopus 로고
    • Optimal solutions to nonnegative PARAFAC /multilinear NMF always exist
    • Centre International de rencontres Mathématiques, Luminy, France, August 29-September 2
    • Lim L-H. Optimal solutions to nonnegative PARAFAC /multilinear NMF always exist. Workshop on Tensor Decompositions and Applications, Centre International de rencontres Mathématiques, Luminy, France, August 29-September 2, 2005.
    • (2005) Workshop on Tensor Decompositions and Applications
    • Lim, L.-H.1
  • 21
    • 55349142218 scopus 로고    scopus 로고
    • Tensor rank and the ill-posedness of the best low-rank approximation problem
    • de Silva V, Lim L-H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 2008; 30(3): 1084-1127.
    • (2008) SIAM J. Matrix Anal. Appl , vol.30 , Issue.3 , pp. 1084-1127
    • Silva, V.1    Lim, L.-H.2
  • 26
    • 33645813863 scopus 로고
    • Approximate solutions for the bilinear form computational problem
    • Bini D, Lotti G, Romani F. Approximate solutions for the bilinear form computational problem. SIAM J. Comput. 1980; 9(4): 692-697.
    • (1980) SIAM J. Comput , vol.9 , Issue.4 , pp. 692-697
    • Bini, D.1    Lotti, G.2    Romani, F.3
  • 27
    • 0033653782 scopus 로고    scopus 로고
    • Construction and analysis of degenerate PARAFAC models
    • Paatero P. Construction and analysis of degenerate PARAFAC models. J. Chemometrics 2000; 14(1): 285-299.
    • (2000) J. Chemometrics , vol.14 , Issue.1 , pp. 285-299
    • Paatero, P.1
  • 30
    • 52949146687 scopus 로고    scopus 로고
    • Low-rank approximation of generic p × q × 2 arrays and diverging components in the CANDECOMP/PARAFAC model
    • Stegeman A. Low-rank approximation of generic p × q × 2 arrays and diverging components in the CANDECOMP/PARAFAC model. SIAM J. Matrix Anal. Appl. 2008; 30(3): 988-1007.
    • (2008) SIAM J. Matrix Anal. Appl , vol.30 , Issue.3 , pp. 988-1007
    • Stegeman, A.1
  • 31
    • 49949144765 scopus 로고
    • A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming
    • Brègman L. A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. U.S.S.R. Comput. Math. and Math. Phys. 1967; 7(3): 620-631.
    • (1967) U.S.S.R. Comput. Math. and Math. Phys , vol.7 , Issue.3 , pp. 620-631
    • Brègman, L.1
  • 32
    • 38349053625 scopus 로고    scopus 로고
    • Matrix nearness problems using Brègman divergences
    • Dhillon IS, Tropp JA. Matrix nearness problems using Brègman divergences. SIAM J. Matrix Anal. Appl. 2007; 29(4): 1120-1146.
    • (2007) SIAM J. Matrix Anal. Appl , vol.29 , Issue.4 , pp. 1120-1146
    • Dhillon, I.S.1    Tropp, J.A.2
  • 33
    • 85153990639 scopus 로고    scopus 로고
    • Bregman distance" and "Bregman function
    • In Encyclopaedia of Mathematics, Hazewinkel M (ed.)., Dordrecht, Netherlands
    • Iusem AN. "Bregman distance" and "Bregman function". In Encyclopaedia of Mathematics, Hazewinkel M(ed.) Kluwer: Dordrecht, Netherlands, 1997; 152-154.
    • (1997) Kluwer , pp. 152-154
    • Iusem, A.N.1
  • 35
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • Comon P. Independent component analysis: a new concept? Signal Process. 1994; 36(3): 287-314.
    • (1994) Signal Process , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 36
    • 0002258223 scopus 로고
    • Data preprocessing and the extended PARAFAC model
    • In Research Methods for Multimode Data Analysis, Law HG, Snyder CW, Hattie JA, McDonald RP (eds)., New York
    • Harshman RA, Lundy ME. Data preprocessing and the extended PARAFAC model. In Research Methods for Multimode Data Analysis, Law HG, Snyder CW, Hattie JA, McDonald RP (eds)Praeger: New York, 1984; 216-281.
    • (1984) Praeger: , pp. 216-281
    • Harshman, R.A.1    Lundy, M.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.