-
1
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
2
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
Nov.
-
P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Nov. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
3
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
D. Lee and S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst. 13, 2001, pp. 556-562.
-
(2001)
Proc. Adv. Neural Inf. Process. Syst.
, vol.13
, pp. 556-562
-
-
Lee, D.1
Seung, S.2
-
4
-
-
77949836282
-
Nonnegative leastcorrelated component analysis for separation of dependent sources by volume maximization
-
May
-
F. Y. Wang, C. Y. Chi, T. H. Chan, and Y. Wang, "Nonnegative leastcorrelated component analysis for separation of dependent sources by volume maximization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 875-888, May 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.5
, pp. 875-888
-
-
Wang, F.Y.1
Chi, C.Y.2
Chan, T.H.3
Wang, Y.4
-
5
-
-
60849097822
-
Discriminant nonnegative tensor factorization algorithms
-
Feb.
-
S. Zafeiriou, "Discriminant nonnegative tensor factorization algorithms," IEEE Trans. Neural Netw., vol. 20, no. 2, pp. 217-235, Feb. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.2
, pp. 217-235
-
-
Zafeiriou, S.1
-
6
-
-
49149100896
-
Nonnegative matrix factorization in polynomial feature space
-
Jun.
-
I. Buciu, N. Nikolaidis, and I. Pitas, "Nonnegative matrix factorization in polynomial feature space," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 1090-1100, Jun. 2008.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.6
, pp. 1090-1100
-
-
Buciu, I.1
Nikolaidis, N.2
Pitas, I.3
-
7
-
-
77951938107
-
Linear and nonlinear projective nonnegative matrix factorization
-
May
-
Z. R. Yang and E. Oja, "Linear and nonlinear projective nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 734-749, May 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.5
, pp. 734-749
-
-
Yang, Z.R.1
Oja, E.2
-
8
-
-
33646528853
-
Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
-
May
-
S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, "Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 683-695, May 2006.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.3
, pp. 683-695
-
-
Zafeiriou, S.1
Tefas, A.2
Buciu, I.3
Pitas, I.4
-
9
-
-
23744456750
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
D. Donoho and V. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?" in Proc. Adv. Neural Inf. Process. Syst. 16, 2003, pp. 1141-1148.
-
(2003)
Proc. Adv. Neural Inf. Process. Syst.
, vol.16
, pp. 1141-1148
-
-
Donoho, D.1
Stodden, V.2
-
10
-
-
54249132657
-
Flexible component analysis for sparse, smooth, nonnegative coding or representation
-
A. Cichocki, A. Phan, R. Zdunek, and L.-Q. Zhang, "Flexible component analysis for sparse, smooth, nonnegative coding or representation," in Proc. Neural Inf. Process., 2008, pp. 811-820.
-
(2008)
Proc. Neural Inf. Process.
, pp. 811-820
-
-
Cichocki, A.1
Phan, A.2
Zdunek, R.3
Zhang, L.-Q.4
-
11
-
-
33745765253
-
Learning sparse representations by non-negative matrix factorization and sequential cone programming
-
M. Heiler and C. Schnorr, "Learning sparse representations by nonnegative matrix factorization and sequential cone programming," J. Mach. Learn. Res., vol. 7, pp. 1385-1407, Jul. 2006. (Pubitemid 44024595)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1385-1407
-
-
Heiler, M.1
Schnorr, C.2
-
12
-
-
51749107029
-
Sparse nonnegative matrix factorization with genetic algorithms for microarray analysis
-
Orlando, FL, Aug.
-
K. Stadlthanner, D. Lutter, F. J. Theis, E. W. Lang, A. M. Tome, P. Georgieva, and C. G. Puntonet, "Sparse nonnegative matrix factorization with genetic algorithms for microarray analysis," in Proc. Int. Joint Conf. Neural Netw., Orlando, FL, Aug. 2007, pp. 294-299.
-
(2007)
Proc. Int. Joint Conf. Neural Netw.
, pp. 294-299
-
-
Stadlthanner, K.1
Lutter, D.2
Theis, F.J.3
Lang, E.W.4
Tome, A.M.5
Georgieva, P.6
Puntonet, C.G.7
-
14
-
-
80053646721
-
First results on uniqueness of sparse non-negative matrix
-
F. J. Theis, K. Stadlthanner, and T. Tanaka, "First results on uniqueness of sparse non-negative matrix," in Proc. 13th Eur. Signal Process. Conf., 2005, pp. 1-4.
-
(2005)
Proc. 13th Eur. Signal Process. Conf.
, pp. 1-4
-
-
Theis, F.J.1
Stadlthanner, K.2
Tanaka, T.3
-
15
-
-
34547533993
-
On affine non-negative matrix factorization
-
Honolulu, HI, Apr.
-
H. Laurberg and L. K. Hansen, "On affine non-negative matrix factorization," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Honolulu, HI, Apr. 2007, pp. 653-656.
-
(2007)
Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
, pp. 653-656
-
-
Laurberg, H.1
Hansen, L.K.2
-
17
-
-
0141564874
-
Non-negative matrix factorization for visual coding
-
Apr.
-
L. Weixiang, Z. Nanning, and L. Xiaofeng, "Non-negative matrix factorization for visual coding," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 3. Apr. 2003, pp. 293-296.
-
(2003)
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
, vol.3
, pp. 293-296
-
-
Weixiang, L.1
Nanning, Z.2
Xiaofeng, L.3
-
18
-
-
0037418225
-
1 minimization
-
DOI 10.1073/pnas.0437847100
-
D. L. Donoho and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization," Proc. Nat. Acad. Sci. United States Amer., vol. 100, no. 5, pp. 2197-2202, Mar. 2003. (Pubitemid 36297476)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.5
, pp. 2197-2202
-
-
Donoho, D.L.1
Elad, M.2
-
19
-
-
0028427066
-
Minimum-volume transforms for remotely sensed data
-
May
-
M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
-
(1994)
IEEE Trans. Geosci. Remote Sens.
, vol.32
, Issue.3
, pp. 542-552
-
-
Craig, M.D.1
-
20
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
21
-
-
79955469891
-
Toward unique solutions of non-negative matrix factorization problems by a determinant criterion
-
Jul.
-
R. Schachtner, G. Popel, and E. W. Lang, "Toward unique solutions of non-negative matrix factorization problems by a determinant criterion," Digital Signal Process., vol. 21, no. 4, pp. 528-534, Jul. 2011.
-
(2011)
Digital Signal Process.
, vol.21
, Issue.4
, pp. 528-534
-
-
Schachtner, R.1
Popel, G.2
Lang, E.W.3
-
22
-
-
79953821926
-
Online blind source separation using incremental nonnegative matrix factorization with volume constraint
-
Apr.
-
G. Zhou, Z. Yang, S. Xie, J.-M. Yang, "Online blind source separation using incremental nonnegative matrix factorization with volume constraint," IEEE Trans. Neural Netw., vol. 22, no. 4, pp. 550-560, Apr. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.4
, pp. 550-560
-
-
Zhou, G.1
Yang, Z.2
Xie, S.3
Yang, J.-M.4
-
23
-
-
70350488509
-
A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
Nov.
-
T. H. Chan, C. Y. Chi, Y. M. Huang, and W. K. Ma, "A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.11
, pp. 4418-4432
-
-
Chan, T.H.1
Chi, C.Y.2
Huang, Y.M.3
Ma, W.K.4
-
25
-
-
76749172184
-
Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size
-
Feb.
-
V. Zarzoso and P. Comon, "Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 248-261, Feb. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.2
, pp. 248-261
-
-
Zarzoso, V.1
Comon, P.2
-
26
-
-
77956342206
-
Blind extraction of global signal from multi-channel noisy observations
-
Sep.
-
Y. Washizawa, Y. Yamashita, T. Tanaka, and A. Cichocki, "Blind extraction of global signal from multi-channel noisy observations," IEEE Trans. Neural Netw., vol. 21, no. 9, pp. 1472-1481, Sep. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.9
, pp. 1472-1481
-
-
Washizawa, Y.1
Yamashita, Y.2
Tanaka, T.3
Cichocki, A.4
-
27
-
-
75549087892
-
Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers
-
Nov.
-
G. X. Zhou, S. L. Xie, Z. Y. Yang, and J. Zhang, "Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers," IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1810-1819, Nov. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.11
, pp. 1810-1819
-
-
Zhou, G.X.1
Xie, S.L.2
Yang, Z.Y.3
Zhang, J.4
-
28
-
-
79951677607
-
Mixing matrix estimation from sparse mixtures with unknown number of sources
-
Feb.
-
G. X. Zhou, Z. Y. Yang, S. L. Xie, and J. M. Yang, "Mixing matrix estimation from sparse mixtures with unknown number of sources," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 211-221, Feb. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.2
, pp. 211-221
-
-
Zhou, G.X.1
Yang, Z.Y.2
Xie, S.L.3
Yang, J.M.4
-
30
-
-
58149520173
-
Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
-
Jan.
-
S. A. Robila and L. G. Maciak, "Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, Issue.1
, pp. 57-61
-
-
Robila, S.A.1
MacIak, L.G.2
-
31
-
-
67149144290
-
Minimum determinant constraint for non-negative matrix factorization
-
R. Schachtner, G. Pöppel, A. Tomé, and E. Lang, "Minimum determinant constraint for non-negative matrix factorization," in Proc. Independ. Comp. Anal. Signal Separat., 2009, pp. 106-113.
-
(2009)
Proc. Independ. Comp. Anal. Signal Separat.
, pp. 106-113
-
-
Schachtner, R.1
Pöppel, G.2
Tomé, A.3
Lang, E.4
-
33
-
-
79952653070
-
The gramian and K-volume in N-space: Some classical results in linear algebra
-
B. Nils, "The gramian and K-volume in N-space: Some classical results in linear algebra," J. Young Investigat., vol. 2, no. 1, pp. 1-4, 1999.
-
(1999)
J. Young Investigat.
, vol.2
, Issue.1
, pp. 1-4
-
-
Nils, B.1
-
34
-
-
85032751966
-
Nonnegative matrix and tensor factorization [lecture notes]
-
Jan.
-
A. Cichocki, R. Zdunek, and S. I. Amari, "Nonnegative matrix and tensor factorization [lecture notes]," IEEE Signal Process. Mag., vol. 25, no. 1, pp. 142-145, Jan. 2008.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, Issue.1
, pp. 142-145
-
-
Cichocki, A.1
Zdunek, R.2
Amari, S.I.3
-
35
-
-
0000396062
-
Natural Gradient Works Efficiently in Learning
-
S. Amari, "Natural gradient works efficiently in learning," Neural Comput., vol. 10, no. 2, pp. 251-276, Mar. 1998. (Pubitemid 128463152)
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.-I.1
-
36
-
-
36348966695
-
On the convergence of multiplicative update algorithms for nonnegative matrix factorization
-
Nov.
-
C. J. Lin, "On the convergence of multiplicative update algorithms for nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1589-1596, Nov. 2007.
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.6
, pp. 1589-1596
-
-
Lin, C.J.1
-
37
-
-
78650045636
-
Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization
-
Dec.
-
R. Badeau, N. Bertin, and E. Vincent, "Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 21, no. 12, pp. 1869-1881, Dec. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.12
, pp. 1869-1881
-
-
Badeau, R.1
Bertin, N.2
Vincent, E.3
-
38
-
-
34247173538
-
Nonnegative matrix factorization with constrained second-order optimization
-
DOI 10.1016/j.sigpro.2007.01.024, PII S0165168407000527
-
R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with constrained second-order optimization," Signal Process., vol. 87, no. 8, pp. 1904-1916, Aug. 2007. (Pubitemid 46590394)
-
(2007)
Signal Processing
, vol.87
, Issue.8
, pp. 1904-1916
-
-
Zdunek, R.1
Cichocki, A.2
-
39
-
-
36749071484
-
SVD based initialization: A head start for nonnegative matrix factorization
-
DOI 10.1016/j.patcog.2007.09.010, PII S0031320307004359
-
C. Boutsidis and E. Gallopoulos, "SVD based initialization: A head start for nonnegative matrix factorization," Pattern Recognit., vol. 41, no. 4, pp. 1350-1362, 2008. (Pubitemid 350212975)
-
(2008)
Pattern Recognition
, vol.41
, Issue.4
, pp. 1350-1362
-
-
Boutsidis, C.1
Gallopoulos, E.2
-
40
-
-
54249084407
-
Clustering-based initialization for non-negative matrix factorization
-
Nov.
-
Y. Xue, C. S. Tong, Y. Chen, and W. S. Chen, "Clustering-based initialization for non-negative matrix factorization," Appl. Math. Comput., vol. 205, no. 2, pp. 525-536, Nov. 2008.
-
(2008)
Appl. Math. Comput.
, vol.205
, Issue.2
, pp. 525-536
-
-
Xue, Y.1
Tong, C.S.2
Chen, Y.3
Chen, W.S.4
-
41
-
-
54749083549
-
A convex analysis framework for blind separation of non-negative sources
-
Oct.
-
T. H. Chan, W. K. Ma, C. Y. Chi, and Y. Wang, "A convex analysis framework for blind separation of non-negative sources," IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5120-5134, Oct. 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.10
, pp. 5120-5134
-
-
Chan, T.H.1
Ma, W.K.2
Chi, C.Y.3
Wang, Y.4
-
42
-
-
1242331294
-
A 'nonnegative PCA' algorithm for independent component analysis
-
Jan.
-
M. D. Plumbley and E. Oja, "A 'nonnegative PCA' algorithm for independent component analysis," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 66-76, Jan. 2004.
-
(2004)
IEEE Trans. Neural Netw.
, vol.15
, Issue.1
, pp. 66-76
-
-
Plumbley, M.D.1
Oja, E.2
-
43
-
-
80053634072
-
-
[Online]
-
P. Hoyer. (2004). NMFpack (1.1st ed.) [Online]. Available: http://www.cs.helsinki.fi/patrik.hoyer
-
(2004)
NMFpack (1.1st Ed.)
-
-
Hoyer, P.1
-
45
-
-
0141978306
-
The fixed-point algorithm and maximum likelihood estimation forindependent component analysis
-
Aug.
-
A. Hyvarinen, "The fixed-point algorithm and maximum likelihood estimation forindependent component analysis," Neural Process. Lett., vol. 10, no. 1, pp. 1-5, Aug. 1999.
-
(1999)
Neural Process. Lett.
, vol.10
, Issue.1
, pp. 1-5
-
-
Hyvarinen, A.1
-
46
-
-
49149129855
-
Local convergence analysis of fastICA and related algorithms
-
Jun.
-
H. Shen, M. Kleinsteuber, and K. Huper, "Local convergence analysis of fastICA and related algorithms," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 1022-1032, Jun. 2008.
-
(2008)
IEEE Trans. Neural Netw.
, vol.19
, Issue.6
, pp. 1022-1032
-
-
Shen, H.1
Kleinsteuber, M.2
Huper, K.3
-
47
-
-
0030381077
-
The quickhull algorithm for convex hulls
-
C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, "The quickhull algorithm for convex hulls," ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469-483, Dec. 1996. (Pubitemid 126417394)
-
(1996)
ACM Transactions on Mathematical Software
, vol.22
, Issue.4
, pp. 469-483
-
-
Barber, C.B.1
Dobkin, D.P.2
Huhdanpaa, H.3
|