메뉴 건너뛰기




Volumn 22, Issue 10, 2011, Pages 1626-1637

Minimum-volume-constrained nonnegative matrix factorization: Enhanced ability of learning parts

Author keywords

Blind source separation; nonnegative matrix factorization; sparse representation

Indexed keywords

HUMAN FACE IMAGE; LARGE-SCALE PROBLEM; MULTIPLICATIVE UPDATES; NATURAL GRADIENT; NONNEGATIVE MATRIX FACTORIZATION; SPARSE REPRESENTATION;

EID: 80053637334     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2164621     Document Type: Article
Times cited : (67)

References (47)
  • 1
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 2
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Nov.
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Nov. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 3
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. Lee and S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst. 13, 2001, pp. 556-562.
    • (2001) Proc. Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.1    Seung, S.2
  • 4
    • 77949836282 scopus 로고    scopus 로고
    • Nonnegative leastcorrelated component analysis for separation of dependent sources by volume maximization
    • May
    • F. Y. Wang, C. Y. Chi, T. H. Chan, and Y. Wang, "Nonnegative leastcorrelated component analysis for separation of dependent sources by volume maximization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 875-888, May 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 875-888
    • Wang, F.Y.1    Chi, C.Y.2    Chan, T.H.3    Wang, Y.4
  • 5
    • 60849097822 scopus 로고    scopus 로고
    • Discriminant nonnegative tensor factorization algorithms
    • Feb.
    • S. Zafeiriou, "Discriminant nonnegative tensor factorization algorithms," IEEE Trans. Neural Netw., vol. 20, no. 2, pp. 217-235, Feb. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 217-235
    • Zafeiriou, S.1
  • 6
    • 49149100896 scopus 로고    scopus 로고
    • Nonnegative matrix factorization in polynomial feature space
    • Jun.
    • I. Buciu, N. Nikolaidis, and I. Pitas, "Nonnegative matrix factorization in polynomial feature space," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 1090-1100, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.6 , pp. 1090-1100
    • Buciu, I.1    Nikolaidis, N.2    Pitas, I.3
  • 7
    • 77951938107 scopus 로고    scopus 로고
    • Linear and nonlinear projective nonnegative matrix factorization
    • May
    • Z. R. Yang and E. Oja, "Linear and nonlinear projective nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 734-749, May 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.5 , pp. 734-749
    • Yang, Z.R.1    Oja, E.2
  • 8
    • 33646528853 scopus 로고    scopus 로고
    • Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification
    • May
    • S. Zafeiriou, A. Tefas, I. Buciu, and I. Pitas, "Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification," IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 683-695, May 2006.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.3 , pp. 683-695
    • Zafeiriou, S.1    Tefas, A.2    Buciu, I.3    Pitas, I.4
  • 9
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?" in Proc. Adv. Neural Inf. Process. Syst. 16, 2003, pp. 1141-1148.
    • (2003) Proc. Adv. Neural Inf. Process. Syst. , vol.16 , pp. 1141-1148
    • Donoho, D.1    Stodden, V.2
  • 10
    • 54249132657 scopus 로고    scopus 로고
    • Flexible component analysis for sparse, smooth, nonnegative coding or representation
    • A. Cichocki, A. Phan, R. Zdunek, and L.-Q. Zhang, "Flexible component analysis for sparse, smooth, nonnegative coding or representation," in Proc. Neural Inf. Process., 2008, pp. 811-820.
    • (2008) Proc. Neural Inf. Process. , pp. 811-820
    • Cichocki, A.1    Phan, A.2    Zdunek, R.3    Zhang, L.-Q.4
  • 11
    • 33745765253 scopus 로고    scopus 로고
    • Learning sparse representations by non-negative matrix factorization and sequential cone programming
    • M. Heiler and C. Schnorr, "Learning sparse representations by nonnegative matrix factorization and sequential cone programming," J. Mach. Learn. Res., vol. 7, pp. 1385-1407, Jul. 2006. (Pubitemid 44024595)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1385-1407
    • Heiler, M.1    Schnorr, C.2
  • 19
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 20
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. B. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 21
    • 79955469891 scopus 로고    scopus 로고
    • Toward unique solutions of non-negative matrix factorization problems by a determinant criterion
    • Jul.
    • R. Schachtner, G. Popel, and E. W. Lang, "Toward unique solutions of non-negative matrix factorization problems by a determinant criterion," Digital Signal Process., vol. 21, no. 4, pp. 528-534, Jul. 2011.
    • (2011) Digital Signal Process. , vol.21 , Issue.4 , pp. 528-534
    • Schachtner, R.1    Popel, G.2    Lang, E.W.3
  • 22
    • 79953821926 scopus 로고    scopus 로고
    • Online blind source separation using incremental nonnegative matrix factorization with volume constraint
    • Apr.
    • G. Zhou, Z. Yang, S. Xie, J.-M. Yang, "Online blind source separation using incremental nonnegative matrix factorization with volume constraint," IEEE Trans. Neural Netw., vol. 22, no. 4, pp. 550-560, Apr. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.4 , pp. 550-560
    • Zhou, G.1    Yang, Z.2    Xie, S.3    Yang, J.-M.4
  • 23
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T. H. Chan, C. Y. Chi, Y. M. Huang, and W. K. Ma, "A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.H.1    Chi, C.Y.2    Huang, Y.M.3    Ma, W.K.4
  • 25
    • 76749172184 scopus 로고    scopus 로고
    • Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size
    • Feb.
    • V. Zarzoso and P. Comon, "Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size," IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 248-261, Feb. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.2 , pp. 248-261
    • Zarzoso, V.1    Comon, P.2
  • 26
    • 77956342206 scopus 로고    scopus 로고
    • Blind extraction of global signal from multi-channel noisy observations
    • Sep.
    • Y. Washizawa, Y. Yamashita, T. Tanaka, and A. Cichocki, "Blind extraction of global signal from multi-channel noisy observations," IEEE Trans. Neural Netw., vol. 21, no. 9, pp. 1472-1481, Sep. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.9 , pp. 1472-1481
    • Washizawa, Y.1    Yamashita, Y.2    Tanaka, T.3    Cichocki, A.4
  • 27
    • 75549087892 scopus 로고    scopus 로고
    • Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers
    • Nov.
    • G. X. Zhou, S. L. Xie, Z. Y. Yang, and J. Zhang, "Nonorthogonal approximate joint diagonalization with well-conditioned diagonalizers," IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1810-1819, Nov. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.11 , pp. 1810-1819
    • Zhou, G.X.1    Xie, S.L.2    Yang, Z.Y.3    Zhang, J.4
  • 28
    • 79951677607 scopus 로고    scopus 로고
    • Mixing matrix estimation from sparse mixtures with unknown number of sources
    • Feb.
    • G. X. Zhou, Z. Y. Yang, S. L. Xie, and J. M. Yang, "Mixing matrix estimation from sparse mixtures with unknown number of sources," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 211-221, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.2 , pp. 211-221
    • Zhou, G.X.1    Yang, Z.Y.2    Xie, S.L.3    Yang, J.M.4
  • 29
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst. 13, 2000, pp. 556-562.
    • (2000) Proc. Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 30
    • 58149520173 scopus 로고    scopus 로고
    • Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
    • Jan.
    • S. A. Robila and L. G. Maciak, "Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 57-61
    • Robila, S.A.1    MacIak, L.G.2
  • 33
    • 79952653070 scopus 로고    scopus 로고
    • The gramian and K-volume in N-space: Some classical results in linear algebra
    • B. Nils, "The gramian and K-volume in N-space: Some classical results in linear algebra," J. Young Investigat., vol. 2, no. 1, pp. 1-4, 1999.
    • (1999) J. Young Investigat. , vol.2 , Issue.1 , pp. 1-4
    • Nils, B.1
  • 34
    • 85032751966 scopus 로고    scopus 로고
    • Nonnegative matrix and tensor factorization [lecture notes]
    • Jan.
    • A. Cichocki, R. Zdunek, and S. I. Amari, "Nonnegative matrix and tensor factorization [lecture notes]," IEEE Signal Process. Mag., vol. 25, no. 1, pp. 142-145, Jan. 2008.
    • (2008) IEEE Signal Process. Mag. , vol.25 , Issue.1 , pp. 142-145
    • Cichocki, A.1    Zdunek, R.2    Amari, S.I.3
  • 35
    • 0000396062 scopus 로고    scopus 로고
    • Natural Gradient Works Efficiently in Learning
    • S. Amari, "Natural gradient works efficiently in learning," Neural Comput., vol. 10, no. 2, pp. 251-276, Mar. 1998. (Pubitemid 128463152)
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.-I.1
  • 36
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • Nov.
    • C. J. Lin, "On the convergence of multiplicative update algorithms for nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1589-1596, Nov. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.J.1
  • 37
    • 78650045636 scopus 로고    scopus 로고
    • Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization
    • Dec.
    • R. Badeau, N. Bertin, and E. Vincent, "Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 21, no. 12, pp. 1869-1881, Dec. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.12 , pp. 1869-1881
    • Badeau, R.1    Bertin, N.2    Vincent, E.3
  • 38
    • 34247173538 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with constrained second-order optimization
    • DOI 10.1016/j.sigpro.2007.01.024, PII S0165168407000527
    • R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with constrained second-order optimization," Signal Process., vol. 87, no. 8, pp. 1904-1916, Aug. 2007. (Pubitemid 46590394)
    • (2007) Signal Processing , vol.87 , Issue.8 , pp. 1904-1916
    • Zdunek, R.1    Cichocki, A.2
  • 39
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start for nonnegative matrix factorization
    • DOI 10.1016/j.patcog.2007.09.010, PII S0031320307004359
    • C. Boutsidis and E. Gallopoulos, "SVD based initialization: A head start for nonnegative matrix factorization," Pattern Recognit., vol. 41, no. 4, pp. 1350-1362, 2008. (Pubitemid 350212975)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 40
    • 54249084407 scopus 로고    scopus 로고
    • Clustering-based initialization for non-negative matrix factorization
    • Nov.
    • Y. Xue, C. S. Tong, Y. Chen, and W. S. Chen, "Clustering-based initialization for non-negative matrix factorization," Appl. Math. Comput., vol. 205, no. 2, pp. 525-536, Nov. 2008.
    • (2008) Appl. Math. Comput. , vol.205 , Issue.2 , pp. 525-536
    • Xue, Y.1    Tong, C.S.2    Chen, Y.3    Chen, W.S.4
  • 41
    • 54749083549 scopus 로고    scopus 로고
    • A convex analysis framework for blind separation of non-negative sources
    • Oct.
    • T. H. Chan, W. K. Ma, C. Y. Chi, and Y. Wang, "A convex analysis framework for blind separation of non-negative sources," IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5120-5134, Oct. 2008.
    • (2008) IEEE Trans. Signal Process. , vol.56 , Issue.10 , pp. 5120-5134
    • Chan, T.H.1    Ma, W.K.2    Chi, C.Y.3    Wang, Y.4
  • 42
    • 1242331294 scopus 로고    scopus 로고
    • A 'nonnegative PCA' algorithm for independent component analysis
    • Jan.
    • M. D. Plumbley and E. Oja, "A 'nonnegative PCA' algorithm for independent component analysis," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 66-76, Jan. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.1 , pp. 66-76
    • Plumbley, M.D.1    Oja, E.2
  • 43
    • 80053634072 scopus 로고    scopus 로고
    • [Online]
    • P. Hoyer. (2004). NMFpack (1.1st ed.) [Online]. Available: http://www.cs.helsinki.fi/patrik.hoyer
    • (2004) NMFpack (1.1st Ed.)
    • Hoyer, P.1
  • 45
    • 0141978306 scopus 로고    scopus 로고
    • The fixed-point algorithm and maximum likelihood estimation forindependent component analysis
    • Aug.
    • A. Hyvarinen, "The fixed-point algorithm and maximum likelihood estimation forindependent component analysis," Neural Process. Lett., vol. 10, no. 1, pp. 1-5, Aug. 1999.
    • (1999) Neural Process. Lett. , vol.10 , Issue.1 , pp. 1-5
    • Hyvarinen, A.1
  • 46
    • 49149129855 scopus 로고    scopus 로고
    • Local convergence analysis of fastICA and related algorithms
    • Jun.
    • H. Shen, M. Kleinsteuber, and K. Huper, "Local convergence analysis of fastICA and related algorithms," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 1022-1032, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.6 , pp. 1022-1032
    • Shen, H.1    Kleinsteuber, M.2    Huper, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.