-
1
-
-
79952446835
-
Scalable tensor factorizations with missing data
-
E. Acar, D. Dunlavy, T. Kolda, and M. Mørup. Scalable tensor factorizations with missing data. In SDM, pages 701-711, 2010.
-
(2010)
SDM
, pp. 701-711
-
-
Acar, E.1
Dunlavy, D.2
Kolda, T.3
Mørup, M.4
-
2
-
-
84898960313
-
When are overcomplete topic models identifiable? Uniqueness of tensor tucker decompositions with structured sparsity
-
A. Anandkumar, D. Hsu, M. Janzamin, and S. Kakade. When are overcomplete topic models identifiable? uniqueness of tensor Tucker decompositions with structured sparsity. In NIPS, pages 1986-1994, 2013.
-
(2013)
NIPS
, pp. 1986-1994
-
-
Anandkumar, A.1
Hsu, D.2
Janzamin, M.3
Kakade, S.4
-
3
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1): 1-122, 2011.
-
(2011)
Found. Trends Mach. Learn.
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
4
-
-
77951291046
-
A singular value thresholding algorithm for matrix completion
-
J. Cai, E. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM J. Optim., 20(4): 1956-1982, 2010.
-
(2010)
SIAM J. Optim.
, vol.20
, Issue.4
, pp. 1956-1982
-
-
Cai, J.1
Candès, E.2
Shen, Z.3
-
5
-
-
71049116435
-
Exact matrix completion via convex optimization
-
E. Candès and B. Recht. Exact matrix completion via convex optimization. Found. Comput. Math., 9(6): 717-772, 2009.
-
(2009)
Found. Comput. Math.
, vol.9
, Issue.6
, pp. 717-772
-
-
Candès, E.1
Recht, B.2
-
6
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2): 489-509, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candès, E.1
Romberg, J.2
Tao, T.3
-
8
-
-
84937834376
-
Tucker factorization with missing data with application to low-n-rank tensor completion
-
M. Filipovic and A. Jukic. Tucker factorization with missing data with application to low-n-rank tensor completion. Multidim. Syst. Sign. Process., 2014.
-
(2014)
Multidim. Syst. Sign. Process.
-
-
Filipovic, M.1
Jukic, A.2
-
9
-
-
79551661156
-
Tensor completion and low-n-rank tensor recovery via convex optimization
-
S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problem, 27(2), 2011.
-
(2011)
Inverse Problem
, vol.27
, Issue.2
-
-
Gandy, S.1
Recht, B.2
Yamada, I.3
-
10
-
-
84897553151
-
Robust low-rank tesnor recovery: Models and algorithms
-
D. Goldfarb and Z. Qin. Robust low-rank tesnor recovery: Models and algorithms. SIAM J. Matrix Anal. Appl., 35(1): 225-253, 2014.
-
(2014)
SIAM J. Matrix Anal. Appl.
, vol.35
, Issue.1
, pp. 225-253
-
-
Goldfarb, D.1
Qin, Z.2
-
12
-
-
77956897560
-
Matrix completion from a few entries
-
R. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE Trans. Inform. Theory, 56(6): 2980-2998, 2010.
-
(2010)
IEEE Trans. Inform. Theory
, vol.56
, Issue.6
, pp. 2980-2998
-
-
Keshavan, R.1
Montanari, A.2
Oh, S.3
-
13
-
-
68649096448
-
Tensor decompositions and applications
-
T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51(3): 455-500, 2009.
-
(2009)
SIAM Review
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.1
Bader, B.2
-
14
-
-
0034144761
-
On the best rank-1 and rank-(r1,r2,...,rn) approximation of high-order tensors
-
L. Lathauwer, B. Moor, and J. Vandewalle. On the best rank-1 and rank-(r1,r2,...,rn) approximation of high-order tensors. SIAM J. Matrix Anal. Appl., 21(4): 1324-1342, 2000.
-
(2000)
SIAM J. Matrix Anal. Appl.
, vol.21
, Issue.4
, pp. 1324-1342
-
-
Lathauwer, L.1
Moor, B.2
Vandewalle, J.3
-
15
-
-
85162350693
-
Linearized alternating direction method with adaptive penalty for low-rank representation
-
Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty for low-rank representation. In NIPS, pages 612-620, 2011.
-
(2011)
NIPS
, pp. 612-620
-
-
Lin, Z.1
Liu, R.2
Su, Z.3
-
16
-
-
85100063855
-
Tensor completion for estimating missing values in visual data
-
J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. In ICCV, pages 2114-2121, 2009.
-
(2009)
ICCV
, pp. 2114-2121
-
-
Liu, J.1
Musialski, P.2
Wonka, P.3
Ye, J.4
-
17
-
-
84870175618
-
Tensor completion for estimating missing values in visual data
-
J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell., 35(1): 208-220, 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.1
, pp. 208-220
-
-
Liu, J.1
Musialski, P.2
Wonka, P.3
Ye, J.4
-
18
-
-
84898958456
-
Square deal: Lower bounds and improved relaxations for tensor recovery
-
C. Mu, B. Huang, J. Wright, and D. Goldfarb. Square deal: lower bounds and improved relaxations for tensor recovery. In ICML, pages 73-81, 2014.
-
(2014)
ICML
, pp. 73-81
-
-
Mu, C.1
Huang, B.2
Wright, J.3
Goldfarb, D.4
-
20
-
-
84898929494
-
A new convex relaxation for tensor completion
-
B. Romera-Paredes and M. Pontil. A new convex relaxation for tensor completion. In NIPS, pages 2967-2975, 2013.
-
(2013)
NIPS
, pp. 2967-2975
-
-
Romera-Paredes, B.1
Pontil, M.2
-
21
-
-
84908205663
-
Generalized higher-order tensor decomposition via parallel ADMM
-
F. Shang, Y. Liu, and J. Cheng. Generalized higher-order tensor decomposition via parallel ADMM. In AAAI, pages 1279-1285, 2014.
-
(2014)
AAAI
, pp. 1279-1285
-
-
Shang, F.1
Liu, Y.2
Cheng, J.3
-
22
-
-
84894616525
-
Learning with tensors: A framework based on covex optimization and spectral regularization
-
M. Signoretto, Q. Dinh, L. Lathauwer, and J. Suykens. Learning with tensors: A framework based on covex optimization and spectral regularization. Mach. Learn., 94(3): 303-351, 2014.
-
(2014)
Mach. Learn.
, vol.94
, Issue.3
, pp. 303-351
-
-
Signoretto, M.1
Dinh, Q.2
Lathauwer, L.3
Suykens, J.4
-
24
-
-
84899031700
-
Convex tensor decomposition via structured schatten norm regularization
-
R. Tomioka and T. Suzuki. Convex tensor decomposition via structured Schatten norm regularization. In NIPS, pages 1331-1339, 2013.
-
(2013)
NIPS
, pp. 1331-1339
-
-
Tomioka, R.1
Suzuki, T.2
-
25
-
-
85162510548
-
Statistical performance of convex tensor decomposition
-
R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima. Statistical performance of convex tensor decomposition. In NIPS, pages 972-980, 2011.
-
(2011)
NIPS
, pp. 972-980
-
-
Tomioka, R.1
Suzuki, T.2
Hayashi, K.3
Kashima, H.4
-
26
-
-
84867136661
-
Stability of matrix factorization for collaborative filtering
-
Y. Wang and H. Xu. Stability of matrix factorization for collaborative filtering. In ICML, 2012.
-
(2012)
ICML
-
-
Wang, Y.1
Xu, H.2
-
27
-
-
84869205493
-
Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm
-
Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Prog. Comp., 4(4): 333-361, 2012.
-
(2012)
Math. Prog. Comp.
, vol.4
, Issue.4
, pp. 333-361
-
-
Wen, Z.1
Yin, W.2
Zhang, Y.3
-
29
-
-
85162323716
-
Generalised coupled tensor factorisation
-
Y. Yilmaz, A. Cemgil, and U. Simsekli. Generalised coupled tensor factorisation. In NIPS, pages 2151-2159, 2011.
-
(2011)
NIPS
, pp. 2151-2159
-
-
Yilmaz, Y.1
Cemgil, A.2
Simsekli, U.3
|