메뉴 건너뛰기




Volumn 122, Issue 1-2, 2015, Pages 213-220

Spatial and temporal epidemiological analysis in the Big Data era

Author keywords

Data science; Exploratory analysis; Internet of things; Modelling; Multi criteria decision analysis; Spatial analysis; Visualisation

Indexed keywords

ANIMAL; ANIMAL DISEASES; CLOUD COMPUTING; FACTUAL DATABASE; GEOGRAPHIC INFORMATION SYSTEM; STATISTICAL ANALYSIS; VETERINARY;

EID: 84952636621     PISSN: 01675877     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.prevetmed.2015.05.012     Document Type: Article
Times cited : (65)

References (132)
  • 1
    • 84894248423 scopus 로고    scopus 로고
    • Ecological niche models in phylogeographic studies: applications, advances and precautions
    • Alvarado-Serrano D.F., Knowles L.L. Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol. Ecol. Resources 2013, 14:233-248.
    • (2013) Mol. Ecol. Resources , vol.14 , pp. 233-248
    • Alvarado-Serrano, D.F.1    Knowles, L.L.2
  • 2
    • 50649096979 scopus 로고    scopus 로고
    • The end of theory: the data deluge makes the scientific method obsolete
    • Anderson C. The end of theory: the data deluge makes the scientific method obsolete. Wired Mag. 2008, 16:07.
    • (2008) Wired Mag. , vol.16 , pp. 07
    • Anderson, C.1
  • 3
    • 84879382854 scopus 로고    scopus 로고
    • Visual analytics of movement: an overview of methods, tools and procedures
    • Andrienko N., Andrienko G. Visual analytics of movement: an overview of methods, tools and procedures. Inf. Visual. 2012, 12:3-24.
    • (2012) Inf. Visual. , vol.12 , pp. 3-24
    • Andrienko, N.1    Andrienko, G.2
  • 5
    • 85052723106 scopus 로고    scopus 로고
    • Anon, National Research Council of the National Academies, Washington DC, USA, 176pp
    • Anon Frontiers in Massive Data Analysis 2013, National Research Council of the National Academies, Washington DC, USA, 176pp.
    • (2013) Frontiers in Massive Data Analysis
  • 6
    • 84906092266 scopus 로고    scopus 로고
    • Anon, Executive Office of the President, President's Council of Advisors on Science and Technology, Washington DC, USA, 57pp
    • Anon Big Data and Privacy A Technological Perspective 2014, Executive Office of the President, President's Council of Advisors on Science and Technology, Washington DC, USA, 57pp.
    • (2014) Big Data and Privacy A Technological Perspective
  • 9
    • 62149144693 scopus 로고    scopus 로고
    • Computer science. Beyond the data deluge
    • Bell G., Hey T., Szalay A. Computer science. Beyond the data deluge. Science 2009, 323:1297-1298.
    • (2009) Science , vol.323 , pp. 1297-1298
    • Bell, G.1    Hey, T.2    Szalay, A.3
  • 11
    • 66149157263 scopus 로고    scopus 로고
    • Digital disease detection - harnessing the web for public health surveillance
    • Brownstein J.S., Freifeld C.C., Madoff L.C. Digital disease detection - harnessing the web for public health surveillance. N. Engl. J. Med. 2009, 360:2153-2157.
    • (2009) N. Engl. J. Med. , vol.360 , pp. 2153-2157
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 12
    • 48749089377 scopus 로고    scopus 로고
    • Surveillance sans frontieres: internet-based emerging infectious disease intelligence and the HealthMap project
    • Brownstein J.S., Freifeld C.C., Reis B.Y., Mandl K.D. Surveillance sans frontieres: internet-based emerging infectious disease intelligence and the HealthMap project. PLoS Med. 2008, 5:e151.
    • (2008) PLoS Med. , vol.5 , pp. e151
    • Brownstein, J.S.1    Freifeld, C.C.2    Reis, B.Y.3    Mandl, K.D.4
  • 14
    • 84870512019 scopus 로고    scopus 로고
    • Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model
    • Brunker K., Hampson K., Horton D.L., Biek R. Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model. Parasitology 2012, 139:1899-1913.
    • (2012) Parasitology , vol.139 , pp. 1899-1913
    • Brunker, K.1    Hampson, K.2    Horton, D.L.3    Biek, R.4
  • 15
    • 30144441170 scopus 로고    scopus 로고
    • Mashups mix data into global service
    • Butler D. Mashups mix data into global service. Nature 2006, 439:6-7.
    • (2006) Nature , vol.439 , pp. 6-7
    • Butler, D.1
  • 16
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D. When Google got flu wrong. Nature 2013, 494:155-156.
    • (2013) Nature , vol.494 , pp. 155-156
    • Butler, D.1
  • 17
    • 72849140260 scopus 로고    scopus 로고
    • Google trends: a web-based tool for real-time surveillance of disease outbreaks
    • Carneiro H.A., Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 2009, 49:1557-1564.
    • (2009) Clin. Infect. Dis. , vol.49 , pp. 1557-1564
    • Carneiro, H.A.1    Mylonakis, E.2
  • 18
    • 84886402813 scopus 로고    scopus 로고
    • Genetics: a new landscape for medical geography
    • Carrel M., Emch M. Genetics: a new landscape for medical geography. Ann. Assoc. Am. Geogr. 2013, 103:1452-1467.
    • (2013) Ann. Assoc. Am. Geogr. , vol.103 , pp. 1452-1467
    • Carrel, M.1    Emch, M.2
  • 20
    • 79955085425 scopus 로고    scopus 로고
    • Integrating statistical genetic and geospatial methods brings new power to phylogeography
    • Chan L.M., Brown J.L., Yoder A.D. Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol. Phylogenet. Evol. 2011, 59:523-537.
    • (2011) Mol. Phylogenet. Evol. , vol.59 , pp. 523-537
    • Chan, L.M.1    Brown, J.L.2    Yoder, A.D.3
  • 21
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of Twitter: content analysis of tweets during the 2009H1N1 outbreak
    • Chew C., Eysenbach G. Pandemics in the age of Twitter: content analysis of tweets during the 2009H1N1 outbreak. PLoS ONE 2010, 5:e14118.
    • (2010) PLoS ONE , vol.5 , pp. e14118
    • Chew, C.1    Eysenbach, G.2
  • 22
    • 84880811041 scopus 로고    scopus 로고
    • Why we need crowdsourced data in infectious disease surveillance
    • Chunara R., Smolinski M., Brownstein J. Why we need crowdsourced data in infectious disease surveillance. Curr. Infect. Dis. Rep. 2013, 15:316-319.
    • (2013) Curr. Infect. Dis. Rep. , vol.15 , pp. 316-319
    • Chunara, R.1    Smolinski, M.2    Brownstein, J.3
  • 23
    • 33845725160 scopus 로고    scopus 로고
    • Application of knowledge-driven spatial modelling approaches and uncertainty management to a study of Rift Valley fever in Africa
    • Clements A.C.A., Pfeiffer D.U., Martin V. Application of knowledge-driven spatial modelling approaches and uncertainty management to a study of Rift Valley fever in Africa. Int. J. Health Geographics 2006, 5:57.
    • (2006) Int. J. Health Geographics , vol.5 , pp. 57
    • Clements, A.C.A.1    Pfeiffer, D.U.2    Martin, V.3
  • 25
    • 84923762812 scopus 로고    scopus 로고
    • A new initiative on precision medicine
    • Collins F.S., Varmus H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372:793-795.
    • (2015) N. Engl. J. Med. , vol.372 , pp. 793-795
    • Collins, F.S.1    Varmus, H.2
  • 26
    • 84952640811 scopus 로고    scopus 로고
    • The data science Venn Diagram. (, last accessed 04.15.).
    • Conway, D., 2010. The data science Venn Diagram. (, last accessed 04.15.). http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram.
    • (2010)
    • Conway, D.1
  • 27
    • 85006445303 scopus 로고    scopus 로고
    • A critical look at prospective surveillance using a scan statistic
    • Correa T.R., Assuncao R.M., Costa M.A. A critical look at prospective surveillance using a scan statistic. Stat. Med. 2014, 34:1081-1093.
    • (2014) Stat. Med. , vol.34 , pp. 1081-1093
    • Correa, T.R.1    Assuncao, R.M.2    Costa, M.A.3
  • 28
    • 84903308318 scopus 로고    scopus 로고
    • Maximum linkage space-time permutation scan statistics for disease outbreak detection
    • Costa M., Kulldorff M. Maximum linkage space-time permutation scan statistics for disease outbreak detection. Int. J. Health Geographics 2014, 13:20. 10.1186/1476-072X-13-20.
    • (2014) Int. J. Health Geographics , vol.13 , pp. 20
    • Costa, M.1    Kulldorff, M.2
  • 30
    • 84892141846 scopus 로고    scopus 로고
    • Spatial multi-criteria decision analysis to predict suitability for African swine fever endemicity in Africa
    • de Glanville W.A., Vial L., Costard S., Wieland B., Pfeiffer D.U. Spatial multi-criteria decision analysis to predict suitability for African swine fever endemicity in Africa. BMC Vet. Res. 2014, 10:9. 10.1186/1746-6148-10-9.
    • (2014) BMC Vet. Res. , vol.10 , pp. 9
    • de Glanville, W.A.1    Vial, L.2    Costard, S.3    Wieland, B.4    Pfeiffer, D.U.5
  • 31
    • 84888424872 scopus 로고    scopus 로고
    • Data science and prediction
    • Dhar V. Data science and prediction. Commun. ACM 2013, 56:64-73.
    • (2013) Commun. ACM , vol.56 , pp. 64-73
    • Dhar, V.1
  • 32
    • 84873267046 scopus 로고    scopus 로고
    • Crowdsourced cartography: mapping experience and knowledge
    • Dodge M., Kitchin R. Crowdsourced cartography: mapping experience and knowledge. Environ. Plann. A 2013, 45:19-36.
    • (2013) Environ. Plann. A , vol.45 , pp. 19-36
    • Dodge, M.1    Kitchin, R.2
  • 34
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models
    • Elith J., Graham C.H. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 2009, 32:66-77.
    • (2009) Ecography , vol.32 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 35
    • 73949141293 scopus 로고    scopus 로고
    • Species distribution models: ecological explanation and prediction across space and time
    • Elith J., Leathwick J.R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40:677-697.
    • (2009) Annu. Rev. Ecol. Evol. Syst. , vol.40 , pp. 677-697
    • Elith, J.1    Leathwick, J.R.2
  • 37
    • 84991818059 scopus 로고    scopus 로고
    • A big data guide to understanding climate change: the case for theory-guided data science
    • Faghmous J.H., Kumar V. A big data guide to understanding climate change: the case for theory-guided data science. Big Data 2014, 2:155-163.
    • (2014) Big Data , vol.2 , pp. 155-163
    • Faghmous, J.H.1    Kumar, V.2
  • 38
  • 39
    • 84891638337 scopus 로고    scopus 로고
    • A GIS-based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis
    • Feizizadeh B., Jankowski P., Blaschke T. A GIS-based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput. Geosci. 2014, 64:81-95.
    • (2014) Comput. Geosci. , vol.64 , pp. 81-95
    • Feizizadeh, B.1    Jankowski, P.2    Blaschke, T.3
  • 41
    • 84865346307 scopus 로고    scopus 로고
    • Adding the spatial dimension to the social network analysis of an epidemic: investigation of the 2007 outbreak of equine influenza in Australia
    • Firestone S.M., Christley R.M., Ward M.P., Dhand N.K. Adding the spatial dimension to the social network analysis of an epidemic: investigation of the 2007 outbreak of equine influenza in Australia. Prev. Vet. Med. 2012, 106:123-135.
    • (2012) Prev. Vet. Med. , vol.106 , pp. 123-135
    • Firestone, S.M.1    Christley, R.M.2    Ward, M.P.3    Dhand, N.K.4
  • 42
    • 82555191037 scopus 로고    scopus 로고
    • The importance of location in contact networks: describing early epidemic spread using spatial social network analysis
    • Firestone S.M., Ward M.P., Christley R.M., Dhand N.K. The importance of location in contact networks: describing early epidemic spread using spatial social network analysis. Prev. Vet. Med. 2011, 102:185-195.
    • (2011) Prev. Vet. Med. , vol.102 , pp. 185-195
    • Firestone, S.M.1    Ward, M.P.2    Christley, R.M.3    Dhand, N.K.4
  • 43
    • 84920283838 scopus 로고    scopus 로고
    • Predicting fish species richness in estuaries: which modelling technique to use
    • França S., Cabral H.N. Predicting fish species richness in estuaries: which modelling technique to use. Environ. Model. Software 2015, 66:17-26.
    • (2015) Environ. Model. Software , vol.66 , pp. 17-26
    • França, S.1    Cabral, H.N.2
  • 44
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports
    • Freifeld C.C., Mandl K.D., Reis B.Y., Brownstein J.S. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J. Am. Med. Inf. Assoc. 2008, 15:150-157.
    • (2008) J. Am. Med. Inf. Assoc. , vol.15 , pp. 150-157
    • Freifeld, C.C.1    Mandl, K.D.2    Reis, B.Y.3    Brownstein, J.S.4
  • 45
    • 84919389514 scopus 로고    scopus 로고
    • Beyond the hype: big data concepts, methods, and analytics
    • Gandomi A., Haider M. Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 2015, 35:137-144.
    • (2015) Int. J. Inf. Manage. , vol.35 , pp. 137-144
    • Gandomi, A.1    Haider, M.2
  • 47
    • 84924068642 scopus 로고    scopus 로고
    • DeepMind algorithm beats people at classic video games
    • Gibney E. DeepMind algorithm beats people at classic video games. Nature 2015, 518:465-466.
    • (2015) Nature , vol.518 , pp. 465-466
    • Gibney, E.1
  • 48
    • 84855579098 scopus 로고    scopus 로고
    • The simultaneous effects of spatial and social networks on cholera transmission
    • Article ID 604372
    • Giebultowicz S., Ali M., Yunus M., Emch M. The simultaneous effects of spatial and social networks on cholera transmission. Interdiscip. Perspect. Infect. Dis. 2011, 2011. Article ID 604372. 10.1155/2011/604372.
    • (2011) Interdiscip. Perspect. Infect. Dis. , vol.2011
    • Giebultowicz, S.1    Ali, M.2    Yunus, M.3    Emch, M.4
  • 51
    • 36749037169 scopus 로고    scopus 로고
    • Citizens as sensors: the world of volunteered geography
    • Goodchild M. Citizens as sensors: the world of volunteered geography. GeoJournal 2007, 69:211-221.
    • (2007) GeoJournal , vol.69 , pp. 211-221
    • Goodchild, M.1
  • 52
    • 84864298673 scopus 로고    scopus 로고
    • Assuring the quality of volunteered geographic information
    • Goodchild M.F., Li L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1:110-120.
    • (2012) Spat. Stat. , vol.1 , pp. 110-120
    • Goodchild, M.F.1    Li, L.2
  • 54
    • 77954897618 scopus 로고    scopus 로고
    • How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets
    • Haklay M. How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environ. Plann. B: Plann. Des. 2010, 37:682-703.
    • (2010) Environ. Plann. B: Plann. Des. , vol.37 , pp. 682-703
    • Haklay, M.1
  • 56
    • 84952639167 scopus 로고    scopus 로고
    • Global mapping of infectious diseases: methods, examples and emerging applications
    • Hay S.I., Graham A., Rogers D.J. Global mapping of infectious diseases: methods, examples and emerging applications. Emerg. Infect. Dis. 2006, 13:674. 10.3201/eid1304.070037.
    • (2006) Emerg. Infect. Dis. , vol.13 , pp. 674
    • Hay, S.I.1    Graham, A.2    Rogers, D.J.3
  • 57
    • 84876918884 scopus 로고    scopus 로고
    • Big data opportunities for global infectious disease surveillance
    • Hay S.I., George D.B., Moyes C.L., Brownstein J.S. Big data opportunities for global infectious disease surveillance. PLoS Med. 2013, 10:e1001413. 10.1371/journal.pmed.1001413.
    • (2013) PLoS Med. , vol.10 , pp. e1001413
    • Hay, S.I.1    George, D.B.2    Moyes, C.L.3    Brownstein, J.S.4
  • 59
    • 0035755250 scopus 로고    scopus 로고
    • Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases
    • Heymann D.L., Rodier G.R. Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases. Lancet Infect. Dis. 2001, 1:345-353.
    • (2001) Lancet Infect. Dis. , vol.1 , pp. 345-353
    • Heymann, D.L.1    Rodier, G.R.2
  • 60
    • 0003337955 scopus 로고    scopus 로고
    • Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data
    • Hirzel A.H., Hausser J., Chessel D., Perrin N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data. Ecology 2002, 83:2027-2036.
    • (2002) Ecology , vol.83 , pp. 2027-2036
    • Hirzel, A.H.1    Hausser, J.2    Chessel, D.3    Perrin, N.4
  • 61
    • 33750006271 scopus 로고    scopus 로고
    • Evaluating the ability of habitat suitability models to predict species presences
    • Hirzel A.H., Le Lay G., Helfer V., Randin C., Guisan A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199:142-152.
    • (2006) Ecol. Model. , vol.199 , pp. 142-152
    • Hirzel, A.H.1    Le Lay, G.2    Helfer, V.3    Randin, C.4    Guisan, A.5
  • 62
    • 84952637758 scopus 로고    scopus 로고
    • Online army helps map Guinea's Ebola outbreak
    • 2964, (; last accessed 04.15).
    • Hodson, H., 2014. Online army helps map Guinea's Ebola outbreak. New Sci. 2964, (; last accessed 04.15). http://www.newscientist.com/article/mg22229644.400-online-army-helps-map-guineas-ebola-outbreak.html#.VToUHfJ0yM8.
    • (2014) New Sci
    • Hodson, H.1
  • 64
    • 10644233142 scopus 로고    scopus 로고
    • Introduction to the special section on m-Health: beyond seamless mobility and global wireless health-care connectivity
    • Istepanian R., Jovanov E., Zhang Y. Introduction to the special section on m-Health: beyond seamless mobility and global wireless health-care connectivity. IEEE Trans. Inf. Technol. Biomed. 2004, 8:405-414.
    • (2004) IEEE Trans. Inf. Technol. Biomed. , vol.8 , pp. 405-414
    • Istepanian, R.1    Jovanov, E.2    Zhang, Y.3
  • 66
    • 84892142922 scopus 로고    scopus 로고
    • Computer science: the learning machines
    • Jones N. Computer science: the learning machines. Nature 2014, 505:146-148.
    • (2014) Nature , vol.505 , pp. 146-148
    • Jones, N.1
  • 68
    • 84901997378 scopus 로고    scopus 로고
    • On the Internet of Things, smart cities and the WHO Healthy Cities
    • Kamel Boulos M., Al-Shorbaji N. On the Internet of Things, smart cities and the WHO Healthy Cities. Int. J. Health Geographics 2014, 13:10.
    • (2014) Int. J. Health Geographics , vol.13 , pp. 10
    • Kamel Boulos, M.1    Al-Shorbaji, N.2
  • 69
    • 83755196692 scopus 로고    scopus 로고
    • Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples
    • Kamel Boulos M., Resch B., Crowley D., Breslin J., Sohn G., Burtner R., Pike W., Jezierski E., Chuang K.-Y. Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: trends, OGC standards and application examples. Int. J. Health Geographics 2011, 10:67. 10.1186/1476-072X-10-67.
    • (2011) Int. J. Health Geographics , vol.10 , pp. 67
    • Kamel Boulos, M.1    Resch, B.2    Crowley, D.3    Breslin, J.4    Sohn, G.5    Burtner, R.6    Pike, W.7    Jezierski, E.8    Chuang, K.-Y.9
  • 71
    • 84904342104 scopus 로고    scopus 로고
    • Who's afraid of the big black box? Statisticians' vital role in big data and predictive modelling
    • Kuhn M., Johnson K. Who's afraid of the big black box? Statisticians' vital role in big data and predictive modelling. Significance 2014, 11:35-37.
    • (2014) Significance , vol.11 , pp. 35-37
    • Kuhn, M.1    Johnson, K.2
  • 72
  • 73
    • 84896056107 scopus 로고    scopus 로고
    • Big data, The parable of Google Flu: traps in big data analysis
    • Lazer D., Kennedy R., King G., Vespignani A., Big data The parable of Google Flu: traps in big data analysis. Science 2014, 343:1203-1205.
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 74
    • 84905408361 scopus 로고    scopus 로고
    • Service innovation and smart analytics for Industry 4. 0 and Big Data environment
    • Lee J., Kao H.-A., Yang S. Service innovation and smart analytics for Industry 4. 0 and Big Data environment. Procedia CIRP 2014, 16:3-8.
    • (2014) Procedia CIRP , vol.16 , pp. 3-8
    • Lee, J.1    Kao, H.-A.2    Yang, S.3
  • 75
    • 84952640812 scopus 로고    scopus 로고
    • Why big data missed the early warning signs of Ebola
    • Leetaru K. Why big data missed the early warning signs of Ebola. Foreign Policy 2014, http://foreignpolicy.com/2014/09/26/why-big-data-missed-the-early-warning-signs-of-ebola/.
    • (2014) Foreign Policy
    • Leetaru, K.1
  • 76
    • 84891409684 scopus 로고    scopus 로고
    • Spatial interpolation methods applied in the environmental sciences: a review
    • Li J., Heap A.D. Spatial interpolation methods applied in the environmental sciences: a review. Environ. Model. Software 2014, 53:173-189.
    • (2014) Environ. Model. Software , vol.53 , pp. 173-189
    • Li, J.1    Heap, A.D.2
  • 77
    • 78149445827 scopus 로고    scopus 로고
    • Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission
    • Liang L., Xu, Chen B., Liu Y., Cao Y., Fang W., Feng L., Goodchild L., Gong M.F., P Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission. PloS ONE 2010, 5:e13575. 10.1371/journal.pone.0013575.
    • (2010) PloS ONE , vol.5 , pp. e13575
    • Liang, L.1    Xu2    Chen, B.3    Liu, Y.4    Cao, Y.5    Fang, W.6    Feng, L.7    Goodchild, L.8    Gong, M.F.P.9
  • 78
    • 84901494416 scopus 로고    scopus 로고
    • Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in multicriteria land suitability evaluation
    • Ligmann-Zielinska A., Jankowski P. Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in multicriteria land suitability evaluation. Environ. Model. Software 2014, 57:235-247.
    • (2014) Environ. Model. Software , vol.57 , pp. 235-247
    • Ligmann-Zielinska, A.1    Jankowski, P.2
  • 79
    • 84952640813 scopus 로고    scopus 로고
    • The fourth bubble in the Data Science Venn Diagram
    • (; last accessed 04.15.).
    • Malak, M., 2014. The fourth bubble in the Data Science Venn Diagram: social sciences (; last accessed 04.15.). http://datascienceassn.org/content/fourth-bubble-data-science-venn-diagram-social-sciences.
    • (2014) social sciences
    • Malak, M.1
  • 80
    • 33749836045 scopus 로고    scopus 로고
    • GIS-based multicriteria decision analysis: a survey of the literature
    • Malczewski J. GIS-based multicriteria decision analysis: a survey of the literature. Int, J, Geog. Inf. Sci. 2006, 20:703-726.
    • (2006) Int, J, Geog. Inf. Sci. , vol.20 , pp. 703-726
    • Malczewski, J.1
  • 81
    • 84975748646 scopus 로고    scopus 로고
    • Multiple criteria decision analysis and geographic information systems
    • Springer, New York, M. Ehrgott, S. Greco, J.R. Figueira (Eds.)
    • Malczewski J. Multiple criteria decision analysis and geographic information systems. Trends in Multiple Criteria Decision Analysis 2010, 369-395. Springer, New York. M. Ehrgott, S. Greco, J.R. Figueira (Eds.).
    • (2010) Trends in Multiple Criteria Decision Analysis , pp. 369-395
    • Malczewski, J.1
  • 82
    • 79953266904 scopus 로고    scopus 로고
    • Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China
    • Martin V., Pfeiffer D.U., Zhou X., Xiao X., Prosser D.J., Guo F., Gilbert M. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China. PLoS Pathog. 2011, 7:e1001308.
    • (2011) PLoS Pathog. , vol.7 , pp. e1001308
    • Martin, V.1    Pfeiffer, D.U.2    Zhou, X.3    Xiao, X.4    Prosser, D.J.5    Guo, F.6    Gilbert, M.7
  • 84
    • 84919493155 scopus 로고    scopus 로고
    • Role of big data in the early detection of Ebola and other emerging infectious diseases
    • Milinovich G.J., Magalhães R.J.S., Hu W. Role of big data in the early detection of Ebola and other emerging infectious diseases. Lancet Global Health 2015, 3:e20-e21.
    • (2015) Lancet Global Health , vol.3 , pp. e20-e21
    • Milinovich, G.J.1    Magalhães, R.J.S.2    Hu, W.3
  • 85
    • 84892509071 scopus 로고    scopus 로고
    • Internet-based surveillance systems for monitoring emerging infectious diseases
    • Milinovich G.J., Williams G.M., Clements A.C.A., Hu W. Internet-based surveillance systems for monitoring emerging infectious diseases. Lancet Infect. Dis. 2014, 14:160-168.
    • (2014) Lancet Infect. Dis. , vol.14 , pp. 160-168
    • Milinovich, G.J.1    Williams, G.M.2    Clements, A.C.A.3    Hu, W.4
  • 86
    • 84899071659 scopus 로고    scopus 로고
    • Recent sensing technologies for pathogen detection in milk: a review
    • Mortari A., Lorenzelli L. Recent sensing technologies for pathogen detection in milk: a review. Biosens. Bioelectron. 2014, 60:8-21.
    • (2014) Biosens. Bioelectron. , vol.60 , pp. 8-21
    • Mortari, A.1    Lorenzelli, L.2
  • 88
    • 84920133396 scopus 로고    scopus 로고
    • Spatially significant cluster detection
    • Murray A.T., Grubesic T.H., Wei R. Spatially significant cluster detection. Spat. Stat. 2014, 10:103-116.
    • (2014) Spat. Stat. , vol.10 , pp. 103-116
    • Murray, A.T.1    Grubesic, T.H.2    Wei, R.3
  • 89
    • 33244486494 scopus 로고    scopus 로고
    • The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health
    • Mykhalovskiy E., Weir L. The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can. J. Public Health 2011, 97:42-44.
    • (2011) Can. J. Public Health , vol.97 , pp. 42-44
    • Mykhalovskiy, E.1    Weir, L.2
  • 91
  • 93
    • 84885464902 scopus 로고    scopus 로고
    • A tutorial guide to geostatistics: computing and modelling variograms and kriging
    • Oliver M.A., Webster R. A tutorial guide to geostatistics: computing and modelling variograms and kriging. CATENA 2014, 113:56-69.
    • (2014) CATENA , vol.113 , pp. 56-69
    • Oliver, M.A.1    Webster, R.2
  • 94
    • 84971325251 scopus 로고    scopus 로고
    • Using secondary data
    • Lippincott Williams & Wilkins, Philadelphia, K.J. Rothman, S. Greenland, T.L. Lash (Eds.)
    • Olsen J. Using secondary data. Modern Epidemiology 2008, 481-491. Lippincott Williams & Wilkins, Philadelphia. K.J. Rothman, S. Greenland, T.L. Lash (Eds.).
    • (2008) Modern Epidemiology , pp. 481-491
    • Olsen, J.1
  • 95
    • 84903450984 scopus 로고    scopus 로고
    • Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology
    • art67
    • Peters D.P.C., Havstad K.M., Cushing J., Tweedie C., Fuentes O., Villanueva-Rosales N. Harnessing the power of big data: infusing the scientific method with machine learning to transform ecology. Ecosphere 2014, 5:art67.
    • (2014) Ecosphere , vol.5
    • Peters, D.P.C.1    Havstad, K.M.2    Cushing, J.3    Tweedie, C.4    Fuentes, O.5    Villanueva-Rosales, N.6
  • 98
    • 66749093486 scopus 로고    scopus 로고
    • The end of theory in science
    • Pigliucci M. The end of theory in science. EMBO Rep. 2009, 10:534. 10.1038/embor.2009.111.
    • (2009) EMBO Rep. , vol.10 , pp. 534
    • Pigliucci, M.1
  • 101
    • 84901827152 scopus 로고    scopus 로고
    • Relative risk estimates from spatial and space-time scan statistics: are they biased
    • Prates M.O., Kulldorff M., Assuncao R.M. Relative risk estimates from spatial and space-time scan statistics: are they biased. Stat. Med. 2014, 33:2634-2644.
    • (2014) Stat. Med. , vol.33 , pp. 2634-2644
    • Prates, M.O.1    Kulldorff, M.2    Assuncao, R.M.3
  • 103
    • 84875537372 scopus 로고    scopus 로고
    • Invited review: sensors to support health management on dairy farms
    • Rutten C.J., Velthuis A.G., Steeneveld W., Hogeveen H. Invited review: sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96:1928-1952.
    • (2013) J. Dairy Sci. , vol.96 , pp. 1928-1952
    • Rutten, C.J.1    Velthuis, A.G.2    Steeneveld, W.3    Hogeveen, H.4
  • 106
    • 84868101099 scopus 로고    scopus 로고
    • The changing privacy landscape in the era of big data
    • Schadt E.E. The changing privacy landscape in the era of big data. Mol. Syst. Biol. 2012, 8:612.
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 612
    • Schadt, E.E.1
  • 107
    • 84924080712 scopus 로고    scopus 로고
    • Artificial intelligence: learning to see and act
    • Scholkopf B. Artificial intelligence: learning to see and act. Nature 2015, 518:486-487.
    • (2015) Nature , vol.518 , pp. 486-487
    • Scholkopf, B.1
  • 108
    • 84905167755 scopus 로고    scopus 로고
    • O'Reilly Media Sebastopol, California, USA, 408pp
    • Schutt R., O'Neil C. Doing Data Science 2013, O'Reilly Media Sebastopol, California, USA, 408pp.
    • (2013) Doing Data Science
    • Schutt, R.1    O'Neil, C.2
  • 110
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the U. S. during the Influenza A H1N1 pandemic
    • Signorini A., Segre A.M., Polgreen P.M. The use of Twitter to track levels of disease activity and public concern in the U. S. during the Influenza A H1N1 pandemic. PLoS ONE 2011, 6:e19467.
    • (2011) PLoS ONE , vol.6 , pp. e19467
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 112
    • 0029919095 scopus 로고    scopus 로고
    • A framework for evaluation of secondary data sources for epidemiological research
    • Sorensen H.T., Sabroe S., Olsen J. A framework for evaluation of secondary data sources for epidemiological research. Int J Epidemiol 1996, 25:435-442.
    • (1996) Int J Epidemiol , vol.25 , pp. 435-442
    • Sorensen, H.T.1    Sabroe, S.2    Olsen, J.3
  • 113
    • 84862497423 scopus 로고    scopus 로고
    • Can Twitter predict disease outbreaks
    • St Louis C., Zorlu G. Can Twitter predict disease outbreaks. Br. Med. J. 2012, 344:e2353. 10.1136/bmj.e2353.
    • (2012) Br. Med. J. , vol.344 , pp. e2353
    • St Louis, C.1    Zorlu, G.2
  • 114
    • 80051787178 scopus 로고    scopus 로고
    • Spatial modelling of disease using data- and knowledge-driven approaches
    • Stevens K.B., Pfeiffer D.U. Spatial modelling of disease using data- and knowledge-driven approaches. Spat. Spatio-Temporal Epidemiol. 2011, 2:125-133.
    • (2011) Spat. Spatio-Temporal Epidemiol. , vol.2 , pp. 125-133
    • Stevens, K.B.1    Pfeiffer, D.U.2
  • 115
    • 84871011260 scopus 로고    scopus 로고
    • Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach
    • Stevens K.B., Gilbert M., Pfeiffer D.U. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach. Spat. Spatio-Temporal Epidemiol. 2013, 4:1-14.
    • (2013) Spat. Spatio-Temporal Epidemiol. , vol.4 , pp. 1-14
    • Stevens, K.B.1    Gilbert, M.2    Pfeiffer, D.U.3
  • 116
    • 84896861219 scopus 로고    scopus 로고
    • Mapping population and pathogen movements
    • Tatem A.J. Mapping population and pathogen movements. Int. Health 2014, 6:5-11.
    • (2014) Int. Health , vol.6 , pp. 5-11
    • Tatem, A.J.1
  • 119
    • 84887434250 scopus 로고    scopus 로고
    • A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy
    • Tran A., Ippoliti C., Balenghien T., Conte A., Gely M., Calistri P., Goffredo M., Baldet T., Chevalier V. A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy. Transbound. Emerg. Dis. 2013, 60(Suppl. 2):14-23.
    • (2013) Transbound. Emerg. Dis. , vol.60 , pp. 14-23
    • Tran, A.1    Ippoliti, C.2    Balenghien, T.3    Conte, A.4    Gely, M.5    Calistri, P.6    Goffredo, M.7    Baldet, T.8    Chevalier, V.9
  • 120
    • 84952640814 scopus 로고    scopus 로고
    • Algorithmic considerations for geospatial and/or temporal big data
    • CRC Press, Boca Raton, Florida, USA, H.A. Karimi (Ed.)
    • van Zyl T. Algorithmic considerations for geospatial and/or temporal big data. Big Data- Techniques and Technologies in Geoinformatics 2014, 117-132. CRC Press, Boca Raton, Florida, USA. H.A. Karimi (Ed.).
    • (2014) Big Data- Techniques and Technologies in Geoinformatics , pp. 117-132
    • van Zyl, T.1
  • 121
    • 84952640815 scopus 로고    scopus 로고
    • Machine learning on geospatial big data
    • CRC Press, Boca Raton, Florida, USA, H.A. Karimi (Ed.)
    • van Zyl T. Machine learning on geospatial big data. Big Data - Techniques and Technologies in Geoinformatics 2014, 133-148. CRC Press, Boca Raton, Florida, USA. H.A. Karimi (Ed.).
    • (2014) Big Data - Techniques and Technologies in Geoinformatics , pp. 133-148
    • van Zyl, T.1
  • 123
    • 84923285575 scopus 로고    scopus 로고
    • Commentary: containing the Ebola outbreak - the potential and challenge of mobile network data
    • Wesolowski A., Buckee C.O., Bengtsson L., Wetter E., Lu X., Tatem A.J. Commentary: containing the Ebola outbreak - the potential and challenge of mobile network data. PLoS Curr. Outbreaks 2014, 6. 10.1371/currents.outbreaks.0177e7fcf52217b8b634376e2f3efc5e.
    • (2014) PLoS Curr. Outbreaks , vol.6
    • Wesolowski, A.1    Buckee, C.O.2    Bengtsson, L.3    Wetter, E.4    Lu, X.5    Tatem, A.J.6
  • 125
    • 65349193872 scopus 로고    scopus 로고
    • Early detection of disease outbreaks using the Internet
    • Wilson K., Brownstein J.S. Early detection of disease outbreaks using the Internet. Can. Med. Assoc. J. 2009, 180:829-831.
    • (2009) Can. Med. Assoc. J. , vol.180 , pp. 829-831
    • Wilson, K.1    Brownstein, J.S.2
  • 126
    • 47049126431 scopus 로고    scopus 로고
    • Protecting global health security through the International Health Regulations: requirements and challenges
    • Wilson K., von Tigerstrom B., McDougall C. Protecting global health security through the International Health Regulations: requirements and challenges. Can. Med. Assoc. J. 2008, 179:44-48.
    • (2008) Can. Med. Assoc. J. , vol.179 , pp. 44-48
    • Wilson, K.1    von Tigerstrom, B.2    McDougall, C.3
  • 127
    • 77449161361 scopus 로고    scopus 로고
    • Interpreting Google Flu Trends data for pandemic H1N1 influenza: the New Zealand experience
    • pii=19386
    • Wilson N., Mason K., Tobias M., Peacey M., Huang Q.S., Baker M. Interpreting Google Flu Trends data for pandemic H1N1 influenza: the New Zealand experience. Eurosurveillance 2009, 14. pii=19386.
    • (2009) Eurosurveillance , pp. 14
    • Wilson, N.1    Mason, K.2    Tobias, M.3    Peacey, M.4    Huang, Q.S.5    Baker, M.6
  • 128
    • 51849116469 scopus 로고    scopus 로고
    • Computational thinking and thinking about computing
    • Wing J.M. Computational thinking and thinking about computing. Philos. Trans. Ser. A. Math. Phys. Eng. Sci. 2008, 366:3717-3725.
    • (2008) Philos. Trans. Ser. A. Math. Phys. Eng. Sci. , vol.366 , pp. 3717-3725
    • Wing, J.M.1
  • 129
    • 84884211038 scopus 로고    scopus 로고
    • A new multicriteria risk mapping approach based on a multiattribute frontier concept
    • Yemshanov D., Koch F.H., Ben-Haim Y., Downing M., Sapio F., Siltanen M. A new multicriteria risk mapping approach based on a multiattribute frontier concept. Risk Anal. 2013, 33:1694-1709.
    • (2013) Risk Anal. , vol.33 , pp. 1694-1709
    • Yemshanov, D.1    Koch, F.H.2    Ben-Haim, Y.3    Downing, M.4    Sapio, F.5    Siltanen, M.6
  • 130
    • 84921911975 scopus 로고    scopus 로고
    • Artifical intelligence: DARPA sets out to automate research
    • You J. Artifical intelligence: DARPA sets out to automate research. Science 2015, 347:465.
    • (2015) Science , vol.347 , pp. 465
    • You, J.1
  • 131
    • 44349120565 scopus 로고    scopus 로고
    • The value of ProMED-mail for the Early Warning Committee in the Netherlands: more specific approach recommended
    • Zeldenrust M., Rahamat-Langendoen J., Postma M., van Vliet J. The value of ProMED-mail for the Early Warning Committee in the Netherlands: more specific approach recommended. Eurosurveillance 2008, 13. 8033.
    • (2008) Eurosurveillance , vol.13 , pp. 8033
    • Zeldenrust, M.1    Rahamat-Langendoen, J.2    Postma, M.3    van Vliet, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.