메뉴 건너뛰기




Volumn 14, Issue 2, 2014, Pages 160-168

Internet-based surveillance systems for monitoring emerging infectious diseases

Author keywords

[No Author keywords available]

Indexed keywords

DENGUE; DISEASE SURVEILLANCE; EPIDEMIOLOGICAL MONITORING; HEALTH BEHAVIOR; HUMAN; INFECTION; INFLUENZA; INTERNET; INTERNET BASED SURVEILLANCE SYSTEM; MEDICAL INFORMATION; PRIORITY JOURNAL; REVIEW; SEARCH ENGINE; SOCIAL MEDIA; WEB BROWSER; COMMUNICABLE DISEASES, EMERGING; DEVELOPED COUNTRY; DEVELOPING COUNTRY; HEALTH; HEALTH SURVEY; INFLUENZA, HUMAN; PROCEDURES; STATISTICAL MODEL;

EID: 84892509071     PISSN: 14733099     EISSN: 14744457     Source Type: Journal    
DOI: 10.1016/S1473-3099(13)70244-5     Document Type: Review
Times cited : (231)

References (87)
  • 1
    • 39749135587 scopus 로고    scopus 로고
    • Global trends in emerging infectious diseases
    • Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature 2008, 451:990-993.
    • (2008) Nature , vol.451 , pp. 990-993
    • Jones, K.E.1    Patel, N.G.2    Levy, M.A.3
  • 2
    • 65349193872 scopus 로고    scopus 로고
    • Early detection of disease outbreaks using the internet
    • Wilson K, Brownstein JS Early detection of disease outbreaks using the internet. Can Med Assoc J 2009, 180:829-831.
    • (2009) Can Med Assoc J , vol.180 , pp. 829-831
    • Wilson, K.1    Brownstein, J.S.2
  • 3
    • 84885736081 scopus 로고    scopus 로고
    • Public health surveillance
    • Springer, US, P.S. Brachman, E. Abrutyn (Eds.)
    • Brachman PS Public health surveillance. Bacterial infections of humans 2009, 51-67. Springer, US. P.S. Brachman, E. Abrutyn (Eds.).
    • (2009) Bacterial infections of humans , pp. 51-67
    • Brachman, P.S.1
  • 4
    • 84920758325 scopus 로고    scopus 로고
    • Public health surveillance for infectious diseases
    • Oxford University Press, L.M. Lee, S.M. Teutsch, S.B. Thacker, M.E. St Louis (Eds.)
    • Van Beneden CA, Lynfield R Public health surveillance for infectious diseases. Principles and practice of public health surveillance 2010, 236-254. Oxford University Press. 3rd edn. L.M. Lee, S.M. Teutsch, S.B. Thacker, M.E. St Louis (Eds.).
    • (2010) Principles and practice of public health surveillance , pp. 236-254
    • Van Beneden, C.A.1    Lynfield, R.2
  • 6
    • 0036570326 scopus 로고    scopus 로고
    • Completeness of notifiable infectious disease reporting in the United States: an analytical literature review
    • Doyle TJ, Glynn MK, Groseclose SL Completeness of notifiable infectious disease reporting in the United States: an analytical literature review. Am J Epidemiol 2002, 155:866-874.
    • (2002) Am J Epidemiol , vol.155 , pp. 866-874
    • Doyle, T.J.1    Glynn, M.K.2    Groseclose, S.L.3
  • 9
    • 0009402582 scopus 로고    scopus 로고
    • International Telecommunications Union, (accessed Julu 19, 2013).
    • World Telecommunication/ICT Indicators Database 2013 (17th edition) International Telecommunications Union, (accessed Julu 19, 2013). http://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx.
    • World Telecommunication/ICT Indicators Database 2013 (17th edition)
  • 10
    • 30444454327 scopus 로고    scopus 로고
    • Influences, usage, and outcomes of internet health information searching: multivariate results from the Pew surveys
    • Rice RE Influences, usage, and outcomes of internet health information searching: multivariate results from the Pew surveys. Int J Med Inform 2006, 75:8-28.
    • (2006) Int J Med Inform , vol.75 , pp. 8-28
    • Rice, R.E.1
  • 11
    • 52749089586 scopus 로고    scopus 로고
    • Internet embeddedness: links with online health information seeking, expectancy value/quality of health information websites, and internet usage patterns
    • Leung L Internet embeddedness: links with online health information seeking, expectancy value/quality of health information websites, and internet usage patterns. Cyberpsychol Behav 2008, 11:565-569.
    • (2008) Cyberpsychol Behav , vol.11 , pp. 565-569
    • Leung, L.1
  • 12
    • 79961205519 scopus 로고    scopus 로고
    • "Google flu trends" and emergency department triage data predicted the 2009 pandemic H1N1 waves in Manitoba
    • Malik MT, Gumel A, Thompson LH, Strome T, Mahmud SM "Google flu trends" and emergency department triage data predicted the 2009 pandemic H1N1 waves in Manitoba. Can J Public Health 2011, 102:294-297.
    • (2011) Can J Public Health , vol.102 , pp. 294-297
    • Malik, M.T.1    Gumel, A.2    Thompson, L.H.3    Strome, T.4    Mahmud, S.M.5
  • 13
    • 84859168174 scopus 로고    scopus 로고
    • Public health surveillance and infectious disease detection
    • Morse SS Public health surveillance and infectious disease detection. Biosecur Bioterror 2012, 10:6-16.
    • (2012) Biosecur Bioterror , vol.10 , pp. 6-16
    • Morse, S.S.1
  • 14
    • 66149137223 scopus 로고    scopus 로고
    • Use of unstructured event-based reports for global infectious disease surveillance
    • Keller M, Blench M, Tolentino H, et al. Use of unstructured event-based reports for global infectious disease surveillance. Emerg Infect Dis 2009, 15:689-695.
    • (2009) Emerg Infect Dis , vol.15 , pp. 689-695
    • Keller, M.1    Blench, M.2    Tolentino, H.3
  • 15
    • 33244486494 scopus 로고    scopus 로고
    • The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health
    • Mykhalovskiy E, Weir L The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can J Public Health 2006, 97:42-44.
    • (2006) Can J Public Health , vol.97 , pp. 42-44
    • Mykhalovskiy, E.1    Weir, L.2
  • 16
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports
    • Freifeld CC, Mandl KD, Ras BY, Bronwnstein JS HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J Am Med Inform Assoc 2008, 15:150-157.
    • (2008) J Am Med Inform Assoc , vol.15 , pp. 150-157
    • Freifeld, C.C.1    Mandl, K.D.2    Ras, B.Y.3    Bronwnstein, J.S.4
  • 17
    • 3242790765 scopus 로고    scopus 로고
    • ProMED-mail: an early warning system for emerging diseases
    • Madoff LC ProMED-mail: an early warning system for emerging diseases. Clin Infect Dis 2004, 39:227-232.
    • (2004) Clin Infect Dis , vol.39 , pp. 227-232
    • Madoff, L.C.1
  • 19
    • 66149157263 scopus 로고    scopus 로고
    • Digital disease detection-harnessing the web for public health surveillance
    • Brownstein JS, Freifeld CC, Madoff LC Digital disease detection-harnessing the web for public health surveillance. N Engl J Med 2009, 360:2153-2155.
    • (2009) N Engl J Med , vol.360 , pp. 2153-2155
    • Brownstein, J.S.1    Freifeld, C.C.2    Madoff, L.C.3
  • 20
    • 84865533273 scopus 로고    scopus 로고
    • The World Bank, (accessed Dec 10, 2012).
    • Internet users (per 100 people) The World Bank, (accessed Dec 10, 2012). http://data.worldbank.org/indicator/IT.NET.USER.P2/countries/1W?display=default.
    • Internet users (per 100 people)
  • 21
    • 34247469704 scopus 로고    scopus 로고
    • Pew Internet and American Life Project
    • Fox S Online health search 2006 2006, Pew Internet and American Life Project.
    • (2006) Online health search 2006
    • Fox, S.1
  • 24
    • 72849140260 scopus 로고    scopus 로고
    • Google trends: a web-based tool for real-time surveillance of disease outbreaks
    • Carneiro HA, Mylonakis E Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis 2009, 49:1557-1564.
    • (2009) Clin Infect Dis , vol.49 , pp. 1557-1564
    • Carneiro, H.A.1    Mylonakis, E.2
  • 25
    • 84866693729 scopus 로고    scopus 로고
    • Norovirus disease surveillance using Google internet query share data
    • Desai R, Hall AJ, Lopman BA, et al. Norovirus disease surveillance using Google internet query share data. Clin Infect Dis 2012, 55:E75-E78.
    • (2012) Clin Infect Dis , vol.55
    • Desai, R.1    Hall, A.J.2    Lopman, B.A.3
  • 27
    • 79957634893 scopus 로고    scopus 로고
    • Internet queries and methicillin-resistant Staphylococcus aureus surveillance
    • Dukic VM, David MZ, Lauderdale DS Internet queries and methicillin-resistant Staphylococcus aureus surveillance. Emerg Infect Dis 2011, 17:1068-1070.
    • (2011) Emerg Infect Dis , vol.17 , pp. 1068-1070
    • Dukic, V.M.1    David, M.Z.2    Lauderdale, D.S.3
  • 29
    • 84857598348 scopus 로고    scopus 로고
    • Syndromic surveillance models using web data: the case of scarlet fever in the UK
    • Samaras L, Garcia-Barriocanal E, Sicilia MA Syndromic surveillance models using web data: the case of scarlet fever in the UK. Inform Health Soc Care 2012, 37:106-124.
    • (2012) Inform Health Soc Care , vol.37 , pp. 106-124
    • Samaras, L.1    Garcia-Barriocanal, E.2    Sicilia, M.A.3
  • 30
    • 77953036712 scopus 로고    scopus 로고
    • The utility of "Google Trends" for epidemiological research: Lyme disease as an example
    • Seifter A, Schwarzwalder A, Geis K, Aucott J The utility of "Google Trends" for epidemiological research: Lyme disease as an example. Geospatial Health 2010, 4:135-137.
    • (2010) Geospatial Health , vol.4 , pp. 135-137
    • Seifter, A.1    Schwarzwalder, A.2    Geis, K.3    Aucott, J.4
  • 31
    • 73949134213 scopus 로고    scopus 로고
    • Diseases tracked by using Google trends, Spain
    • Valdivia A, Monge-Corella S Diseases tracked by using Google trends, Spain. Emerg Infect Dis 2010, 16:168.
    • (2010) Emerg Infect Dis , vol.16 , pp. 168
    • Valdivia, A.1    Monge-Corella, S.2
  • 32
    • 79960729298 scopus 로고    scopus 로고
    • Tuberculosis surveillance by analyzing Google Trends
    • Zhou X, Ye J, Feng Y Tuberculosis surveillance by analyzing Google Trends. IEEE Trans Biomed Eng 2011, 58:2247-2254.
    • (2011) IEEE Trans Biomed Eng , vol.58 , pp. 2247-2254
    • Zhou, X.1    Ye, J.2    Feng, Y.3
  • 33
    • 77951693078 scopus 로고    scopus 로고
    • Notifiable infectious disease surveillance with data collected by search engine
    • Zhou XC, Shen HB Notifiable infectious disease surveillance with data collected by search engine. J Zhejiang Univ-SCI C 2010, 11:241-248.
    • (2010) J Zhejiang Univ-SCI C , vol.11 , pp. 241-248
    • Zhou, X.C.1    Shen, H.B.2
  • 34
    • 80051472497 scopus 로고    scopus 로고
    • Use of Google Insights for search to track seasonal and geographic kidney stone incidence in the United States
    • Breyer BN, Sen S, Aaronson DS, Stoller ML, Erickson BA, Eisenberg ML Use of Google Insights for search to track seasonal and geographic kidney stone incidence in the United States. Urology 2011, 78:267-271.
    • (2011) Urology , vol.78 , pp. 267-271
    • Breyer, B.N.1    Sen, S.2    Aaronson, D.S.3    Stoller, M.L.4    Erickson, B.A.5    Eisenberg, M.L.6
  • 35
    • 84871967854 scopus 로고    scopus 로고
    • Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States
    • Willard SD, Nguyen MM Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States. Urology 2011, 81:37-42.
    • (2011) Urology , vol.81 , pp. 37-42
    • Willard, S.D.1    Nguyen, M.M.2
  • 36
    • 84868667230 scopus 로고    scopus 로고
    • Using Google search data for state politics research: an empirical validity test using roll-off data
    • Reilly S, Richey S, Taylor JB Using Google search data for state politics research: an empirical validity test using roll-off data. State Politics Policy Q 2012, 12:146-159.
    • (2012) State Politics Policy Q , vol.12 , pp. 146-159
    • Reilly, S.1    Richey, S.2    Taylor, J.B.3
  • 37
    • 84865070510 scopus 로고    scopus 로고
    • Managing emerging infectious diseases with information systems: reconceptualizing outbreak management through the lens of loose coupling
    • Chen YD, Brown SA, Hu PJH, King CC, Chen HC Managing emerging infectious diseases with information systems: reconceptualizing outbreak management through the lens of loose coupling. Info Sys Res 2011, 22:447-468.
    • (2011) Info Sys Res , vol.22 , pp. 447-468
    • Chen, Y.D.1    Brown, S.A.2    Hu, P.J.H.3    King, C.C.4    Chen, H.C.5
  • 38
    • 84867726857 scopus 로고    scopus 로고
    • Monitoring a toxicological outbreak using internet search query data
    • Yin S, Ho M Monitoring a toxicological outbreak using internet search query data. Clin Toxicol 2012, 50:818-822.
    • (2012) Clin Toxicol , vol.50 , pp. 818-822
    • Yin, S.1    Ho, M.2
  • 39
    • 77955831988 scopus 로고    scopus 로고
    • Measuring the impact of health policies using internet search patterns: the case of abortion
    • Reis BY, Brownstein JS Measuring the impact of health policies using internet search patterns: the case of abortion. BMC Public Health 2010, 10:514.
    • (2010) BMC Public Health , vol.10 , pp. 514
    • Reis, B.Y.1    Brownstein, J.S.2
  • 40
    • 84892523484 scopus 로고    scopus 로고
    • A spoonful of cinnamon: The "cinnamon challenge" - Google Trends and the National Poison Data System
    • Deutsch CM, Bronstein AC, Spyker DA A spoonful of cinnamon: The "cinnamon challenge" - Google Trends and the National Poison Data System. Clin Toxicol 2012, 50:645.
    • (2012) Clin Toxicol , vol.50 , pp. 645
    • Deutsch, C.M.1    Bronstein, A.C.2    Spyker, D.A.3
  • 42
    • 84862897077 scopus 로고    scopus 로고
    • Web queries as a source for syndromic surveillance
    • Hulth A, Rydevik G, Linde A Web queries as a source for syndromic surveillance. PLoS One 2009, 4:e4378.
    • (2009) PLoS One , vol.4
    • Hulth, A.1    Rydevik, G.2    Linde, A.3
  • 43
    • 79956360352 scopus 로고    scopus 로고
    • Web query-based surveillance in Sweden during the influenza A(H1N1)2009 pandemic, April 2009 to February 2010
    • PII:19856.
    • Hulth A, Rydevik G Web query-based surveillance in Sweden during the influenza A(H1N1)2009 pandemic, April 2009 to February 2010. Euro Surveill 2011, 16. PII:19856.
    • (2011) Euro Surveill , vol.16
    • Hulth, A.1    Rydevik, G.2
  • 45
    • 84862835806 scopus 로고    scopus 로고
    • Predicting the present with Google Trends
    • Choi HY, Varian H Predicting the present with Google Trends. Economic Record 2012, 88:2-9.
    • (2012) Economic Record , vol.88 , pp. 2-9
    • Choi, H.Y.1    Varian, H.2
  • 46
    • 84872867329 scopus 로고    scopus 로고
    • Using Google Trends for influenza surveillance in South China
    • Kang M, Zhong H, He J, Rutherford S, Yang F Using Google Trends for influenza surveillance in South China. PLoS One 2013, 8:e55205.
    • (2013) PLoS One , vol.8
    • Kang, M.1    Zhong, H.2    He, J.3    Rutherford, S.4    Yang, F.5
  • 48
    • 79957985746 scopus 로고    scopus 로고
    • Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance
    • Chan EH, Sahai V, Conrad C, Brownstein JS Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis 2011, 5:e1206.
    • (2011) PLoS Negl Trop Dis , vol.5
    • Chan, E.H.1    Sahai, V.2    Conrad, C.3    Brownstein, J.S.4
  • 49
    • 80052395153 scopus 로고    scopus 로고
    • Prediction of dengue incidence using search query surveillance
    • Althouse BM, Ng YY, Cummings DA Prediction of dengue incidence using search query surveillance. PLoS Negl Trop Dis 2011, 5:e1258.
    • (2011) PLoS Negl Trop Dis , vol.5
    • Althouse, B.M.1    Ng, Y.Y.2    Cummings, D.A.3
  • 51
    • 70349313465 scopus 로고    scopus 로고
    • Interim analysis of pandemic influenza (H1N1) 2009 in Australia: surveillance trends, age of infection and effectiveness of seasonal vaccination
    • PII:19288.
    • Kelly H, Grant K Interim analysis of pandemic influenza (H1N1) 2009 in Australia: surveillance trends, age of infection and effectiveness of seasonal vaccination. Euro Surveill 2009, 14. PII:19288.
    • (2009) Euro Surveill , vol.14
    • Kelly, H.1    Grant, K.2
  • 52
    • 77449161361 scopus 로고    scopus 로고
    • Interpreting Google Flu Trends data for pandemic H1N1 influenza: the New Zealand experience
    • Wilson N, Mason K, Tobias M, Peacey M, Huang QS, Baker M Interpreting Google Flu Trends data for pandemic H1N1 influenza: the New Zealand experience. Euro Surveill 2009, 14.
    • (2009) Euro Surveill , pp. 14
    • Wilson, N.1    Mason, K.2    Tobias, M.3    Peacey, M.4    Huang, Q.S.5    Baker, M.6
  • 54
    • 77955123105 scopus 로고    scopus 로고
    • Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10
    • PII:19261.
    • Valdivia A, Lopez-Alcalde J, Vicente M, Pichiule M, Ruiz M, Ordobas M Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10. Euro Surveill 2010, 15. PII:19261.
    • (2010) Euro Surveill , vol.15
    • Valdivia, A.1    Lopez-Alcalde, J.2    Vicente, M.3    Pichiule, M.4    Ruiz, M.5    Ordobas, M.6
  • 56
    • 84877842601 scopus 로고    scopus 로고
    • Eight years of the great influenza survey to monitor influenza-like illness in Flanders
    • Vandendijck Y, Faes C, Hens N Eight years of the great influenza survey to monitor influenza-like illness in Flanders. PLoS One 2013, 8:e64156.
    • (2013) PLoS One , vol.8
    • Vandendijck, Y.1    Faes, C.2    Hens, N.3
  • 57
    • 79955690250 scopus 로고    scopus 로고
    • Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends
    • Ortiz JR, Zhou H, Shay DK, Neuzil KM, Fowlkes AL, Goss CH Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends. PLoS One 2011, 6:e18687.
    • (2011) PLoS One , vol.6
    • Ortiz, J.R.1    Zhou, H.2    Shay, D.K.3    Neuzil, K.M.4    Fowlkes, A.L.5    Goss, C.H.6
  • 58
    • 84856717649 scopus 로고    scopus 로고
    • Google Flu Trends: correlation with emergency department influenza rates and crowding metrics
    • Dugas AF, Hsieh YH, Levin SR, et al. Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis 2012, 54:463-469.
    • (2012) Clin Infect Dis , vol.54 , pp. 463-469
    • Dugas, A.F.1    Hsieh, Y.H.2    Levin, S.R.3
  • 59
    • 84865598975 scopus 로고    scopus 로고
    • Comparison: flu prescription sales data from a retail pharmacy in the US with Google Flu Trends and US ILINet (CDC) data as flu activity indicator
    • Patwardhan A, Bilkovski R Comparison: flu prescription sales data from a retail pharmacy in the US with Google Flu Trends and US ILINet (CDC) data as flu activity indicator. PLoS One 2012, 7:e43611.
    • (2012) PLoS One , vol.7
    • Patwardhan, A.1    Bilkovski, R.2
  • 60
    • 58849107233 scopus 로고    scopus 로고
    • Google watches over flu
    • Watts G Google watches over flu. BMJ 2008, 337:a3076.
    • (2008) BMJ , vol.337
    • Watts, G.1
  • 61
    • 84856525810 scopus 로고    scopus 로고
    • Should we fear "flu fear" itself? Effects of H1N1 influenza fear on ED use
    • McDonnell WM, Nelson DS, Schunk JE Should we fear "flu fear" itself? Effects of H1N1 influenza fear on ED use. Am J Emerg Med 2012, 30:275-282.
    • (2012) Am J Emerg Med , vol.30 , pp. 275-282
    • McDonnell, W.M.1    Nelson, D.S.2    Schunk, J.E.3
  • 62
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook S, Conrad C, Fowlkes AL, Mohebbi MH Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS One 2011, 6:e23610.
    • (2011) PLoS One , vol.6
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 63
    • 84871963228 scopus 로고    scopus 로고
    • Tracking epidemics with Google Flu Trends data and a state-space SEIR model
    • Dukic V, Lopes HF, Polson NG Tracking epidemics with Google Flu Trends data and a state-space SEIR model. J Am Stat Assoc 2012, 107:1410-1426.
    • (2012) J Am Stat Assoc , vol.107 , pp. 1410-1426
    • Dukic, V.1    Lopes, H.F.2    Polson, N.G.3
  • 66
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Shaman J, Karspeck A Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci USA 2012, 109:20425-20430.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 67
    • 84874002846 scopus 로고    scopus 로고
    • Influenza forecasting with Google Flu Trends
    • Dugas AF, Jalalpour M, Gel Y, et al. Influenza forecasting with Google Flu Trends. PLoS One 2013, 8:e56176.
    • (2013) PLoS One , vol.8
    • Dugas, A.F.1    Jalalpour, M.2    Gel, Y.3
  • 68
    • 84861156434 scopus 로고    scopus 로고
    • Optimizing provider recruitment for influenza surveillance networks
    • Scarpino SV, Dimitrov NB, Meyers LA Optimizing provider recruitment for influenza surveillance networks. PLoS Comp Biol 2012, 8:e1002472.
    • (2012) PLoS Comp Biol , vol.8
    • Scarpino, S.V.1    Dimitrov, N.B.2    Meyers, L.A.3
  • 69
    • 84862497423 scopus 로고    scopus 로고
    • Can Twitter predict disease outbreaks?
    • St Louis C, Zorlu G Can Twitter predict disease outbreaks?. BMJ 2012, 344:e2353.
    • (2012) BMJ , vol.344
    • St Louis, C.1    Zorlu, G.2
  • 70
    • 84872525494 scopus 로고    scopus 로고
    • A real-time disease surveillance architecture using social networks
    • Sofean M, Smith M A real-time disease surveillance architecture using social networks. Stud Health Technol Inform 2012, 180:823-827.
    • (2012) Stud Health Technol Inform , vol.180 , pp. 823-827
    • Sofean, M.1    Smith, M.2
  • 73
    • 84883111635 scopus 로고    scopus 로고
    • OMG U got flu? Analysis of shared health messages for bio-surveillance
    • Collier N, Son NT, Nguyen NM OMG U got flu? Analysis of shared health messages for bio-surveillance. J Biomed Semantics 2011, 2(suppl 5):S9.
    • (2011) J Biomed Semantics , vol.2 , Issue.SUPPL. 5
    • Collier, N.1    Son, N.T.2    Nguyen, N.M.3
  • 74
    • 78649725192 scopus 로고    scopus 로고
    • Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak
    • Chew C, Eysenbach G Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak. PLoS One 2010, 5:e14118.
    • (2010) PLoS One , vol.5
    • Chew, C.1    Eysenbach, G.2
  • 75
    • 84867410703 scopus 로고    scopus 로고
    • Nowcasting events from the social web with statistical learning
    • Lampos V, Cristianini N Nowcasting events from the social web with statistical learning. ACM Trans Intell Syst Technol 2012, 3:72.
    • (2012) ACM Trans Intell Syst Technol , vol.3 , pp. 72
    • Lampos, V.1    Cristianini, N.2
  • 76
    • 84874751668 scopus 로고    scopus 로고
    • Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages
    • Culotta A Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages. Lang Resources Eval 2013, 47:217-238.
    • (2013) Lang Resources Eval , vol.47 , pp. 217-238
    • Culotta, A.1
  • 77
    • 18244380889 scopus 로고    scopus 로고
    • Modeling the effects of epidemics on routinely collected data
    • Zeng X, Wagner M Modeling the effects of epidemics on routinely collected data. J Am Med Inform Assoc 2002, 9:S17-S22.
    • (2002) J Am Med Inform Assoc , vol.9
    • Zeng, X.1    Wagner, M.2
  • 78
    • 21644464188 scopus 로고    scopus 로고
    • Community-based surveillance: a pilot study from rural Cambodia
    • Oum S, Chandramohan D, Cairncross S Community-based surveillance: a pilot study from rural Cambodia. Trop Med Int Health 2005, 10:689-697.
    • (2005) Trop Med Int Health , vol.10 , pp. 689-697
    • Oum, S.1    Chandramohan, D.2    Cairncross, S.3
  • 79
    • 84892516834 scopus 로고    scopus 로고
    • Influenza surveillance and pandemic requirements
    • CABI, J. Van-Tam, C. Sellwood (Eds.)
    • Watson JM, Pebody RG Influenza surveillance and pandemic requirements. Pandemic influenza 2013, 9-18. CABI. 2nd edn. J. Van-Tam, C. Sellwood (Eds.).
    • (2013) Pandemic influenza , pp. 9-18
    • Watson, J.M.1    Pebody, R.G.2
  • 80
    • 77950993217 scopus 로고    scopus 로고
    • Rural-urban differences in general and health-related internet use
    • Hale TM, Cotten SR, Drentea P, Goldner M Rural-urban differences in general and health-related internet use. Am Behav Sci 2010, 53:1304-1325.
    • (2010) Am Behav Sci , vol.53 , pp. 1304-1325
    • Hale, T.M.1    Cotten, S.R.2    Drentea, P.3    Goldner, M.4
  • 81
    • 84890625827 scopus 로고    scopus 로고
    • OMG, I have to tweet that! a study of factors that influence tweet rates. Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media; Trinity College, Dublin, Ireland
    • Kiciman E. OMG, I have to tweet that! a study of factors that influence tweet rates. Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media; Trinity College, Dublin, Ireland; 2012.
    • (2012)
    • Kiciman, E.1
  • 83
    • 79955398902 scopus 로고    scopus 로고
    • Infodemiology and infoveillance tracking online health information and cyberbehavior for public health
    • Eysenbach G Infodemiology and infoveillance tracking online health information and cyberbehavior for public health. Am J Prev Med 2011, 40:S154-S158.
    • (2011) Am J Prev Med , vol.40
    • Eysenbach, G.1
  • 84
    • 84870540472 scopus 로고    scopus 로고
    • New technologies for reporting real-time emergent infections
    • Chunara R, Freifeld CC, Brownstein JS New technologies for reporting real-time emergent infections. Parasitology 2012, 139:1843-1851.
    • (2012) Parasitology , vol.139 , pp. 1843-1851
    • Chunara, R.1    Freifeld, C.C.2    Brownstein, J.S.3
  • 85
    • 79954596987 scopus 로고    scopus 로고
    • GET WELL: an automated surveillance system for gaining new epidemiological knowledge
    • Hulth A, Rydevik G GET WELL: an automated surveillance system for gaining new epidemiological knowledge. BMC Public Health 2011, 11:252.
    • (2011) BMC Public Health , vol.11 , pp. 252
    • Hulth, A.1    Rydevik, G.2
  • 86
    • 77953601869 scopus 로고    scopus 로고
    • The next public health revolution: public health information fusion and social networks
    • Khan AS, Fleischauer A, Casani J, Groseclose SL The next public health revolution: public health information fusion and social networks. Am J Public Health 2010, 100:1237-1242.
    • (2010) Am J Public Health , vol.100 , pp. 1237-1242
    • Khan, A.S.1    Fleischauer, A.2    Casani, J.3    Groseclose, S.L.4
  • 87
    • 53049093177 scopus 로고    scopus 로고
    • Predicting the next pandemic
    • Barclay E Predicting the next pandemic. Lancet 2008, 372:1025-1026.
    • (2008) Lancet , vol.372 , pp. 1025-1026
    • Barclay, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.