-
1
-
-
39749135587
-
Global trends in emerging infectious diseases
-
Jones KE, Patel NG, Levy MA, et al. Global trends in emerging infectious diseases. Nature 2008, 451:990-993.
-
(2008)
Nature
, vol.451
, pp. 990-993
-
-
Jones, K.E.1
Patel, N.G.2
Levy, M.A.3
-
2
-
-
65349193872
-
Early detection of disease outbreaks using the internet
-
Wilson K, Brownstein JS Early detection of disease outbreaks using the internet. Can Med Assoc J 2009, 180:829-831.
-
(2009)
Can Med Assoc J
, vol.180
, pp. 829-831
-
-
Wilson, K.1
Brownstein, J.S.2
-
3
-
-
84885736081
-
Public health surveillance
-
Springer, US, P.S. Brachman, E. Abrutyn (Eds.)
-
Brachman PS Public health surveillance. Bacterial infections of humans 2009, 51-67. Springer, US. P.S. Brachman, E. Abrutyn (Eds.).
-
(2009)
Bacterial infections of humans
, pp. 51-67
-
-
Brachman, P.S.1
-
4
-
-
84920758325
-
Public health surveillance for infectious diseases
-
Oxford University Press, L.M. Lee, S.M. Teutsch, S.B. Thacker, M.E. St Louis (Eds.)
-
Van Beneden CA, Lynfield R Public health surveillance for infectious diseases. Principles and practice of public health surveillance 2010, 236-254. Oxford University Press. 3rd edn. L.M. Lee, S.M. Teutsch, S.B. Thacker, M.E. St Louis (Eds.).
-
(2010)
Principles and practice of public health surveillance
, pp. 236-254
-
-
Van Beneden, C.A.1
Lynfield, R.2
-
5
-
-
77950660254
-
Innovative uses for syndromic surveillance
-
O'Connell EK, Zhang GY, Leguen F, Llau A, Rico E Innovative uses for syndromic surveillance. Emerg Infect Dis 2010, 16:669-671.
-
(2010)
Emerg Infect Dis
, vol.16
, pp. 669-671
-
-
O'Connell, E.K.1
Zhang, G.Y.2
Leguen, F.3
Llau, A.4
Rico, E.5
-
6
-
-
0036570326
-
Completeness of notifiable infectious disease reporting in the United States: an analytical literature review
-
Doyle TJ, Glynn MK, Groseclose SL Completeness of notifiable infectious disease reporting in the United States: an analytical literature review. Am J Epidemiol 2002, 155:866-874.
-
(2002)
Am J Epidemiol
, vol.155
, pp. 866-874
-
-
Doyle, T.J.1
Glynn, M.K.2
Groseclose, S.L.3
-
8
-
-
70350765150
-
A profile of the online dissemination of national influenza surveillance data
-
Cheng CK, Lau EH, Ip DK, Yeung AS, Ho LM, Cowling BJ A profile of the online dissemination of national influenza surveillance data. BMC Public Health 2009, 9:339.
-
(2009)
BMC Public Health
, vol.9
, pp. 339
-
-
Cheng, C.K.1
Lau, E.H.2
Ip, D.K.3
Yeung, A.S.4
Ho, L.M.5
Cowling, B.J.6
-
9
-
-
0009402582
-
-
International Telecommunications Union, (accessed Julu 19, 2013).
-
World Telecommunication/ICT Indicators Database 2013 (17th edition) International Telecommunications Union, (accessed Julu 19, 2013). http://www.itu.int/en/ITU-D/Statistics/Pages/publications/wtid.aspx.
-
World Telecommunication/ICT Indicators Database 2013 (17th edition)
-
-
-
10
-
-
30444454327
-
Influences, usage, and outcomes of internet health information searching: multivariate results from the Pew surveys
-
Rice RE Influences, usage, and outcomes of internet health information searching: multivariate results from the Pew surveys. Int J Med Inform 2006, 75:8-28.
-
(2006)
Int J Med Inform
, vol.75
, pp. 8-28
-
-
Rice, R.E.1
-
11
-
-
52749089586
-
Internet embeddedness: links with online health information seeking, expectancy value/quality of health information websites, and internet usage patterns
-
Leung L Internet embeddedness: links with online health information seeking, expectancy value/quality of health information websites, and internet usage patterns. Cyberpsychol Behav 2008, 11:565-569.
-
(2008)
Cyberpsychol Behav
, vol.11
, pp. 565-569
-
-
Leung, L.1
-
12
-
-
79961205519
-
"Google flu trends" and emergency department triage data predicted the 2009 pandemic H1N1 waves in Manitoba
-
Malik MT, Gumel A, Thompson LH, Strome T, Mahmud SM "Google flu trends" and emergency department triage data predicted the 2009 pandemic H1N1 waves in Manitoba. Can J Public Health 2011, 102:294-297.
-
(2011)
Can J Public Health
, vol.102
, pp. 294-297
-
-
Malik, M.T.1
Gumel, A.2
Thompson, L.H.3
Strome, T.4
Mahmud, S.M.5
-
13
-
-
84859168174
-
Public health surveillance and infectious disease detection
-
Morse SS Public health surveillance and infectious disease detection. Biosecur Bioterror 2012, 10:6-16.
-
(2012)
Biosecur Bioterror
, vol.10
, pp. 6-16
-
-
Morse, S.S.1
-
14
-
-
66149137223
-
Use of unstructured event-based reports for global infectious disease surveillance
-
Keller M, Blench M, Tolentino H, et al. Use of unstructured event-based reports for global infectious disease surveillance. Emerg Infect Dis 2009, 15:689-695.
-
(2009)
Emerg Infect Dis
, vol.15
, pp. 689-695
-
-
Keller, M.1
Blench, M.2
Tolentino, H.3
-
15
-
-
33244486494
-
The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health
-
Mykhalovskiy E, Weir L The Global Public Health Intelligence Network and early warning outbreak detection: a Canadian contribution to global public health. Can J Public Health 2006, 97:42-44.
-
(2006)
Can J Public Health
, vol.97
, pp. 42-44
-
-
Mykhalovskiy, E.1
Weir, L.2
-
16
-
-
39649091877
-
HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports
-
Freifeld CC, Mandl KD, Ras BY, Bronwnstein JS HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J Am Med Inform Assoc 2008, 15:150-157.
-
(2008)
J Am Med Inform Assoc
, vol.15
, pp. 150-157
-
-
Freifeld, C.C.1
Mandl, K.D.2
Ras, B.Y.3
Bronwnstein, J.S.4
-
17
-
-
3242790765
-
ProMED-mail: an early warning system for emerging diseases
-
Madoff LC ProMED-mail: an early warning system for emerging diseases. Clin Infect Dis 2004, 39:227-232.
-
(2004)
Clin Infect Dis
, vol.39
, pp. 227-232
-
-
Madoff, L.C.1
-
19
-
-
66149157263
-
Digital disease detection-harnessing the web for public health surveillance
-
Brownstein JS, Freifeld CC, Madoff LC Digital disease detection-harnessing the web for public health surveillance. N Engl J Med 2009, 360:2153-2155.
-
(2009)
N Engl J Med
, vol.360
, pp. 2153-2155
-
-
Brownstein, J.S.1
Freifeld, C.C.2
Madoff, L.C.3
-
20
-
-
84865533273
-
-
The World Bank, (accessed Dec 10, 2012).
-
Internet users (per 100 people) The World Bank, (accessed Dec 10, 2012). http://data.worldbank.org/indicator/IT.NET.USER.P2/countries/1W?display=default.
-
Internet users (per 100 people)
-
-
-
21
-
-
34247469704
-
-
Pew Internet and American Life Project
-
Fox S Online health search 2006 2006, Pew Internet and American Life Project.
-
(2006)
Online health search 2006
-
-
Fox, S.1
-
22
-
-
84874306333
-
Internet health information seeking is a team sport: analysis of the Pew Internet Survey
-
Sadasivam RS, Kinney RL, Lemon SC, Shimada SL, Allison JJ, Houston TK Internet health information seeking is a team sport: analysis of the Pew Internet Survey. Int J Med Inform 2013, 82:193-200.
-
(2013)
Int J Med Inform
, vol.82
, pp. 193-200
-
-
Sadasivam, R.S.1
Kinney, R.L.2
Lemon, S.C.3
Shimada, S.L.4
Allison, J.J.5
Houston, T.K.6
-
24
-
-
72849140260
-
Google trends: a web-based tool for real-time surveillance of disease outbreaks
-
Carneiro HA, Mylonakis E Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect Dis 2009, 49:1557-1564.
-
(2009)
Clin Infect Dis
, vol.49
, pp. 1557-1564
-
-
Carneiro, H.A.1
Mylonakis, E.2
-
25
-
-
84866693729
-
Norovirus disease surveillance using Google internet query share data
-
Desai R, Hall AJ, Lopman BA, et al. Norovirus disease surveillance using Google internet query share data. Clin Infect Dis 2012, 55:E75-E78.
-
(2012)
Clin Infect Dis
, vol.55
-
-
Desai, R.1
Hall, A.J.2
Lopman, B.A.3
-
26
-
-
84859777121
-
Use of internet search data to monitor impact of rotavirus vaccination in the United States
-
Desai R, Lopman BA, Shimshoni Y, Harris JP, Patel MM, Parashar UD Use of internet search data to monitor impact of rotavirus vaccination in the United States. Clin Infect Dis 2012, 54:CP8-C11.
-
(2012)
Clin Infect Dis
, vol.54
-
-
Desai, R.1
Lopman, B.A.2
Shimshoni, Y.3
Harris, J.P.4
Patel, M.M.5
Parashar, U.D.6
-
27
-
-
79957634893
-
Internet queries and methicillin-resistant Staphylococcus aureus surveillance
-
Dukic VM, David MZ, Lauderdale DS Internet queries and methicillin-resistant Staphylococcus aureus surveillance. Emerg Infect Dis 2011, 17:1068-1070.
-
(2011)
Emerg Infect Dis
, vol.17
, pp. 1068-1070
-
-
Dukic, V.M.1
David, M.Z.2
Lauderdale, D.S.3
-
28
-
-
68049106300
-
More diseases tracked by using Google Trends
-
Pelat C, Turbelin C, Bar-Hen A, Flahault A, Valleron A More diseases tracked by using Google Trends. Emerg Infect Dis 2009, 15:1327-1328.
-
(2009)
Emerg Infect Dis
, vol.15
, pp. 1327-1328
-
-
Pelat, C.1
Turbelin, C.2
Bar-Hen, A.3
Flahault, A.4
Valleron, A.5
-
29
-
-
84857598348
-
Syndromic surveillance models using web data: the case of scarlet fever in the UK
-
Samaras L, Garcia-Barriocanal E, Sicilia MA Syndromic surveillance models using web data: the case of scarlet fever in the UK. Inform Health Soc Care 2012, 37:106-124.
-
(2012)
Inform Health Soc Care
, vol.37
, pp. 106-124
-
-
Samaras, L.1
Garcia-Barriocanal, E.2
Sicilia, M.A.3
-
30
-
-
77953036712
-
The utility of "Google Trends" for epidemiological research: Lyme disease as an example
-
Seifter A, Schwarzwalder A, Geis K, Aucott J The utility of "Google Trends" for epidemiological research: Lyme disease as an example. Geospatial Health 2010, 4:135-137.
-
(2010)
Geospatial Health
, vol.4
, pp. 135-137
-
-
Seifter, A.1
Schwarzwalder, A.2
Geis, K.3
Aucott, J.4
-
31
-
-
73949134213
-
Diseases tracked by using Google trends, Spain
-
Valdivia A, Monge-Corella S Diseases tracked by using Google trends, Spain. Emerg Infect Dis 2010, 16:168.
-
(2010)
Emerg Infect Dis
, vol.16
, pp. 168
-
-
Valdivia, A.1
Monge-Corella, S.2
-
32
-
-
79960729298
-
Tuberculosis surveillance by analyzing Google Trends
-
Zhou X, Ye J, Feng Y Tuberculosis surveillance by analyzing Google Trends. IEEE Trans Biomed Eng 2011, 58:2247-2254.
-
(2011)
IEEE Trans Biomed Eng
, vol.58
, pp. 2247-2254
-
-
Zhou, X.1
Ye, J.2
Feng, Y.3
-
33
-
-
77951693078
-
Notifiable infectious disease surveillance with data collected by search engine
-
Zhou XC, Shen HB Notifiable infectious disease surveillance with data collected by search engine. J Zhejiang Univ-SCI C 2010, 11:241-248.
-
(2010)
J Zhejiang Univ-SCI C
, vol.11
, pp. 241-248
-
-
Zhou, X.C.1
Shen, H.B.2
-
34
-
-
80051472497
-
Use of Google Insights for search to track seasonal and geographic kidney stone incidence in the United States
-
Breyer BN, Sen S, Aaronson DS, Stoller ML, Erickson BA, Eisenberg ML Use of Google Insights for search to track seasonal and geographic kidney stone incidence in the United States. Urology 2011, 78:267-271.
-
(2011)
Urology
, vol.78
, pp. 267-271
-
-
Breyer, B.N.1
Sen, S.2
Aaronson, D.S.3
Stoller, M.L.4
Erickson, B.A.5
Eisenberg, M.L.6
-
35
-
-
84871967854
-
Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States
-
Willard SD, Nguyen MM Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States. Urology 2011, 81:37-42.
-
(2011)
Urology
, vol.81
, pp. 37-42
-
-
Willard, S.D.1
Nguyen, M.M.2
-
36
-
-
84868667230
-
Using Google search data for state politics research: an empirical validity test using roll-off data
-
Reilly S, Richey S, Taylor JB Using Google search data for state politics research: an empirical validity test using roll-off data. State Politics Policy Q 2012, 12:146-159.
-
(2012)
State Politics Policy Q
, vol.12
, pp. 146-159
-
-
Reilly, S.1
Richey, S.2
Taylor, J.B.3
-
37
-
-
84865070510
-
Managing emerging infectious diseases with information systems: reconceptualizing outbreak management through the lens of loose coupling
-
Chen YD, Brown SA, Hu PJH, King CC, Chen HC Managing emerging infectious diseases with information systems: reconceptualizing outbreak management through the lens of loose coupling. Info Sys Res 2011, 22:447-468.
-
(2011)
Info Sys Res
, vol.22
, pp. 447-468
-
-
Chen, Y.D.1
Brown, S.A.2
Hu, P.J.H.3
King, C.C.4
Chen, H.C.5
-
38
-
-
84867726857
-
Monitoring a toxicological outbreak using internet search query data
-
Yin S, Ho M Monitoring a toxicological outbreak using internet search query data. Clin Toxicol 2012, 50:818-822.
-
(2012)
Clin Toxicol
, vol.50
, pp. 818-822
-
-
Yin, S.1
Ho, M.2
-
39
-
-
77955831988
-
Measuring the impact of health policies using internet search patterns: the case of abortion
-
Reis BY, Brownstein JS Measuring the impact of health policies using internet search patterns: the case of abortion. BMC Public Health 2010, 10:514.
-
(2010)
BMC Public Health
, vol.10
, pp. 514
-
-
Reis, B.Y.1
Brownstein, J.S.2
-
40
-
-
84892523484
-
A spoonful of cinnamon: The "cinnamon challenge" - Google Trends and the National Poison Data System
-
Deutsch CM, Bronstein AC, Spyker DA A spoonful of cinnamon: The "cinnamon challenge" - Google Trends and the National Poison Data System. Clin Toxicol 2012, 50:645.
-
(2012)
Clin Toxicol
, vol.50
, pp. 645
-
-
Deutsch, C.M.1
Bronstein, A.C.2
Spyker, D.A.3
-
41
-
-
55849100040
-
Using internet searches for influenza surveillance
-
Polgreen PM, Chen Y, Pennock DM, Nelson FD Using internet searches for influenza surveillance. Clin Infect Dis 2008, 47:1443-1448.
-
(2008)
Clin Infect Dis
, vol.47
, pp. 1443-1448
-
-
Polgreen, P.M.1
Chen, Y.2
Pennock, D.M.3
Nelson, F.D.4
-
42
-
-
84862897077
-
Web queries as a source for syndromic surveillance
-
Hulth A, Rydevik G, Linde A Web queries as a source for syndromic surveillance. PLoS One 2009, 4:e4378.
-
(2009)
PLoS One
, vol.4
-
-
Hulth, A.1
Rydevik, G.2
Linde, A.3
-
43
-
-
79956360352
-
Web query-based surveillance in Sweden during the influenza A(H1N1)2009 pandemic, April 2009 to February 2010
-
PII:19856.
-
Hulth A, Rydevik G Web query-based surveillance in Sweden during the influenza A(H1N1)2009 pandemic, April 2009 to February 2010. Euro Surveill 2011, 16. PII:19856.
-
(2011)
Euro Surveill
, vol.16
-
-
Hulth, A.1
Rydevik, G.2
-
44
-
-
84878474470
-
Monitoring influenza epidemics in China with search query from Baidu
-
Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS Monitoring influenza epidemics in China with search query from Baidu. PLoS One 2013, 8:e64323.
-
(2013)
PLoS One
, vol.8
-
-
Yuan, Q.1
Nsoesie, E.O.2
Lv, B.3
Peng, G.4
Chunara, R.5
Brownstein, J.S.6
-
45
-
-
84862835806
-
Predicting the present with Google Trends
-
Choi HY, Varian H Predicting the present with Google Trends. Economic Record 2012, 88:2-9.
-
(2012)
Economic Record
, vol.88
, pp. 2-9
-
-
Choi, H.Y.1
Varian, H.2
-
46
-
-
84872867329
-
Using Google Trends for influenza surveillance in South China
-
Kang M, Zhong H, He J, Rutherford S, Yang F Using Google Trends for influenza surveillance in South China. PLoS One 2013, 8:e55205.
-
(2013)
PLoS One
, vol.8
-
-
Kang, M.1
Zhong, H.2
He, J.3
Rutherford, S.4
Yang, F.5
-
47
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L Detecting influenza epidemics using search engine query data. Nature 2009, 457:1012-1014.
-
(2009)
Nature
, vol.457
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
48
-
-
79957985746
-
Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance
-
Chan EH, Sahai V, Conrad C, Brownstein JS Using web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis 2011, 5:e1206.
-
(2011)
PLoS Negl Trop Dis
, vol.5
-
-
Chan, E.H.1
Sahai, V.2
Conrad, C.3
Brownstein, J.S.4
-
50
-
-
0003684449
-
-
Springer, New York
-
Hastie T, Tibshirani R, Friedman J The elements of statistical learning: data mining, inference, and prediction 2009, Springer, New York. 2nd edn.
-
(2009)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
51
-
-
70349313465
-
Interim analysis of pandemic influenza (H1N1) 2009 in Australia: surveillance trends, age of infection and effectiveness of seasonal vaccination
-
PII:19288.
-
Kelly H, Grant K Interim analysis of pandemic influenza (H1N1) 2009 in Australia: surveillance trends, age of infection and effectiveness of seasonal vaccination. Euro Surveill 2009, 14. PII:19288.
-
(2009)
Euro Surveill
, vol.14
-
-
Kelly, H.1
Grant, K.2
-
52
-
-
77449161361
-
Interpreting Google Flu Trends data for pandemic H1N1 influenza: the New Zealand experience
-
Wilson N, Mason K, Tobias M, Peacey M, Huang QS, Baker M Interpreting Google Flu Trends data for pandemic H1N1 influenza: the New Zealand experience. Euro Surveill 2009, 14.
-
(2009)
Euro Surveill
, pp. 14
-
-
Wilson, N.1
Mason, K.2
Tobias, M.3
Peacey, M.4
Huang, Q.S.5
Baker, M.6
-
53
-
-
79952474392
-
Prediction and surveillance of influenza epidemics
-
Boyle JR, Sparks RS, Keijzers GB, Crilly JL, Lind JF, Ryan LM Prediction and surveillance of influenza epidemics. Med J Aust 2011, 194:S28-S33.
-
(2011)
Med J Aust
, vol.194
-
-
Boyle, J.R.1
Sparks, R.S.2
Keijzers, G.B.3
Crilly, J.L.4
Lind, J.F.5
Ryan, L.M.6
-
54
-
-
77955123105
-
Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10
-
PII:19261.
-
Valdivia A, Lopez-Alcalde J, Vicente M, Pichiule M, Ruiz M, Ordobas M Monitoring influenza activity in Europe with Google Flu Trends: comparison with the findings of sentinel physician networks - results for 2009-10. Euro Surveill 2010, 15. PII:19261.
-
(2010)
Euro Surveill
, vol.15
-
-
Valdivia, A.1
Lopez-Alcalde, J.2
Vicente, M.3
Pichiule, M.4
Ruiz, M.5
Ordobas, M.6
-
55
-
-
77949462651
-
A public health role for internet search engine query data?
-
Pattie DC, Cox KL, Burkom HS, Lombardo JS, Gaydos JC A public health role for internet search engine query data?. Mil Med 2009, 174:11-12.
-
(2009)
Mil Med
, vol.174
, pp. 11-12
-
-
Pattie, D.C.1
Cox, K.L.2
Burkom, H.S.3
Lombardo, J.S.4
Gaydos, J.C.5
-
56
-
-
84877842601
-
Eight years of the great influenza survey to monitor influenza-like illness in Flanders
-
Vandendijck Y, Faes C, Hens N Eight years of the great influenza survey to monitor influenza-like illness in Flanders. PLoS One 2013, 8:e64156.
-
(2013)
PLoS One
, vol.8
-
-
Vandendijck, Y.1
Faes, C.2
Hens, N.3
-
57
-
-
79955690250
-
Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends
-
Ortiz JR, Zhou H, Shay DK, Neuzil KM, Fowlkes AL, Goss CH Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends. PLoS One 2011, 6:e18687.
-
(2011)
PLoS One
, vol.6
-
-
Ortiz, J.R.1
Zhou, H.2
Shay, D.K.3
Neuzil, K.M.4
Fowlkes, A.L.5
Goss, C.H.6
-
58
-
-
84856717649
-
Google Flu Trends: correlation with emergency department influenza rates and crowding metrics
-
Dugas AF, Hsieh YH, Levin SR, et al. Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis 2012, 54:463-469.
-
(2012)
Clin Infect Dis
, vol.54
, pp. 463-469
-
-
Dugas, A.F.1
Hsieh, Y.H.2
Levin, S.R.3
-
59
-
-
84865598975
-
Comparison: flu prescription sales data from a retail pharmacy in the US with Google Flu Trends and US ILINet (CDC) data as flu activity indicator
-
Patwardhan A, Bilkovski R Comparison: flu prescription sales data from a retail pharmacy in the US with Google Flu Trends and US ILINet (CDC) data as flu activity indicator. PLoS One 2012, 7:e43611.
-
(2012)
PLoS One
, vol.7
-
-
Patwardhan, A.1
Bilkovski, R.2
-
60
-
-
58849107233
-
Google watches over flu
-
Watts G Google watches over flu. BMJ 2008, 337:a3076.
-
(2008)
BMJ
, vol.337
-
-
Watts, G.1
-
61
-
-
84856525810
-
Should we fear "flu fear" itself? Effects of H1N1 influenza fear on ED use
-
McDonnell WM, Nelson DS, Schunk JE Should we fear "flu fear" itself? Effects of H1N1 influenza fear on ED use. Am J Emerg Med 2012, 30:275-282.
-
(2012)
Am J Emerg Med
, vol.30
, pp. 275-282
-
-
McDonnell, W.M.1
Nelson, D.S.2
Schunk, J.E.3
-
62
-
-
80051831902
-
Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
-
Cook S, Conrad C, Fowlkes AL, Mohebbi MH Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS One 2011, 6:e23610.
-
(2011)
PLoS One
, vol.6
-
-
Cook, S.1
Conrad, C.2
Fowlkes, A.L.3
Mohebbi, M.H.4
-
63
-
-
84871963228
-
Tracking epidemics with Google Flu Trends data and a state-space SEIR model
-
Dukic V, Lopes HF, Polson NG Tracking epidemics with Google Flu Trends data and a state-space SEIR model. J Am Stat Assoc 2012, 107:1410-1426.
-
(2012)
J Am Stat Assoc
, vol.107
, pp. 1410-1426
-
-
Dukic, V.1
Lopes, H.F.2
Polson, N.G.3
-
65
-
-
84872591090
-
Monitoring epidemic alert levels by analyzing internet search volume
-
Zhou XC, Li Q, Zhu ZL, Zhao H, Tang H, Feng YJ Monitoring epidemic alert levels by analyzing internet search volume. IEEE Trans Biomed Eng 2013, 60:446-452.
-
(2013)
IEEE Trans Biomed Eng
, vol.60
, pp. 446-452
-
-
Zhou, X.C.1
Li, Q.2
Zhu, Z.L.3
Zhao, H.4
Tang, H.5
Feng, Y.J.6
-
66
-
-
84870859794
-
Forecasting seasonal outbreaks of influenza
-
Shaman J, Karspeck A Forecasting seasonal outbreaks of influenza. Proc Natl Acad Sci USA 2012, 109:20425-20430.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 20425-20430
-
-
Shaman, J.1
Karspeck, A.2
-
67
-
-
84874002846
-
Influenza forecasting with Google Flu Trends
-
Dugas AF, Jalalpour M, Gel Y, et al. Influenza forecasting with Google Flu Trends. PLoS One 2013, 8:e56176.
-
(2013)
PLoS One
, vol.8
-
-
Dugas, A.F.1
Jalalpour, M.2
Gel, Y.3
-
68
-
-
84861156434
-
Optimizing provider recruitment for influenza surveillance networks
-
Scarpino SV, Dimitrov NB, Meyers LA Optimizing provider recruitment for influenza surveillance networks. PLoS Comp Biol 2012, 8:e1002472.
-
(2012)
PLoS Comp Biol
, vol.8
-
-
Scarpino, S.V.1
Dimitrov, N.B.2
Meyers, L.A.3
-
69
-
-
84862497423
-
Can Twitter predict disease outbreaks?
-
St Louis C, Zorlu G Can Twitter predict disease outbreaks?. BMJ 2012, 344:e2353.
-
(2012)
BMJ
, vol.344
-
-
St Louis, C.1
Zorlu, G.2
-
70
-
-
84872525494
-
A real-time disease surveillance architecture using social networks
-
Sofean M, Smith M A real-time disease surveillance architecture using social networks. Stud Health Technol Inform 2012, 180:823-827.
-
(2012)
Stud Health Technol Inform
, vol.180
, pp. 823-827
-
-
Sofean, M.1
Smith, M.2
-
71
-
-
79952200661
-
Using web and social media for influenza surveillance
-
Corley CD, Cook DJ, Mikler AR, Singh KP Using web and social media for influenza surveillance. Adv Exp Med Biol 2010, 680:559-564.
-
(2010)
Adv Exp Med Biol
, vol.680
, pp. 559-564
-
-
Corley, C.D.1
Cook, D.J.2
Mikler, A.R.3
Singh, K.P.4
-
72
-
-
77949738013
-
Text and structural data mining of influenza mentions in web and social media
-
Corley CD, Cook DJ, Mikler AR, Singh KP Text and structural data mining of influenza mentions in web and social media. Int J Environ Res Public Health 2010, 7:596-615.
-
(2010)
Int J Environ Res Public Health
, vol.7
, pp. 596-615
-
-
Corley, C.D.1
Cook, D.J.2
Mikler, A.R.3
Singh, K.P.4
-
73
-
-
84883111635
-
OMG U got flu? Analysis of shared health messages for bio-surveillance
-
Collier N, Son NT, Nguyen NM OMG U got flu? Analysis of shared health messages for bio-surveillance. J Biomed Semantics 2011, 2(suppl 5):S9.
-
(2011)
J Biomed Semantics
, vol.2
, Issue.SUPPL. 5
-
-
Collier, N.1
Son, N.T.2
Nguyen, N.M.3
-
74
-
-
78649725192
-
Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak
-
Chew C, Eysenbach G Pandemics in the age of Twitter: content analysis of tweets during the 2009 H1N1 outbreak. PLoS One 2010, 5:e14118.
-
(2010)
PLoS One
, vol.5
-
-
Chew, C.1
Eysenbach, G.2
-
75
-
-
84867410703
-
Nowcasting events from the social web with statistical learning
-
Lampos V, Cristianini N Nowcasting events from the social web with statistical learning. ACM Trans Intell Syst Technol 2012, 3:72.
-
(2012)
ACM Trans Intell Syst Technol
, vol.3
, pp. 72
-
-
Lampos, V.1
Cristianini, N.2
-
76
-
-
84874751668
-
Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages
-
Culotta A Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages. Lang Resources Eval 2013, 47:217-238.
-
(2013)
Lang Resources Eval
, vol.47
, pp. 217-238
-
-
Culotta, A.1
-
77
-
-
18244380889
-
Modeling the effects of epidemics on routinely collected data
-
Zeng X, Wagner M Modeling the effects of epidemics on routinely collected data. J Am Med Inform Assoc 2002, 9:S17-S22.
-
(2002)
J Am Med Inform Assoc
, vol.9
-
-
Zeng, X.1
Wagner, M.2
-
78
-
-
21644464188
-
Community-based surveillance: a pilot study from rural Cambodia
-
Oum S, Chandramohan D, Cairncross S Community-based surveillance: a pilot study from rural Cambodia. Trop Med Int Health 2005, 10:689-697.
-
(2005)
Trop Med Int Health
, vol.10
, pp. 689-697
-
-
Oum, S.1
Chandramohan, D.2
Cairncross, S.3
-
79
-
-
84892516834
-
Influenza surveillance and pandemic requirements
-
CABI, J. Van-Tam, C. Sellwood (Eds.)
-
Watson JM, Pebody RG Influenza surveillance and pandemic requirements. Pandemic influenza 2013, 9-18. CABI. 2nd edn. J. Van-Tam, C. Sellwood (Eds.).
-
(2013)
Pandemic influenza
, pp. 9-18
-
-
Watson, J.M.1
Pebody, R.G.2
-
80
-
-
77950993217
-
Rural-urban differences in general and health-related internet use
-
Hale TM, Cotten SR, Drentea P, Goldner M Rural-urban differences in general and health-related internet use. Am Behav Sci 2010, 53:1304-1325.
-
(2010)
Am Behav Sci
, vol.53
, pp. 1304-1325
-
-
Hale, T.M.1
Cotten, S.R.2
Drentea, P.3
Goldner, M.4
-
81
-
-
84890625827
-
-
OMG, I have to tweet that! a study of factors that influence tweet rates. Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media; Trinity College, Dublin, Ireland
-
Kiciman E. OMG, I have to tweet that! a study of factors that influence tweet rates. Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media; Trinity College, Dublin, Ireland; 2012.
-
(2012)
-
-
Kiciman, E.1
-
82
-
-
84858045239
-
-
(accessed Jan 1, 2013).
-
Mohebbi M, Vanderkam D, Kodysh J, Schonberger R, Choi H, Kumar S Google correlate whitepaper (accessed Jan 1, 2013). http://googleproof.org/trends/correlate/whitepaper.pdf.
-
Google correlate whitepaper
-
-
Mohebbi, M.1
Vanderkam, D.2
Kodysh, J.3
Schonberger, R.4
Choi, H.5
Kumar, S.6
-
83
-
-
79955398902
-
Infodemiology and infoveillance tracking online health information and cyberbehavior for public health
-
Eysenbach G Infodemiology and infoveillance tracking online health information and cyberbehavior for public health. Am J Prev Med 2011, 40:S154-S158.
-
(2011)
Am J Prev Med
, vol.40
-
-
Eysenbach, G.1
-
84
-
-
84870540472
-
New technologies for reporting real-time emergent infections
-
Chunara R, Freifeld CC, Brownstein JS New technologies for reporting real-time emergent infections. Parasitology 2012, 139:1843-1851.
-
(2012)
Parasitology
, vol.139
, pp. 1843-1851
-
-
Chunara, R.1
Freifeld, C.C.2
Brownstein, J.S.3
-
85
-
-
79954596987
-
GET WELL: an automated surveillance system for gaining new epidemiological knowledge
-
Hulth A, Rydevik G GET WELL: an automated surveillance system for gaining new epidemiological knowledge. BMC Public Health 2011, 11:252.
-
(2011)
BMC Public Health
, vol.11
, pp. 252
-
-
Hulth, A.1
Rydevik, G.2
-
86
-
-
77953601869
-
The next public health revolution: public health information fusion and social networks
-
Khan AS, Fleischauer A, Casani J, Groseclose SL The next public health revolution: public health information fusion and social networks. Am J Public Health 2010, 100:1237-1242.
-
(2010)
Am J Public Health
, vol.100
, pp. 1237-1242
-
-
Khan, A.S.1
Fleischauer, A.2
Casani, J.3
Groseclose, S.L.4
-
87
-
-
53049093177
-
Predicting the next pandemic
-
Barclay E Predicting the next pandemic. Lancet 2008, 372:1025-1026.
-
(2008)
Lancet
, vol.372
, pp. 1025-1026
-
-
Barclay, E.1
|